• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological Srrucrure of US Flighr Nerwork Based on Complex Nerwork Theory

    2015-02-09 06:08:57LiShanmei李善梅XuXiaohao徐肖豪WangFei王飛WangXinglong王興隆
    關(guān)鍵詞:王飛興隆

    Li Shanmei(李善梅),Xu Xiaohao(徐肖豪),Wang Fei(王飛),Wang Xinglong(王興?。?/p>

    Air Traffic Management Research Base,Civil Aviation University of China,Tianjin 300300,P.R.China

    (Received 3 June 2014;revised 25 December 2014;accepted 7 March 2015)

    Topological Srrucrure of US Flighr Nerwork Based on Complex Nerwork Theory

    Li Shanmei(李善梅)*,Xu Xiaohao(徐肖豪),Wang Fei(王飛),Wang Xinglong(王興隆)

    Air Traffic Management Research Base,Civil Aviation University of China,Tianjin 300300,P.R.China

    (Received 3 June 2014;revised 25 December 2014;accepted 7 March 2015)

    Absrracr:US flight network,composed of 285 airports(nodes)and 3 971 flights(edges)is studied.A static network model and a dynamic network model of US flight network are established.Firstly,the characteristics of static network are analyzed.One finds that such a network is a″small-world″and″scale-free″network.The cumulative degree distributions of weighted network and unweighted network follow″Double Pareto Law″.And the degree exponent of weighted network is smaller than unweighted network.The average shortest-path length is 2.368 9,which is smaller than previous results.The clustering coefficient of unweighted network is 0.637 1 and of weighted network is 0.653 6,which are both bigger than previous results.The correlation of degree,unweighted clustering coefficient and weighted clustering coefficient are also discussed.Secondly,the characteristics of dynamic network are studied.The structure of flight network is changing as the time goes by on a day.In rush hours,the network's character of″scale-free″is stronger than other times.And then the relationships of topological structures and congestion effects are addressed.

    complex network;scale-free;small-world;congestion effect

    0 Inrroducrion

    Complex network theory provides strong method to understand the topological structures of different systems.Along with the flourishing development of complex network theory,″smallworld″network model and″scale-free″network model are the most exciting discovery at the end of the last century[1-2].During the past few years,complex network analysis has been used to study airlines from different aspects.The world-wide airport network(WAN)has been proved that of″small-world″and″scale-free″[3-8].Besides the national airline networks,such as the airline network of America,China,Brazil,and India,are also extensively studied[9-12].It is found that the national airline networks can exhibit different properties including disassortative mixing,two regime power-law degree distributions,exponential traffic volume increasing and so on.The research above is important for reasons of policy,administration and efficiency.

    This paper will present investigations of US flight network,in which the vertices are the airports and the flights connecting two airports are represented by the edges.The network has three characteristics:(1)Direction.All the flights are directed,sorted as arrival and departure.(2)Weight.The number of flights from any given airport i to j is used to indicate how busy a certain line is.(3)Hourly flight information.The hourly flight information partly reflects the evolution of the flight network.

    In this paper,US flight network is studied from two aspects.Firstly,the network as a″static network model″is studied,which contains″unweighted network″and″weighted network″.The statistical characteristics are analyzed such as thedegree distributions,the weight distributions,the clustering coefficient,the diameter and so on. Secondly,the network as a″dynamic network model″is studied,whose structure varies along as the time goes by.The weight distributions are analyzed,which show the hourly evolution mechanisms of US flight network.

    1 Dara and Model

    US flight network contains 285 nodes and 3 971 directed lines that connect most major cities in USA.The data are about 6:00 to 24:00 of January 1st,2010(The data are obtained from http://www.transtats.bts.gov/Fields.asp?Table-ID=236).We collect the number of flights of every line in each hour.

    1.1 Sraric nerwork model

    The static network model is established from the point of macro view.The topology of the network can be symbolized by a 285×285 matrix A. aijis 1 if there is no flights flying from airport i to airport j on the day.It is 0 otherwise.The element of weighted matrix U represents the number of flights from airport i to airport j on the day.

    1.2 Dynamic nerwork model

    The dynamic network model is established from micro perspective.The network structure varies as the number of flights of each link is different for every hour.A 285×285×18 connectivity matrix C is established.cijtis 1 if there is no flights flying from airport i to airport j at the t th hour of a day.It is 0 othewise.t=1 represents the time interval from 6:00 to 7:00;t=2 represents the time interval from 7:00 to 8:00;…;t= 18 represents the time interval from 23:00 to 24:00.A 285×285×18 weight matrix W is also established with wijtbeing the number of flights from airport i to airport j at the t th hour.Fig.1 gives the structures of static network model and dynamic network model,respectively.

    Fig.1 Structures of network models

    2 Topological Analysis of Sraric Nerwork

    2.1 Degree disrriburions and degree correlarions

    Degree of a node is the number of nodes to which it is connected.In a directed network,indegree(out-degree)of a node is the number of incoming(out-going)links.

    For the unweighted network,in-degree,outdegree and degree of node i is defined as

    where N is the total number of nodes in the network.

    Similarly,one can prove the degree expressions for weighted network

    Firstly,one considers the distributions of k(i)and kw(i),respectively.The cumulative form gives the probability that airport i has a degree larger than k.It is expressed as

    Fig.2 presents behaviors of k(i)and kw(i)distributions.It shows that both two distributions follow a two-regime power law with two different exponents,known as double Pareto law. The formation of lower-degree airports is different from that of higher-degree airports.

    Fig.2 Cumulative degree distribution of US flight network with double Pareto law

    The double Pareto law shows that US flight network is a scale-free network.The reason of the phenomenon is studied by many scholars.An airport cannot increase routes unlimitedly as the existence of connection cost[3].Two airports cannot connected if the distance of them is much bigger than the restrict of geography distance[6].In the paper,imbalance economy and congestion effect in transportation are the most important causes of the double Pareto law distribution.

    Zheng,et al.pointed out that the bigger the degree exponentαwas,the weaker the heterogeneity was[13].Fig.2 illustrates that the heterogeneity of weighted network is stronger than unweighted network,because the power exponent of kwis smaller than k.In the paper,the phenomenon can be attributed to the economic imbalance and congestion effect.

    As shown in Fig.3,the distributions offollow double Pareto law.

    Fig.3 Cumulative degree distribution

    The difference between the degree exponentsis very small,which shows that US flight network has fine symmetries.The number of flights from airport i to j is equal to the number of flights from airport j to i.

    The nonlinear relationship of kwand k is given in Fig.4.The relational expression is described as kw~k1.1464.

    Fig.4 Correlation of unweighted degree and weighted degree(kw—k1.1464)

    The relationship shows that the number of flights increases exponentially with the increase of air routes.This phenomenon can be understood by network externalities in economics.People always choose the airports with many routes as there are many direct flights and transfer flights,which makes their journey much more convenient.

    2.2 Shorresr parh analysis

    Diameter is the average shortest-path length between two nodes in the system[14].The diameter of our flight network is defined as

    where dijis the minimum number of edges connecting from airport i to j.

    The results of the shortest paths analysis is shown in Table 1.Apart from other statistics,we also show the number of flight transfers,which is an indicator of the convenience of travel in the network.In Table 1,we can find that the shortest path lengths of the whole flight network are 1,2,3 and 4,with the probabilities of 0.049 6,0.542 6,0.373 5,0.034 3,respectively.This implies that there is no more than three transfers from airport i to j.The diameter of US flight network is D=2.368 9.It means that on the average there is 1.368 9 transfers from airport i to j.Thus,the diameter is rather small compared with the number of airports,which demonstrates the properties of small-world.In addition,US flight network is becoming″smaller″as time goes by as the value D computed here is a little smaller than D=2.403 calculated in Ref.[15].

    Table 1 Shorresr parhs and rheir percenrage

    2.3 Clusrering coefficienr

    Clustering coefficient is used to quantify the inherent concentration trends.It includes unweighted clustering coefficient ciand weighted clustering coefficient

    The clustering coefficient of unweighted network C and weighted network Cware defined as

    The clustering coefficient C is 0.637 1,and Cw0.653 6.They are bigger than previous research result 0.618,which indicates the network is becoming smaller and smaller as the time goes by[15].The clustering coefficient and degree correlation are given in Fig.5.C(k)decreases with degree increasing,which means that the clustering coefficient of nodes with bigger degree is much small and nodes with smaller degree connects closely.It shows that the structure of US flight network is hierarchical.Besides,the values of Cw(k)and C(k)are becoming gentle with k increasing and Cw(k)is bigger than C(k),which indicate that the traffic between airports with bigger degree is much higher than airports with smaller degree.In the paper,we can get that US flight network follows Pareto law.This contributes to congestion formation.Thus the small average path length and high cluster coefficient demonstrate the small-world property of US flight network.

    Fig.5 Correlation of clustering coefficients and degree

    3 Topological Analysis of Dynamic Nerwork

    The previous approaches to study the complex systems mainly focus on the topology,and partly neglect the time-varying weight associated with the link[12].

    The evolution of US flight network on a day based on the dynamic network model is studied. Taking 5:00—6:00,8:00—9:00 and 23:00—24:00 intervals for instance,the distributions of kwof the above intervals are displayed in the following.

    Fig.6 shows that the structure of the dynamic network is changing as the time goes by on a day.In rush hours,the network's character of″scale free″is stronger than other times.Furthermore,the degree exponent of rush hours is much smaller than non-rush hours,which shows that the heterogeneity of rush hours is stronger than other times.For example,αof 8:00—9:00 is smaller than 5:00—6:00,which is shown in Fig.6.The results above are consistent with the serious congestion of rush hours.

    Fig.6 Cumulative degree distribution of weighted network for different intervals

    4 Conclusions

    The weighted and unweighted US flight network are studied.The static network model is constructed,which contains unweighted network and weight network.The cumulative degree distribution,the shortest path length and clustering coefficient are discussed both for the unweighted and weighted networks,which indicates US flight network is of″scale-free″and″small world″.The results are also compared with previous research. The dynamic network model is also established. The hourly weight distributions are analyzed and the hierarchy of the network for different intervals is discussed.

    The research in this paper displays that US flight network is not a random network,but a scale free network.The fluctuation of the number of flights on the non-random structure should be addressed for the next step,which is used to explain the behavior of traffic congestion.

    Acknowledgemenrs

    This work was supported by the Projects in the National Science&Technology Pillar Program(2011-BAH24B10),the Joint Funds of National Natural Science Foundation of China(61571441),the Fundamental Research Funds for the Central Universities of Civil Aviation University of China in 2016,the Open Fund of Air Traffic Management Research Base(No.KGJD201503),and the Scientific Research Foundation of Civil Aviation University of China(No.2014QD01S).

    [1] Watts D J,Strogatz S H.Collective dynamics of″small-world″networks[J].Nature,1998,393(6684):440-442.

    [2] Barabási A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286(5439):509-512.

    [3] Amaral L A N,Scala A,Barthelemy M,et al.Classes of small-world networks[J].Proceedings of the National Academy of Sciences,2000,97(21):11149-11152.

    [4] Guimer′a R,Mossa S,Turtschi A,et al.The worldwide air transportation network:Anomalous centrality,community structure,and cities global roles[J]. Proceedings of the National Academy of Sciences,2005,102(22):7794-7799.

    [5] Li W,Cai X.Statistical analysis of airport network of China[J].Physical Review E,2004,69(4):046106.

    [6] Barrat A,Barthelemy M,Pastor-Satorras R,et al. The architecture of complex weighted networks[J]. Proceedings of the National Academy of Sciences,2004,101(11):3747-3752.

    [7] Guimera R,Amaral L A N.Modeling the worldwide airport network[J].The European Physical Journal B-Condensed Matter and Complex Systems,2004,38(2):381-385.

    [8] Colizza V,Barrat A,Barthélemy M,et al.The role of the airline transportation network in the prediction and predictability of global epidemics[J].Proceedings of the National Academy of Sciences,2006,103(7):2015-2020.

    [9] Gautreau A,Barrat A,Barthélemy M.Microdynamics in stationary complex networks[J].Proceedings of the National Academy of Sciences,2009,106(22):8847-8852.

    [10]Zhang J,Cao X B,Du W B,et al.Evolution of Chinese airport network[J].Physica A:Statistical Mechanics and Its Applications,2010,389(18):3922-3931.

    [11]da Rocha L E.Structural evolution of the Brazilian airport network[J].Journal of Statistical Mechanics:Theory and Experiment,2009,4(1):P04020.

    [12]Bagler G.Analysis of the airport network of India as a complex weighted network[J].Physica A:Statistical Mechanics and Its Applications,2008,387(12):2972-2980.

    [13]Zheng J F,Gao Z Y,Zhao X M.Properties of transportation dynamics on scale-free networks[J].Physica A:Statistical Mechanics and Its Applications,2007,373(36):837-844.

    [14]Albert R,Jeong H,Barabási A L.Internet:Diameter of the world-wide web[J].Nature,1999,401(6749):130-131.

    [15]Chi L P,Wang R,Su H,et al.Structural properties of US flight network[J].Chinese Physics Letters,2003,20(8):1393.

    (Executive Editor:Xu Chengting)

    V355Documenr code:AArricle ID:1005-1120(2015)05-0555-05

    *Corresponding aurhor:Li Shanmei,Lecturer,E-mail:yma820203@163.com.

    How ro cire rhis arricle:Li Shanmei,Xu Xiaohao,Wang Fei,et al.Topological structure of US flight network based on complex network theory[J].Trans.Nanjing U.Aero.Astro.,2015,32(5):555-559.

    http://dx.doi.org/10.16356/j.1005-1120.2015.05.555

    猜你喜歡
    王飛興隆
    滬指失守3000點
    家人春節(jié)照
    興隆山楂管理技術(shù)
    河北果樹(2020年2期)2020-05-25 06:58:44
    市場觀察(1)
    市場觀察(2)
    A Similarity Transformation and the Decay Mode Solutions for Three-Dimensional Cylindrical Kadomtsev-Petviashvili Equation
    萬寧之旅·興隆植物小姐模特大賽(二)
    新教育(2018年27期)2019-01-08 02:23:18
    市場觀察(1)
    特別的生日禮物
    我要飛翔
    精品99又大又爽又粗少妇毛片 | 久久久久久九九精品二区国产| 成人高潮视频无遮挡免费网站| 91九色精品人成在线观看| www.精华液| 久久伊人香网站| xxx96com| 人人妻人人看人人澡| 国产免费男女视频| 特级一级黄色大片| 黄色成人免费大全| 夜夜看夜夜爽夜夜摸| 每晚都被弄得嗷嗷叫到高潮| 女人高潮潮喷娇喘18禁视频| 日韩 欧美 亚洲 中文字幕| 色综合亚洲欧美另类图片| 久久久水蜜桃国产精品网| 一个人免费在线观看的高清视频| 69av精品久久久久久| 亚洲精品久久国产高清桃花| 黄色片一级片一级黄色片| 两性夫妻黄色片| 黄色视频,在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 精品国产乱码久久久久久男人| 亚洲国产欧美一区二区综合| 午夜免费激情av| 精品熟女少妇八av免费久了| 亚洲一区高清亚洲精品| 校园春色视频在线观看| 亚洲天堂国产精品一区在线| 脱女人内裤的视频| 中文字幕久久专区| 国产亚洲精品综合一区在线观看| 精品久久久久久久人妻蜜臀av| 国产亚洲精品一区二区www| 国产熟女xx| 亚洲午夜精品一区,二区,三区| 久久久久国产精品人妻aⅴ院| 亚洲电影在线观看av| 免费看光身美女| 伊人久久大香线蕉亚洲五| 国产黄a三级三级三级人| 两性夫妻黄色片| 最近最新中文字幕大全电影3| 又黄又爽又免费观看的视频| 男女下面进入的视频免费午夜| 99国产综合亚洲精品| 在线免费观看不下载黄p国产 | 五月玫瑰六月丁香| 麻豆av在线久日| 欧美一级毛片孕妇| 一个人看的www免费观看视频| 搡老岳熟女国产| 偷拍熟女少妇极品色| 久99久视频精品免费| 国产 一区 欧美 日韩| 丁香六月欧美| 曰老女人黄片| 草草在线视频免费看| 亚洲七黄色美女视频| 国产成人一区二区三区免费视频网站| 成人永久免费在线观看视频| avwww免费| 欧美激情在线99| 婷婷丁香在线五月| 在线观看66精品国产| 在线永久观看黄色视频| 午夜精品在线福利| 国产成人精品久久二区二区免费| 天天躁狠狠躁夜夜躁狠狠躁| 久久亚洲真实| 男女那种视频在线观看| 999久久久国产精品视频| 亚洲中文av在线| 在线观看免费午夜福利视频| 欧美高清成人免费视频www| 男人舔奶头视频| 国产精品日韩av在线免费观看| 在线观看日韩欧美| 99国产精品99久久久久| 日韩欧美精品v在线| 一个人免费在线观看电影 | 久久精品国产亚洲av香蕉五月| cao死你这个sao货| 亚洲人成网站高清观看| 久久精品91蜜桃| 在线免费观看的www视频| 性色avwww在线观看| 日本三级黄在线观看| 国产黄片美女视频| 久久精品aⅴ一区二区三区四区| 免费人成视频x8x8入口观看| 真实男女啪啪啪动态图| 日韩精品青青久久久久久| 亚洲精品粉嫩美女一区| 欧美黄色淫秽网站| 亚洲国产日韩欧美精品在线观看 | 琪琪午夜伦伦电影理论片6080| 熟女人妻精品中文字幕| 亚洲成av人片在线播放无| 人人妻,人人澡人人爽秒播| 国产精品自产拍在线观看55亚洲| 热99re8久久精品国产| 99国产精品99久久久久| 男女下面进入的视频免费午夜| 母亲3免费完整高清在线观看| 蜜桃久久精品国产亚洲av| 国产精品99久久99久久久不卡| 国产精品av视频在线免费观看| 色播亚洲综合网| 国产精品久久电影中文字幕| 99视频精品全部免费 在线 | 无限看片的www在线观看| 美女免费视频网站| 欧美zozozo另类| 亚洲精品乱码久久久v下载方式 | 男女做爰动态图高潮gif福利片| 免费搜索国产男女视频| 精品一区二区三区av网在线观看| 此物有八面人人有两片| 欧美在线一区亚洲| 亚洲人成网站高清观看| 午夜福利18| 亚洲av第一区精品v没综合| 成熟少妇高潮喷水视频| 小蜜桃在线观看免费完整版高清| 老熟妇乱子伦视频在线观看| 少妇人妻一区二区三区视频| 五月伊人婷婷丁香| 日韩欧美三级三区| 久久中文字幕人妻熟女| 久久九九热精品免费| 欧美极品一区二区三区四区| 成人欧美大片| 国产黄片美女视频| 欧美日本亚洲视频在线播放| 美女高潮喷水抽搐中文字幕| 国产成人福利小说| 久久天躁狠狠躁夜夜2o2o| xxxwww97欧美| 天堂网av新在线| 在线观看66精品国产| 男女床上黄色一级片免费看| 欧美3d第一页| 婷婷精品国产亚洲av| 久久精品aⅴ一区二区三区四区| 99精品欧美一区二区三区四区| 成人无遮挡网站| 久久午夜综合久久蜜桃| 国产精品99久久99久久久不卡| 午夜福利18| 99热只有精品国产| 夜夜爽天天搞| e午夜精品久久久久久久| 两个人看的免费小视频| 成人精品一区二区免费| 动漫黄色视频在线观看| 国产成人系列免费观看| 欧美性猛交黑人性爽| 高清毛片免费观看视频网站| 久久草成人影院| 亚洲av中文字字幕乱码综合| 变态另类成人亚洲欧美熟女| 欧美一区二区国产精品久久精品| 欧美另类亚洲清纯唯美| 国产爱豆传媒在线观看| 欧美在线一区亚洲| 一本精品99久久精品77| 免费看a级黄色片| 母亲3免费完整高清在线观看| 精品国产乱子伦一区二区三区| 日韩欧美国产一区二区入口| 中国美女看黄片| 精品国内亚洲2022精品成人| 精华霜和精华液先用哪个| 免费看十八禁软件| 无限看片的www在线观看| 他把我摸到了高潮在线观看| 美女高潮的动态| 激情在线观看视频在线高清| 久久久久久国产a免费观看| 国产v大片淫在线免费观看| 一个人看的www免费观看视频| 国产欧美日韩精品亚洲av| 首页视频小说图片口味搜索| 国产一级毛片七仙女欲春2| 欧美性猛交黑人性爽| 校园春色视频在线观看| 久久欧美精品欧美久久欧美| 性色avwww在线观看| 看黄色毛片网站| 中文字幕人成人乱码亚洲影| 欧美成狂野欧美在线观看| 在线观看舔阴道视频| 欧美午夜高清在线| 久久精品国产99精品国产亚洲性色| 老熟妇乱子伦视频在线观看| www日本黄色视频网| 国产三级黄色录像| 最近在线观看免费完整版| 91麻豆av在线| 日本三级黄在线观看| 天天一区二区日本电影三级| 女人高潮潮喷娇喘18禁视频| www.999成人在线观看| 亚洲精品中文字幕一二三四区| 性色avwww在线观看| 午夜成年电影在线免费观看| 香蕉久久夜色| 亚洲av成人不卡在线观看播放网| 国产午夜精品久久久久久| 久久久久九九精品影院| 免费看日本二区| 9191精品国产免费久久| 999久久久国产精品视频| 一级毛片精品| 国产午夜福利久久久久久| 岛国视频午夜一区免费看| 欧美乱妇无乱码| 99热精品在线国产| 国产精品一区二区精品视频观看| 国产精品香港三级国产av潘金莲| 国产成人精品久久二区二区91| 欧美一级a爱片免费观看看| 搡老岳熟女国产| 欧美色视频一区免费| 欧美精品啪啪一区二区三区| 亚洲无线在线观看| 男女那种视频在线观看| 草草在线视频免费看| 精品一区二区三区四区五区乱码| 亚洲精品在线美女| 欧美在线一区亚洲| 黑人操中国人逼视频| 一进一出好大好爽视频| 成人亚洲精品av一区二区| 日韩免费av在线播放| 亚洲国产精品成人综合色| 一级毛片女人18水好多| 日韩欧美一区二区三区在线观看| 欧美丝袜亚洲另类 | 午夜免费激情av| 熟妇人妻久久中文字幕3abv| 欧美一区二区国产精品久久精品| 日本在线视频免费播放| 国产真人三级小视频在线观看| 日韩有码中文字幕| 亚洲av五月六月丁香网| 国产伦人伦偷精品视频| 亚洲中文日韩欧美视频| 国产私拍福利视频在线观看| 国产成人啪精品午夜网站| 大型黄色视频在线免费观看| 欧美乱妇无乱码| 国产毛片a区久久久久| 天堂√8在线中文| 亚洲国产精品久久男人天堂| 日本与韩国留学比较| 亚洲欧美日韩高清专用| 久久香蕉精品热| 一夜夜www| 国产激情偷乱视频一区二区| 97超视频在线观看视频| 午夜福利成人在线免费观看| 成人国产一区最新在线观看| 久久天躁狠狠躁夜夜2o2o| 好看av亚洲va欧美ⅴa在| 久久精品影院6| 丰满人妻熟妇乱又伦精品不卡| av天堂在线播放| 黄片大片在线免费观看| 亚洲色图av天堂| 一个人免费在线观看的高清视频| 日日摸夜夜添夜夜添小说| 一进一出好大好爽视频| 国产久久久一区二区三区| 亚洲乱码一区二区免费版| 毛片女人毛片| 日本熟妇午夜| 午夜亚洲福利在线播放| 欧美日韩国产亚洲二区| 九九热线精品视视频播放| 在线播放国产精品三级| 五月伊人婷婷丁香| 老司机午夜福利在线观看视频| 国产爱豆传媒在线观看| 国产淫片久久久久久久久 | 天堂影院成人在线观看| 亚洲国产看品久久| 久久精品国产99精品国产亚洲性色| 久久久久久九九精品二区国产| 99riav亚洲国产免费| 色老头精品视频在线观看| 九九热线精品视视频播放| 精品久久久久久久久久免费视频| 91麻豆精品激情在线观看国产| 国产成人欧美在线观看| av中文乱码字幕在线| 后天国语完整版免费观看| 久久久久国产精品人妻aⅴ院| 亚洲性夜色夜夜综合| 99热精品在线国产| АⅤ资源中文在线天堂| 国产aⅴ精品一区二区三区波| 一级a爱片免费观看的视频| 很黄的视频免费| 精品国产超薄肉色丝袜足j| 最近最新免费中文字幕在线| 婷婷亚洲欧美| 亚洲黑人精品在线| 亚洲色图av天堂| 日本a在线网址| 99久久99久久久精品蜜桃| 哪里可以看免费的av片| 精品一区二区三区av网在线观看| 岛国视频午夜一区免费看| 在线播放国产精品三级| 免费av毛片视频| 美女扒开内裤让男人捅视频| 在线观看一区二区三区| 老司机福利观看| 人人妻人人澡欧美一区二区| 在线看三级毛片| 我的老师免费观看完整版| 嫁个100分男人电影在线观看| 亚洲欧美精品综合一区二区三区| 夜夜爽天天搞| 成人高潮视频无遮挡免费网站| 国内毛片毛片毛片毛片毛片| 9191精品国产免费久久| 久久中文字幕人妻熟女| 又黄又粗又硬又大视频| 一个人免费在线观看电影 | 亚洲精华国产精华精| 成人高潮视频无遮挡免费网站| 免费看美女性在线毛片视频| 欧美乱色亚洲激情| 午夜亚洲福利在线播放| 成人高潮视频无遮挡免费网站| 日本免费a在线| 99国产精品99久久久久| 精品久久久久久久毛片微露脸| 国产激情偷乱视频一区二区| 久久久久久大精品| 日日摸夜夜添夜夜添小说| АⅤ资源中文在线天堂| 99久久精品一区二区三区| 亚洲av成人av| 看免费av毛片| АⅤ资源中文在线天堂| www.熟女人妻精品国产| 日韩欧美国产一区二区入口| 欧美激情在线99| 99热精品在线国产| 欧美在线黄色| 国产午夜精品久久久久久| 中文字幕熟女人妻在线| 在线免费观看不下载黄p国产 | 最近最新中文字幕大全电影3| av天堂在线播放| 19禁男女啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 黄色成人免费大全| 国产一区二区激情短视频| 国产日本99.免费观看| 日本成人三级电影网站| or卡值多少钱| av黄色大香蕉| 人人妻,人人澡人人爽秒播| 最近最新免费中文字幕在线| 国产精品野战在线观看| 日本 av在线| 久久午夜亚洲精品久久| 成人永久免费在线观看视频| 久久久久久久久久黄片| 在线国产一区二区在线| 亚洲精品粉嫩美女一区| 午夜日韩欧美国产| 国产三级黄色录像| 黑人操中国人逼视频| 成在线人永久免费视频| 一本综合久久免费| 国产成人精品无人区| 国产精品99久久久久久久久| 色综合站精品国产| 99热精品在线国产| 90打野战视频偷拍视频| 香蕉久久夜色| 99国产精品一区二区蜜桃av| 黄色日韩在线| 国产成人影院久久av| 国产精品久久久久久久电影 | 国产精品 欧美亚洲| 婷婷六月久久综合丁香| 级片在线观看| 免费高清视频大片| 免费一级毛片在线播放高清视频| 天天添夜夜摸| 韩国av一区二区三区四区| av在线天堂中文字幕| 久久久久免费精品人妻一区二区| 日本免费a在线| 成人高潮视频无遮挡免费网站| 亚洲aⅴ乱码一区二区在线播放| 成年版毛片免费区| 中国美女看黄片| 全区人妻精品视频| 亚洲人成电影免费在线| 波多野结衣高清无吗| 欧美丝袜亚洲另类 | 免费大片18禁| 一级毛片女人18水好多| 久久婷婷人人爽人人干人人爱| 熟女人妻精品中文字幕| 熟女电影av网| 亚洲av第一区精品v没综合| 一区二区三区国产精品乱码| 丰满人妻一区二区三区视频av | 真实男女啪啪啪动态图| 床上黄色一级片| 国产1区2区3区精品| 亚洲av日韩精品久久久久久密| 亚洲av中文字字幕乱码综合| 免费观看人在逋| 激情在线观看视频在线高清| 嫁个100分男人电影在线观看| 身体一侧抽搐| 无人区码免费观看不卡| 欧美av亚洲av综合av国产av| 色av中文字幕| 色吧在线观看| 亚洲在线自拍视频| 国产精品日韩av在线免费观看| 欧美日本视频| 两个人视频免费观看高清| 婷婷亚洲欧美| 毛片女人毛片| 国产精品久久久久久亚洲av鲁大| 性欧美人与动物交配| 国产真人三级小视频在线观看| 久久伊人香网站| 88av欧美| 亚洲中文日韩欧美视频| 免费观看人在逋| 欧美日韩精品网址| 欧美成人一区二区免费高清观看 | 精品一区二区三区四区五区乱码| 日韩成人在线观看一区二区三区| 一二三四社区在线视频社区8| 久久热在线av| 欧美一区二区国产精品久久精品| 两性午夜刺激爽爽歪歪视频在线观看| 国模一区二区三区四区视频 | 桃色一区二区三区在线观看| 亚洲片人在线观看| 精品国产乱子伦一区二区三区| 90打野战视频偷拍视频| 欧美激情久久久久久爽电影| 性色avwww在线观看| 成人av一区二区三区在线看| 亚洲一区高清亚洲精品| 免费av毛片视频| 一级毛片女人18水好多| 国产蜜桃级精品一区二区三区| 黄色丝袜av网址大全| 午夜免费观看网址| 一级毛片高清免费大全| а√天堂www在线а√下载| 小说图片视频综合网站| 国产成人aa在线观看| 亚洲国产精品sss在线观看| 亚洲第一电影网av| 成年女人永久免费观看视频| 成人高潮视频无遮挡免费网站| 99riav亚洲国产免费| 精品电影一区二区在线| 久久精品国产99精品国产亚洲性色| 男女做爰动态图高潮gif福利片| 淫妇啪啪啪对白视频| 嫩草影院精品99| 国产精品国产高清国产av| 日韩高清综合在线| 成人av一区二区三区在线看| 精品久久蜜臀av无| 美女高潮喷水抽搐中文字幕| 在线国产一区二区在线| 嫩草影院入口| 亚洲专区中文字幕在线| 欧美极品一区二区三区四区| 十八禁网站免费在线| 久久久久久久久中文| 欧美在线一区亚洲| 99久久久亚洲精品蜜臀av| 色视频www国产| 久久久成人免费电影| 国产在线精品亚洲第一网站| 俄罗斯特黄特色一大片| 国产精品亚洲一级av第二区| 精品一区二区三区四区五区乱码| 日本 av在线| 亚洲 欧美一区二区三区| 一个人免费在线观看电影 | 国产麻豆成人av免费视频| 国产真人三级小视频在线观看| 国产高清三级在线| 舔av片在线| av天堂中文字幕网| 99久久国产精品久久久| 国内揄拍国产精品人妻在线| 欧美最黄视频在线播放免费| 午夜亚洲福利在线播放| 精品国产超薄肉色丝袜足j| e午夜精品久久久久久久| 丰满的人妻完整版| 亚洲午夜理论影院| 嫩草影院入口| www.自偷自拍.com| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉国产精品| 欧美日韩瑟瑟在线播放| av女优亚洲男人天堂 | 欧美一级毛片孕妇| 十八禁网站免费在线| 国产精品99久久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲 欧美 日韩 在线 免费| 久久久久性生活片| 久久精品国产清高在天天线| netflix在线观看网站| 天天躁日日操中文字幕| 嫩草影视91久久| 欧美一级毛片孕妇| 草草在线视频免费看| 久久人妻av系列| 日本精品一区二区三区蜜桃| 国产探花在线观看一区二区| 精品乱码久久久久久99久播| 国产97色在线日韩免费| 又粗又爽又猛毛片免费看| 在线免费观看不下载黄p国产 | 国产三级黄色录像| 波多野结衣巨乳人妻| 90打野战视频偷拍视频| 国产亚洲精品av在线| 久久中文字幕人妻熟女| 国产精品99久久久久久久久| 免费观看人在逋| 欧美日韩瑟瑟在线播放| 亚洲国产欧美一区二区综合| 小说图片视频综合网站| 久久性视频一级片| 麻豆久久精品国产亚洲av| 99精品久久久久人妻精品| 成人av一区二区三区在线看| 狂野欧美白嫩少妇大欣赏| 最好的美女福利视频网| 99久国产av精品| 男女做爰动态图高潮gif福利片| 制服人妻中文乱码| 久久精品夜夜夜夜夜久久蜜豆| 成人亚洲精品av一区二区| 他把我摸到了高潮在线观看| 亚洲中文日韩欧美视频| 99riav亚洲国产免费| 亚洲自拍偷在线| 国内精品久久久久精免费| 国产精品99久久久久久久久| 欧美乱妇无乱码| 国产一区二区在线观看日韩 | 久久久久免费精品人妻一区二区| 久久性视频一级片| 国产真人三级小视频在线观看| 一级毛片精品| 久久精品91无色码中文字幕| 最好的美女福利视频网| 淫妇啪啪啪对白视频| 99国产精品一区二区蜜桃av| 嫩草影视91久久| 欧美大码av| 搡老妇女老女人老熟妇| 我的老师免费观看完整版| 欧美另类亚洲清纯唯美| 淫秽高清视频在线观看| 国产亚洲av高清不卡| 欧美中文日本在线观看视频| 亚洲熟妇中文字幕五十中出| 白带黄色成豆腐渣| 高清毛片免费观看视频网站| 午夜福利18| 脱女人内裤的视频| 精品久久久久久久末码| 女人高潮潮喷娇喘18禁视频| 夜夜躁狠狠躁天天躁| 性色av乱码一区二区三区2| 国产爱豆传媒在线观看| 中文字幕最新亚洲高清| 欧美日韩乱码在线| 人妻夜夜爽99麻豆av| 校园春色视频在线观看| 久久久久久久午夜电影| av福利片在线观看| 久久久国产成人精品二区| 国产午夜精品久久久久久| 麻豆成人av在线观看| 免费看日本二区| 久久精品综合一区二区三区| 亚洲成人免费电影在线观看| 成年免费大片在线观看| 中文字幕人妻丝袜一区二区| 欧美激情久久久久久爽电影| 免费在线观看亚洲国产| 国产精品一区二区三区四区久久| 国产黄片美女视频| 女人被狂操c到高潮|