• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological Srrucrure of US Flighr Nerwork Based on Complex Nerwork Theory

    2015-02-09 06:08:57LiShanmei李善梅XuXiaohao徐肖豪WangFei王飛WangXinglong王興隆
    關(guān)鍵詞:王飛興隆

    Li Shanmei(李善梅),Xu Xiaohao(徐肖豪),Wang Fei(王飛),Wang Xinglong(王興?。?/p>

    Air Traffic Management Research Base,Civil Aviation University of China,Tianjin 300300,P.R.China

    (Received 3 June 2014;revised 25 December 2014;accepted 7 March 2015)

    Topological Srrucrure of US Flighr Nerwork Based on Complex Nerwork Theory

    Li Shanmei(李善梅)*,Xu Xiaohao(徐肖豪),Wang Fei(王飛),Wang Xinglong(王興隆)

    Air Traffic Management Research Base,Civil Aviation University of China,Tianjin 300300,P.R.China

    (Received 3 June 2014;revised 25 December 2014;accepted 7 March 2015)

    Absrracr:US flight network,composed of 285 airports(nodes)and 3 971 flights(edges)is studied.A static network model and a dynamic network model of US flight network are established.Firstly,the characteristics of static network are analyzed.One finds that such a network is a″small-world″and″scale-free″network.The cumulative degree distributions of weighted network and unweighted network follow″Double Pareto Law″.And the degree exponent of weighted network is smaller than unweighted network.The average shortest-path length is 2.368 9,which is smaller than previous results.The clustering coefficient of unweighted network is 0.637 1 and of weighted network is 0.653 6,which are both bigger than previous results.The correlation of degree,unweighted clustering coefficient and weighted clustering coefficient are also discussed.Secondly,the characteristics of dynamic network are studied.The structure of flight network is changing as the time goes by on a day.In rush hours,the network's character of″scale-free″is stronger than other times.And then the relationships of topological structures and congestion effects are addressed.

    complex network;scale-free;small-world;congestion effect

    0 Inrroducrion

    Complex network theory provides strong method to understand the topological structures of different systems.Along with the flourishing development of complex network theory,″smallworld″network model and″scale-free″network model are the most exciting discovery at the end of the last century[1-2].During the past few years,complex network analysis has been used to study airlines from different aspects.The world-wide airport network(WAN)has been proved that of″small-world″and″scale-free″[3-8].Besides the national airline networks,such as the airline network of America,China,Brazil,and India,are also extensively studied[9-12].It is found that the national airline networks can exhibit different properties including disassortative mixing,two regime power-law degree distributions,exponential traffic volume increasing and so on.The research above is important for reasons of policy,administration and efficiency.

    This paper will present investigations of US flight network,in which the vertices are the airports and the flights connecting two airports are represented by the edges.The network has three characteristics:(1)Direction.All the flights are directed,sorted as arrival and departure.(2)Weight.The number of flights from any given airport i to j is used to indicate how busy a certain line is.(3)Hourly flight information.The hourly flight information partly reflects the evolution of the flight network.

    In this paper,US flight network is studied from two aspects.Firstly,the network as a″static network model″is studied,which contains″unweighted network″and″weighted network″.The statistical characteristics are analyzed such as thedegree distributions,the weight distributions,the clustering coefficient,the diameter and so on. Secondly,the network as a″dynamic network model″is studied,whose structure varies along as the time goes by.The weight distributions are analyzed,which show the hourly evolution mechanisms of US flight network.

    1 Dara and Model

    US flight network contains 285 nodes and 3 971 directed lines that connect most major cities in USA.The data are about 6:00 to 24:00 of January 1st,2010(The data are obtained from http://www.transtats.bts.gov/Fields.asp?Table-ID=236).We collect the number of flights of every line in each hour.

    1.1 Sraric nerwork model

    The static network model is established from the point of macro view.The topology of the network can be symbolized by a 285×285 matrix A. aijis 1 if there is no flights flying from airport i to airport j on the day.It is 0 otherwise.The element of weighted matrix U represents the number of flights from airport i to airport j on the day.

    1.2 Dynamic nerwork model

    The dynamic network model is established from micro perspective.The network structure varies as the number of flights of each link is different for every hour.A 285×285×18 connectivity matrix C is established.cijtis 1 if there is no flights flying from airport i to airport j at the t th hour of a day.It is 0 othewise.t=1 represents the time interval from 6:00 to 7:00;t=2 represents the time interval from 7:00 to 8:00;…;t= 18 represents the time interval from 23:00 to 24:00.A 285×285×18 weight matrix W is also established with wijtbeing the number of flights from airport i to airport j at the t th hour.Fig.1 gives the structures of static network model and dynamic network model,respectively.

    Fig.1 Structures of network models

    2 Topological Analysis of Sraric Nerwork

    2.1 Degree disrriburions and degree correlarions

    Degree of a node is the number of nodes to which it is connected.In a directed network,indegree(out-degree)of a node is the number of incoming(out-going)links.

    For the unweighted network,in-degree,outdegree and degree of node i is defined as

    where N is the total number of nodes in the network.

    Similarly,one can prove the degree expressions for weighted network

    Firstly,one considers the distributions of k(i)and kw(i),respectively.The cumulative form gives the probability that airport i has a degree larger than k.It is expressed as

    Fig.2 presents behaviors of k(i)and kw(i)distributions.It shows that both two distributions follow a two-regime power law with two different exponents,known as double Pareto law. The formation of lower-degree airports is different from that of higher-degree airports.

    Fig.2 Cumulative degree distribution of US flight network with double Pareto law

    The double Pareto law shows that US flight network is a scale-free network.The reason of the phenomenon is studied by many scholars.An airport cannot increase routes unlimitedly as the existence of connection cost[3].Two airports cannot connected if the distance of them is much bigger than the restrict of geography distance[6].In the paper,imbalance economy and congestion effect in transportation are the most important causes of the double Pareto law distribution.

    Zheng,et al.pointed out that the bigger the degree exponentαwas,the weaker the heterogeneity was[13].Fig.2 illustrates that the heterogeneity of weighted network is stronger than unweighted network,because the power exponent of kwis smaller than k.In the paper,the phenomenon can be attributed to the economic imbalance and congestion effect.

    As shown in Fig.3,the distributions offollow double Pareto law.

    Fig.3 Cumulative degree distribution

    The difference between the degree exponentsis very small,which shows that US flight network has fine symmetries.The number of flights from airport i to j is equal to the number of flights from airport j to i.

    The nonlinear relationship of kwand k is given in Fig.4.The relational expression is described as kw~k1.1464.

    Fig.4 Correlation of unweighted degree and weighted degree(kw—k1.1464)

    The relationship shows that the number of flights increases exponentially with the increase of air routes.This phenomenon can be understood by network externalities in economics.People always choose the airports with many routes as there are many direct flights and transfer flights,which makes their journey much more convenient.

    2.2 Shorresr parh analysis

    Diameter is the average shortest-path length between two nodes in the system[14].The diameter of our flight network is defined as

    where dijis the minimum number of edges connecting from airport i to j.

    The results of the shortest paths analysis is shown in Table 1.Apart from other statistics,we also show the number of flight transfers,which is an indicator of the convenience of travel in the network.In Table 1,we can find that the shortest path lengths of the whole flight network are 1,2,3 and 4,with the probabilities of 0.049 6,0.542 6,0.373 5,0.034 3,respectively.This implies that there is no more than three transfers from airport i to j.The diameter of US flight network is D=2.368 9.It means that on the average there is 1.368 9 transfers from airport i to j.Thus,the diameter is rather small compared with the number of airports,which demonstrates the properties of small-world.In addition,US flight network is becoming″smaller″as time goes by as the value D computed here is a little smaller than D=2.403 calculated in Ref.[15].

    Table 1 Shorresr parhs and rheir percenrage

    2.3 Clusrering coefficienr

    Clustering coefficient is used to quantify the inherent concentration trends.It includes unweighted clustering coefficient ciand weighted clustering coefficient

    The clustering coefficient of unweighted network C and weighted network Cware defined as

    The clustering coefficient C is 0.637 1,and Cw0.653 6.They are bigger than previous research result 0.618,which indicates the network is becoming smaller and smaller as the time goes by[15].The clustering coefficient and degree correlation are given in Fig.5.C(k)decreases with degree increasing,which means that the clustering coefficient of nodes with bigger degree is much small and nodes with smaller degree connects closely.It shows that the structure of US flight network is hierarchical.Besides,the values of Cw(k)and C(k)are becoming gentle with k increasing and Cw(k)is bigger than C(k),which indicate that the traffic between airports with bigger degree is much higher than airports with smaller degree.In the paper,we can get that US flight network follows Pareto law.This contributes to congestion formation.Thus the small average path length and high cluster coefficient demonstrate the small-world property of US flight network.

    Fig.5 Correlation of clustering coefficients and degree

    3 Topological Analysis of Dynamic Nerwork

    The previous approaches to study the complex systems mainly focus on the topology,and partly neglect the time-varying weight associated with the link[12].

    The evolution of US flight network on a day based on the dynamic network model is studied. Taking 5:00—6:00,8:00—9:00 and 23:00—24:00 intervals for instance,the distributions of kwof the above intervals are displayed in the following.

    Fig.6 shows that the structure of the dynamic network is changing as the time goes by on a day.In rush hours,the network's character of″scale free″is stronger than other times.Furthermore,the degree exponent of rush hours is much smaller than non-rush hours,which shows that the heterogeneity of rush hours is stronger than other times.For example,αof 8:00—9:00 is smaller than 5:00—6:00,which is shown in Fig.6.The results above are consistent with the serious congestion of rush hours.

    Fig.6 Cumulative degree distribution of weighted network for different intervals

    4 Conclusions

    The weighted and unweighted US flight network are studied.The static network model is constructed,which contains unweighted network and weight network.The cumulative degree distribution,the shortest path length and clustering coefficient are discussed both for the unweighted and weighted networks,which indicates US flight network is of″scale-free″and″small world″.The results are also compared with previous research. The dynamic network model is also established. The hourly weight distributions are analyzed and the hierarchy of the network for different intervals is discussed.

    The research in this paper displays that US flight network is not a random network,but a scale free network.The fluctuation of the number of flights on the non-random structure should be addressed for the next step,which is used to explain the behavior of traffic congestion.

    Acknowledgemenrs

    This work was supported by the Projects in the National Science&Technology Pillar Program(2011-BAH24B10),the Joint Funds of National Natural Science Foundation of China(61571441),the Fundamental Research Funds for the Central Universities of Civil Aviation University of China in 2016,the Open Fund of Air Traffic Management Research Base(No.KGJD201503),and the Scientific Research Foundation of Civil Aviation University of China(No.2014QD01S).

    [1] Watts D J,Strogatz S H.Collective dynamics of″small-world″networks[J].Nature,1998,393(6684):440-442.

    [2] Barabási A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286(5439):509-512.

    [3] Amaral L A N,Scala A,Barthelemy M,et al.Classes of small-world networks[J].Proceedings of the National Academy of Sciences,2000,97(21):11149-11152.

    [4] Guimer′a R,Mossa S,Turtschi A,et al.The worldwide air transportation network:Anomalous centrality,community structure,and cities global roles[J]. Proceedings of the National Academy of Sciences,2005,102(22):7794-7799.

    [5] Li W,Cai X.Statistical analysis of airport network of China[J].Physical Review E,2004,69(4):046106.

    [6] Barrat A,Barthelemy M,Pastor-Satorras R,et al. The architecture of complex weighted networks[J]. Proceedings of the National Academy of Sciences,2004,101(11):3747-3752.

    [7] Guimera R,Amaral L A N.Modeling the worldwide airport network[J].The European Physical Journal B-Condensed Matter and Complex Systems,2004,38(2):381-385.

    [8] Colizza V,Barrat A,Barthélemy M,et al.The role of the airline transportation network in the prediction and predictability of global epidemics[J].Proceedings of the National Academy of Sciences,2006,103(7):2015-2020.

    [9] Gautreau A,Barrat A,Barthélemy M.Microdynamics in stationary complex networks[J].Proceedings of the National Academy of Sciences,2009,106(22):8847-8852.

    [10]Zhang J,Cao X B,Du W B,et al.Evolution of Chinese airport network[J].Physica A:Statistical Mechanics and Its Applications,2010,389(18):3922-3931.

    [11]da Rocha L E.Structural evolution of the Brazilian airport network[J].Journal of Statistical Mechanics:Theory and Experiment,2009,4(1):P04020.

    [12]Bagler G.Analysis of the airport network of India as a complex weighted network[J].Physica A:Statistical Mechanics and Its Applications,2008,387(12):2972-2980.

    [13]Zheng J F,Gao Z Y,Zhao X M.Properties of transportation dynamics on scale-free networks[J].Physica A:Statistical Mechanics and Its Applications,2007,373(36):837-844.

    [14]Albert R,Jeong H,Barabási A L.Internet:Diameter of the world-wide web[J].Nature,1999,401(6749):130-131.

    [15]Chi L P,Wang R,Su H,et al.Structural properties of US flight network[J].Chinese Physics Letters,2003,20(8):1393.

    (Executive Editor:Xu Chengting)

    V355Documenr code:AArricle ID:1005-1120(2015)05-0555-05

    *Corresponding aurhor:Li Shanmei,Lecturer,E-mail:yma820203@163.com.

    How ro cire rhis arricle:Li Shanmei,Xu Xiaohao,Wang Fei,et al.Topological structure of US flight network based on complex network theory[J].Trans.Nanjing U.Aero.Astro.,2015,32(5):555-559.

    http://dx.doi.org/10.16356/j.1005-1120.2015.05.555

    猜你喜歡
    王飛興隆
    滬指失守3000點
    家人春節(jié)照
    興隆山楂管理技術(shù)
    河北果樹(2020年2期)2020-05-25 06:58:44
    市場觀察(1)
    市場觀察(2)
    A Similarity Transformation and the Decay Mode Solutions for Three-Dimensional Cylindrical Kadomtsev-Petviashvili Equation
    萬寧之旅·興隆植物小姐模特大賽(二)
    新教育(2018年27期)2019-01-08 02:23:18
    市場觀察(1)
    特別的生日禮物
    我要飛翔
    国产69精品久久久久777片 | 亚洲成av人片免费观看| 中文字幕人成人乱码亚洲影| 免费无遮挡裸体视频| 成人高潮视频无遮挡免费网站| 亚洲精华国产精华精| 亚洲美女黄片视频| 黄色a级毛片大全视频| 蜜桃久久精品国产亚洲av| 久久午夜亚洲精品久久| 久久久久久久精品吃奶| 美女大奶头视频| 99国产极品粉嫩在线观看| 色哟哟哟哟哟哟| 久久精品91蜜桃| 在线观看66精品国产| 欧美一级a爱片免费观看看 | 日韩成人在线观看一区二区三区| 97碰自拍视频| 人人妻人人澡欧美一区二区| 麻豆久久精品国产亚洲av| 久久婷婷成人综合色麻豆| ponron亚洲| 国产成人精品久久二区二区91| 国产精品日韩av在线免费观看| 国产av一区二区精品久久| 免费电影在线观看免费观看| 99精品欧美一区二区三区四区| 国产精品一区二区三区四区久久| 亚洲成人国产一区在线观看| 久久精品国产清高在天天线| 国产高清视频在线观看网站| 国产男靠女视频免费网站| 麻豆久久精品国产亚洲av| 老司机靠b影院| 嫩草影视91久久| 久久久久久人人人人人| av天堂在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 精华霜和精华液先用哪个| 国产精品免费一区二区三区在线| 色噜噜av男人的天堂激情| 国产亚洲精品久久久久久毛片| 亚洲av片天天在线观看| 日本在线视频免费播放| 国产成人精品久久二区二区91| 久久中文看片网| 精品国产超薄肉色丝袜足j| 国产精品影院久久| 人人妻,人人澡人人爽秒播| 亚洲中文字幕日韩| 国产精品免费视频内射| 在线观看66精品国产| 97人妻精品一区二区三区麻豆| 国产精品av久久久久免费| 免费在线观看成人毛片| 人人妻人人看人人澡| 18禁观看日本| av在线天堂中文字幕| 久久久久性生活片| 国产精品乱码一区二三区的特点| 在线永久观看黄色视频| 成年人黄色毛片网站| 欧美久久黑人一区二区| 我的老师免费观看完整版| 亚洲国产欧洲综合997久久,| 日本一区二区免费在线视频| 欧美乱码精品一区二区三区| 男人舔女人下体高潮全视频| 十八禁人妻一区二区| 最近最新中文字幕大全电影3| 黑人巨大精品欧美一区二区mp4| 他把我摸到了高潮在线观看| 好男人在线观看高清免费视频| 国产探花在线观看一区二区| ponron亚洲| 国产亚洲欧美在线一区二区| 国产97色在线日韩免费| 777久久人妻少妇嫩草av网站| 久久精品夜夜夜夜夜久久蜜豆 | 免费观看精品视频网站| 99国产极品粉嫩在线观看| 丝袜美腿诱惑在线| 蜜桃久久精品国产亚洲av| 婷婷精品国产亚洲av| 国产免费av片在线观看野外av| 这个男人来自地球电影免费观看| 脱女人内裤的视频| 久久国产乱子伦精品免费另类| 日本a在线网址| 国产v大片淫在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 国产不卡一卡二| 亚洲国产精品成人综合色| www.精华液| 国产精品98久久久久久宅男小说| 免费高清视频大片| 亚洲人成电影免费在线| 一本综合久久免费| 日韩欧美一区二区三区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕av在线有码专区| 人人妻,人人澡人人爽秒播| 日本免费a在线| 精品午夜福利视频在线观看一区| 又紧又爽又黄一区二区| 19禁男女啪啪无遮挡网站| 18禁黄网站禁片午夜丰满| 亚洲中文日韩欧美视频| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲自偷自拍图片 自拍| 搡老岳熟女国产| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品国产精品久久久不卡| 日韩有码中文字幕| 不卡av一区二区三区| 男人舔女人下体高潮全视频| 久久久国产成人免费| 国产1区2区3区精品| 99国产极品粉嫩在线观看| 精品免费久久久久久久清纯| 久久国产精品人妻蜜桃| 波多野结衣高清无吗| 香蕉丝袜av| 精品日产1卡2卡| 亚洲欧美精品综合一区二区三区| 九色成人免费人妻av| 三级毛片av免费| 成人永久免费在线观看视频| 亚洲激情在线av| 一本一本综合久久| 国产成+人综合+亚洲专区| 美女午夜性视频免费| 国产精品久久视频播放| 精品久久久久久久人妻蜜臀av| 人人妻人人澡欧美一区二区| 丝袜人妻中文字幕| 淫妇啪啪啪对白视频| 精品电影一区二区在线| 亚洲国产欧美一区二区综合| 可以在线观看毛片的网站| 亚洲精品在线观看二区| 中亚洲国语对白在线视频| 欧美一级a爱片免费观看看 | 久久久精品大字幕| 亚洲专区中文字幕在线| 露出奶头的视频| 性欧美人与动物交配| 国产精品一区二区三区四区久久| 国产精品亚洲av一区麻豆| 亚洲欧美精品综合一区二区三区| 久久久久久国产a免费观看| 中文字幕精品亚洲无线码一区| 国产精品亚洲美女久久久| 亚洲成人中文字幕在线播放| 青草久久国产| 一区二区三区国产精品乱码| av欧美777| 好男人在线观看高清免费视频| 韩国av一区二区三区四区| 亚洲成人精品中文字幕电影| 最近最新免费中文字幕在线| 成人精品一区二区免费| 99久久精品热视频| 无人区码免费观看不卡| 亚洲最大成人中文| 床上黄色一级片| 久久这里只有精品19| 亚洲va日本ⅴa欧美va伊人久久| 免费电影在线观看免费观看| 亚洲第一欧美日韩一区二区三区| 99久久久亚洲精品蜜臀av| 最近视频中文字幕2019在线8| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区高清视频在线| 免费人成视频x8x8入口观看| 中文字幕高清在线视频| 国产一区二区在线观看日韩 | 日本精品一区二区三区蜜桃| 久久久国产成人精品二区| 国产精品1区2区在线观看.| 黄色视频不卡| 日本三级黄在线观看| 三级国产精品欧美在线观看 | 欧美一级毛片孕妇| 中文亚洲av片在线观看爽| 久久精品综合一区二区三区| √禁漫天堂资源中文www| 我的老师免费观看完整版| 91av网站免费观看| 久久久久久久久免费视频了| 美女午夜性视频免费| 后天国语完整版免费观看| 在线观看舔阴道视频| 一进一出好大好爽视频| 免费在线观看成人毛片| 精品国产亚洲在线| 99久久无色码亚洲精品果冻| 中文字幕熟女人妻在线| www.熟女人妻精品国产| 欧美日本亚洲视频在线播放| 真人一进一出gif抽搐免费| 欧美日韩国产亚洲二区| 床上黄色一级片| 亚洲av电影不卡..在线观看| 午夜视频精品福利| 国产高清有码在线观看视频 | 在线永久观看黄色视频| 欧美中文日本在线观看视频| 亚洲电影在线观看av| 精品国产乱码久久久久久男人| 九色国产91popny在线| 无遮挡黄片免费观看| 给我免费播放毛片高清在线观看| www日本在线高清视频| 国产av不卡久久| 一卡2卡三卡四卡精品乱码亚洲| 亚洲一区二区三区色噜噜| 免费观看人在逋| 亚洲欧美日韩高清在线视频| 亚洲精品久久成人aⅴ小说| 欧美成狂野欧美在线观看| 日本熟妇午夜| 深夜精品福利| 欧美日韩亚洲国产一区二区在线观看| 欧美+亚洲+日韩+国产| 成人午夜高清在线视频| 搡老熟女国产l中国老女人| 香蕉av资源在线| 国内精品久久久久久久电影| 亚洲精品在线美女| 人成视频在线观看免费观看| 国产免费男女视频| or卡值多少钱| 可以在线观看毛片的网站| 婷婷六月久久综合丁香| 特大巨黑吊av在线直播| 亚洲av成人不卡在线观看播放网| 国产精品精品国产色婷婷| 国产又黄又爽又无遮挡在线| 男人舔女人下体高潮全视频| 欧美中文日本在线观看视频| 人人妻,人人澡人人爽秒播| 国产精华一区二区三区| 日韩精品中文字幕看吧| 午夜福利免费观看在线| 高潮久久久久久久久久久不卡| 97人妻精品一区二区三区麻豆| 欧美人与性动交α欧美精品济南到| 一区二区三区国产精品乱码| 亚洲精品美女久久av网站| 国产精品久久电影中文字幕| 亚洲国产精品sss在线观看| 99精品久久久久人妻精品| 老熟妇乱子伦视频在线观看| 亚洲欧美一区二区三区黑人| 国产精品电影一区二区三区| 美女高潮喷水抽搐中文字幕| 久久久久精品国产欧美久久久| 久久久国产欧美日韩av| 好男人在线观看高清免费视频| 精品福利观看| 日本a在线网址| 男男h啪啪无遮挡| 久久久久久久久久黄片| 国产片内射在线| 久久久国产欧美日韩av| 亚洲欧美激情综合另类| 大型黄色视频在线免费观看| 国产亚洲av嫩草精品影院| 亚洲午夜精品一区,二区,三区| 亚洲狠狠婷婷综合久久图片| 亚洲欧美日韩高清在线视频| 美女高潮喷水抽搐中文字幕| 最新美女视频免费是黄的| 搡老岳熟女国产| 国产成人一区二区三区免费视频网站| 色哟哟哟哟哟哟| 欧美黑人巨大hd| 又黄又粗又硬又大视频| 九九热线精品视视频播放| xxx96com| 丰满人妻一区二区三区视频av | 亚洲黑人精品在线| 熟妇人妻久久中文字幕3abv| 国产一区二区三区在线臀色熟女| 精品国内亚洲2022精品成人| 丰满人妻一区二区三区视频av | 这个男人来自地球电影免费观看| 老司机在亚洲福利影院| 日韩av在线大香蕉| 亚洲自偷自拍图片 自拍| 亚洲中文av在线| 高清在线国产一区| 欧美黑人精品巨大| 99久久综合精品五月天人人| 亚洲乱码一区二区免费版| 女警被强在线播放| 18禁观看日本| 一进一出抽搐动态| 老熟妇仑乱视频hdxx| 亚洲五月婷婷丁香| 精品不卡国产一区二区三区| 亚洲国产欧美一区二区综合| 婷婷精品国产亚洲av| 一夜夜www| 人人妻人人看人人澡| 国产欧美日韩精品亚洲av| 久久久久精品国产欧美久久久| 国产真人三级小视频在线观看| 久久这里只有精品19| 99久久久亚洲精品蜜臀av| www.www免费av| 老熟妇乱子伦视频在线观看| 国产成人精品久久二区二区91| netflix在线观看网站| АⅤ资源中文在线天堂| 国产成人av激情在线播放| 国产精品久久久av美女十八| 欧美一级毛片孕妇| 欧美在线黄色| 色综合欧美亚洲国产小说| 精品人妻1区二区| 国产精品美女特级片免费视频播放器 | 日日摸夜夜添夜夜添小说| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 色综合亚洲欧美另类图片| 国产精品久久电影中文字幕| 欧美黑人精品巨大| 在线播放国产精品三级| 久久99热这里只有精品18| 欧美日韩亚洲国产一区二区在线观看| 日韩精品免费视频一区二区三区| www.精华液| 一a级毛片在线观看| 欧美丝袜亚洲另类 | 亚洲中文av在线| 99精品在免费线老司机午夜| 国产三级黄色录像| 亚洲av中文字字幕乱码综合| a级毛片a级免费在线| 一级毛片精品| 国产三级黄色录像| 色综合婷婷激情| 床上黄色一级片| 脱女人内裤的视频| 亚洲中文av在线| 国产精品野战在线观看| 亚洲熟妇熟女久久| 一区二区三区国产精品乱码| 亚洲性夜色夜夜综合| 亚洲成av人片在线播放无| 90打野战视频偷拍视频| 国产熟女xx| 国产精品爽爽va在线观看网站| 一级毛片高清免费大全| 亚洲狠狠婷婷综合久久图片| 国产成+人综合+亚洲专区| 欧美性猛交╳xxx乱大交人| 亚洲成av人片在线播放无| 久久久精品欧美日韩精品| 99久久99久久久精品蜜桃| 久久精品综合一区二区三区| 国产亚洲精品av在线| 最近视频中文字幕2019在线8| 亚洲av成人一区二区三| 欧美性猛交黑人性爽| 国产成人精品久久二区二区免费| 俄罗斯特黄特色一大片| 国产精品亚洲美女久久久| 免费看美女性在线毛片视频| 国产免费男女视频| 欧美在线一区亚洲| 国产精品99久久99久久久不卡| 男女视频在线观看网站免费 | 亚洲成人久久爱视频| 国产精品综合久久久久久久免费| 亚洲人成伊人成综合网2020| 精品久久久久久,| 国产97色在线日韩免费| 久久国产乱子伦精品免费另类| 欧美3d第一页| 男女下面进入的视频免费午夜| 99热这里只有精品一区 | 国产av不卡久久| 免费在线观看日本一区| 90打野战视频偷拍视频| 搞女人的毛片| 国产精品 国内视频| 午夜激情av网站| 一边摸一边抽搐一进一小说| 老汉色∧v一级毛片| 欧美色视频一区免费| 亚洲电影在线观看av| 制服诱惑二区| 嫩草影视91久久| 久久久精品国产亚洲av高清涩受| 人人妻人人澡欧美一区二区| 老司机福利观看| 国产不卡一卡二| 久久伊人香网站| 久久天堂一区二区三区四区| 中文字幕久久专区| 国产一区二区三区在线臀色熟女| 欧美性长视频在线观看| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品久久久久久毛片| 久久九九热精品免费| 麻豆久久精品国产亚洲av| 久99久视频精品免费| 亚洲 国产 在线| 两人在一起打扑克的视频| 在线视频色国产色| 亚洲精品国产一区二区精华液| 国产精品久久久人人做人人爽| 亚洲欧洲精品一区二区精品久久久| 免费在线观看完整版高清| 夜夜躁狠狠躁天天躁| 亚洲精品美女久久av网站| 中文字幕av在线有码专区| 丝袜美腿诱惑在线| 午夜激情av网站| 嫁个100分男人电影在线观看| 国产蜜桃级精品一区二区三区| 国产精品久久电影中文字幕| 久久久久久久久久黄片| 精品高清国产在线一区| 91av网站免费观看| 国产精品免费视频内射| 99在线视频只有这里精品首页| 伊人久久大香线蕉亚洲五| 国产69精品久久久久777片 | 高清毛片免费观看视频网站| 日本免费一区二区三区高清不卡| 首页视频小说图片口味搜索| 国内揄拍国产精品人妻在线| 国产成人av激情在线播放| 亚洲国产欧美人成| 欧美 亚洲 国产 日韩一| 亚洲欧美一区二区三区黑人| 国产亚洲av高清不卡| 香蕉国产在线看| 嫩草影视91久久| 少妇的丰满在线观看| 婷婷六月久久综合丁香| 中文字幕久久专区| 欧美日韩亚洲综合一区二区三区_| 国产精品乱码一区二三区的特点| 日韩大码丰满熟妇| 国产高清视频在线播放一区| 国产成人欧美在线观看| 婷婷六月久久综合丁香| 国产99久久九九免费精品| 久久久久久久午夜电影| 又黄又粗又硬又大视频| 1024视频免费在线观看| 99久久久亚洲精品蜜臀av| 俺也久久电影网| 日韩精品中文字幕看吧| 国产亚洲av嫩草精品影院| 两个人的视频大全免费| 久久性视频一级片| 在线观看66精品国产| 嫁个100分男人电影在线观看| 精品电影一区二区在线| 国产成人欧美在线观看| 免费av毛片视频| 亚洲欧美日韩高清在线视频| 极品教师在线免费播放| 国产精品一区二区精品视频观看| 午夜精品久久久久久毛片777| 此物有八面人人有两片| 蜜桃久久精品国产亚洲av| 亚洲18禁久久av| 亚洲av成人一区二区三| 国产精品 国内视频| 亚洲一区二区三区色噜噜| 久久久久性生活片| 亚洲美女视频黄频| 啦啦啦观看免费观看视频高清| 嫩草影院精品99| 欧美日韩瑟瑟在线播放| 亚洲成av人片免费观看| 国产野战对白在线观看| 亚洲国产精品久久男人天堂| 长腿黑丝高跟| 超碰成人久久| 午夜精品在线福利| 人人妻,人人澡人人爽秒播| 亚洲男人的天堂狠狠| 五月玫瑰六月丁香| 亚洲av成人一区二区三| 午夜福利在线观看吧| 神马国产精品三级电影在线观看 | 国产精品久久久人人做人人爽| 看免费av毛片| 精品免费久久久久久久清纯| 亚洲中文字幕一区二区三区有码在线看 | 欧美中文日本在线观看视频| 宅男免费午夜| 人人妻人人看人人澡| 69av精品久久久久久| 在线观看www视频免费| 狂野欧美白嫩少妇大欣赏| 美女免费视频网站| 最新美女视频免费是黄的| 中文字幕熟女人妻在线| 免费无遮挡裸体视频| 一级作爱视频免费观看| 国产亚洲精品第一综合不卡| 国产人伦9x9x在线观看| 最近视频中文字幕2019在线8| 国产精品1区2区在线观看.| 欧美日韩一级在线毛片| 午夜福利欧美成人| 日日夜夜操网爽| 一夜夜www| 欧美日韩黄片免| 国产精品亚洲av一区麻豆| 18禁国产床啪视频网站| 中文字幕高清在线视频| 午夜福利在线观看吧| 亚洲专区中文字幕在线| www.精华液| 深夜精品福利| 国产亚洲精品一区二区www| 99久久无色码亚洲精品果冻| 午夜福利高清视频| www.精华液| 久久精品综合一区二区三区| 欧美激情久久久久久爽电影| 欧美日韩福利视频一区二区| 啦啦啦免费观看视频1| 久久久精品大字幕| 久久精品国产亚洲av高清一级| 999久久久精品免费观看国产| 女人被狂操c到高潮| 美女黄网站色视频| 成人永久免费在线观看视频| 国产亚洲av嫩草精品影院| 日韩欧美精品v在线| 色尼玛亚洲综合影院| 91成年电影在线观看| 国产乱人伦免费视频| 三级毛片av免费| av欧美777| 一区二区三区国产精品乱码| 国产精品久久久久久人妻精品电影| 我的老师免费观看完整版| www国产在线视频色| 长腿黑丝高跟| 欧美精品啪啪一区二区三区| tocl精华| 色在线成人网| 一级毛片女人18水好多| 日本a在线网址| 少妇粗大呻吟视频| 成人三级做爰电影| 色综合站精品国产| 国语自产精品视频在线第100页| 午夜老司机福利片| 两个人免费观看高清视频| 亚洲午夜理论影院| 男女视频在线观看网站免费 | svipshipincom国产片| 淫秽高清视频在线观看| 日本成人三级电影网站| 老司机午夜十八禁免费视频| 国产精品一及| 91在线观看av| 在线观看免费日韩欧美大片| av国产免费在线观看| 亚洲欧美日韩高清在线视频| 亚洲一码二码三码区别大吗| 嫩草影视91久久| 一本精品99久久精品77| 精品免费久久久久久久清纯| 国产爱豆传媒在线观看 | 黄色视频不卡| 国产精品98久久久久久宅男小说| 两人在一起打扑克的视频| 亚洲精品色激情综合| 国内精品一区二区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 男女做爰动态图高潮gif福利片| 9191精品国产免费久久| 两性夫妻黄色片| 国产真人三级小视频在线观看| 精品久久久久久久人妻蜜臀av| 一边摸一边抽搐一进一小说| 成人三级黄色视频| 日日爽夜夜爽网站| www.www免费av| 在线视频色国产色| 免费一级毛片在线播放高清视频| 一边摸一边抽搐一进一小说| 成人三级黄色视频| 国产激情偷乱视频一区二区| 久久精品成人免费网站| 亚洲真实伦在线观看| 一本精品99久久精品77| 18禁美女被吸乳视频| 久久精品人妻少妇| 国产精品一区二区免费欧美| 99国产精品一区二区蜜桃av| 97碰自拍视频| 国产人伦9x9x在线观看| 日本a在线网址| 嫩草影视91久久| 精品一区二区三区av网在线观看| 亚洲国产精品成人综合色| 国产av在哪里看| 一级毛片女人18水好多| 18美女黄网站色大片免费观看|