• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological Srrucrure of US Flighr Nerwork Based on Complex Nerwork Theory

    2015-02-09 06:08:57LiShanmei李善梅XuXiaohao徐肖豪WangFei王飛WangXinglong王興隆
    關(guān)鍵詞:王飛興隆

    Li Shanmei(李善梅),Xu Xiaohao(徐肖豪),Wang Fei(王飛),Wang Xinglong(王興?。?/p>

    Air Traffic Management Research Base,Civil Aviation University of China,Tianjin 300300,P.R.China

    (Received 3 June 2014;revised 25 December 2014;accepted 7 March 2015)

    Topological Srrucrure of US Flighr Nerwork Based on Complex Nerwork Theory

    Li Shanmei(李善梅)*,Xu Xiaohao(徐肖豪),Wang Fei(王飛),Wang Xinglong(王興隆)

    Air Traffic Management Research Base,Civil Aviation University of China,Tianjin 300300,P.R.China

    (Received 3 June 2014;revised 25 December 2014;accepted 7 March 2015)

    Absrracr:US flight network,composed of 285 airports(nodes)and 3 971 flights(edges)is studied.A static network model and a dynamic network model of US flight network are established.Firstly,the characteristics of static network are analyzed.One finds that such a network is a″small-world″and″scale-free″network.The cumulative degree distributions of weighted network and unweighted network follow″Double Pareto Law″.And the degree exponent of weighted network is smaller than unweighted network.The average shortest-path length is 2.368 9,which is smaller than previous results.The clustering coefficient of unweighted network is 0.637 1 and of weighted network is 0.653 6,which are both bigger than previous results.The correlation of degree,unweighted clustering coefficient and weighted clustering coefficient are also discussed.Secondly,the characteristics of dynamic network are studied.The structure of flight network is changing as the time goes by on a day.In rush hours,the network's character of″scale-free″is stronger than other times.And then the relationships of topological structures and congestion effects are addressed.

    complex network;scale-free;small-world;congestion effect

    0 Inrroducrion

    Complex network theory provides strong method to understand the topological structures of different systems.Along with the flourishing development of complex network theory,″smallworld″network model and″scale-free″network model are the most exciting discovery at the end of the last century[1-2].During the past few years,complex network analysis has been used to study airlines from different aspects.The world-wide airport network(WAN)has been proved that of″small-world″and″scale-free″[3-8].Besides the national airline networks,such as the airline network of America,China,Brazil,and India,are also extensively studied[9-12].It is found that the national airline networks can exhibit different properties including disassortative mixing,two regime power-law degree distributions,exponential traffic volume increasing and so on.The research above is important for reasons of policy,administration and efficiency.

    This paper will present investigations of US flight network,in which the vertices are the airports and the flights connecting two airports are represented by the edges.The network has three characteristics:(1)Direction.All the flights are directed,sorted as arrival and departure.(2)Weight.The number of flights from any given airport i to j is used to indicate how busy a certain line is.(3)Hourly flight information.The hourly flight information partly reflects the evolution of the flight network.

    In this paper,US flight network is studied from two aspects.Firstly,the network as a″static network model″is studied,which contains″unweighted network″and″weighted network″.The statistical characteristics are analyzed such as thedegree distributions,the weight distributions,the clustering coefficient,the diameter and so on. Secondly,the network as a″dynamic network model″is studied,whose structure varies along as the time goes by.The weight distributions are analyzed,which show the hourly evolution mechanisms of US flight network.

    1 Dara and Model

    US flight network contains 285 nodes and 3 971 directed lines that connect most major cities in USA.The data are about 6:00 to 24:00 of January 1st,2010(The data are obtained from http://www.transtats.bts.gov/Fields.asp?Table-ID=236).We collect the number of flights of every line in each hour.

    1.1 Sraric nerwork model

    The static network model is established from the point of macro view.The topology of the network can be symbolized by a 285×285 matrix A. aijis 1 if there is no flights flying from airport i to airport j on the day.It is 0 otherwise.The element of weighted matrix U represents the number of flights from airport i to airport j on the day.

    1.2 Dynamic nerwork model

    The dynamic network model is established from micro perspective.The network structure varies as the number of flights of each link is different for every hour.A 285×285×18 connectivity matrix C is established.cijtis 1 if there is no flights flying from airport i to airport j at the t th hour of a day.It is 0 othewise.t=1 represents the time interval from 6:00 to 7:00;t=2 represents the time interval from 7:00 to 8:00;…;t= 18 represents the time interval from 23:00 to 24:00.A 285×285×18 weight matrix W is also established with wijtbeing the number of flights from airport i to airport j at the t th hour.Fig.1 gives the structures of static network model and dynamic network model,respectively.

    Fig.1 Structures of network models

    2 Topological Analysis of Sraric Nerwork

    2.1 Degree disrriburions and degree correlarions

    Degree of a node is the number of nodes to which it is connected.In a directed network,indegree(out-degree)of a node is the number of incoming(out-going)links.

    For the unweighted network,in-degree,outdegree and degree of node i is defined as

    where N is the total number of nodes in the network.

    Similarly,one can prove the degree expressions for weighted network

    Firstly,one considers the distributions of k(i)and kw(i),respectively.The cumulative form gives the probability that airport i has a degree larger than k.It is expressed as

    Fig.2 presents behaviors of k(i)and kw(i)distributions.It shows that both two distributions follow a two-regime power law with two different exponents,known as double Pareto law. The formation of lower-degree airports is different from that of higher-degree airports.

    Fig.2 Cumulative degree distribution of US flight network with double Pareto law

    The double Pareto law shows that US flight network is a scale-free network.The reason of the phenomenon is studied by many scholars.An airport cannot increase routes unlimitedly as the existence of connection cost[3].Two airports cannot connected if the distance of them is much bigger than the restrict of geography distance[6].In the paper,imbalance economy and congestion effect in transportation are the most important causes of the double Pareto law distribution.

    Zheng,et al.pointed out that the bigger the degree exponentαwas,the weaker the heterogeneity was[13].Fig.2 illustrates that the heterogeneity of weighted network is stronger than unweighted network,because the power exponent of kwis smaller than k.In the paper,the phenomenon can be attributed to the economic imbalance and congestion effect.

    As shown in Fig.3,the distributions offollow double Pareto law.

    Fig.3 Cumulative degree distribution

    The difference between the degree exponentsis very small,which shows that US flight network has fine symmetries.The number of flights from airport i to j is equal to the number of flights from airport j to i.

    The nonlinear relationship of kwand k is given in Fig.4.The relational expression is described as kw~k1.1464.

    Fig.4 Correlation of unweighted degree and weighted degree(kw—k1.1464)

    The relationship shows that the number of flights increases exponentially with the increase of air routes.This phenomenon can be understood by network externalities in economics.People always choose the airports with many routes as there are many direct flights and transfer flights,which makes their journey much more convenient.

    2.2 Shorresr parh analysis

    Diameter is the average shortest-path length between two nodes in the system[14].The diameter of our flight network is defined as

    where dijis the minimum number of edges connecting from airport i to j.

    The results of the shortest paths analysis is shown in Table 1.Apart from other statistics,we also show the number of flight transfers,which is an indicator of the convenience of travel in the network.In Table 1,we can find that the shortest path lengths of the whole flight network are 1,2,3 and 4,with the probabilities of 0.049 6,0.542 6,0.373 5,0.034 3,respectively.This implies that there is no more than three transfers from airport i to j.The diameter of US flight network is D=2.368 9.It means that on the average there is 1.368 9 transfers from airport i to j.Thus,the diameter is rather small compared with the number of airports,which demonstrates the properties of small-world.In addition,US flight network is becoming″smaller″as time goes by as the value D computed here is a little smaller than D=2.403 calculated in Ref.[15].

    Table 1 Shorresr parhs and rheir percenrage

    2.3 Clusrering coefficienr

    Clustering coefficient is used to quantify the inherent concentration trends.It includes unweighted clustering coefficient ciand weighted clustering coefficient

    The clustering coefficient of unweighted network C and weighted network Cware defined as

    The clustering coefficient C is 0.637 1,and Cw0.653 6.They are bigger than previous research result 0.618,which indicates the network is becoming smaller and smaller as the time goes by[15].The clustering coefficient and degree correlation are given in Fig.5.C(k)decreases with degree increasing,which means that the clustering coefficient of nodes with bigger degree is much small and nodes with smaller degree connects closely.It shows that the structure of US flight network is hierarchical.Besides,the values of Cw(k)and C(k)are becoming gentle with k increasing and Cw(k)is bigger than C(k),which indicate that the traffic between airports with bigger degree is much higher than airports with smaller degree.In the paper,we can get that US flight network follows Pareto law.This contributes to congestion formation.Thus the small average path length and high cluster coefficient demonstrate the small-world property of US flight network.

    Fig.5 Correlation of clustering coefficients and degree

    3 Topological Analysis of Dynamic Nerwork

    The previous approaches to study the complex systems mainly focus on the topology,and partly neglect the time-varying weight associated with the link[12].

    The evolution of US flight network on a day based on the dynamic network model is studied. Taking 5:00—6:00,8:00—9:00 and 23:00—24:00 intervals for instance,the distributions of kwof the above intervals are displayed in the following.

    Fig.6 shows that the structure of the dynamic network is changing as the time goes by on a day.In rush hours,the network's character of″scale free″is stronger than other times.Furthermore,the degree exponent of rush hours is much smaller than non-rush hours,which shows that the heterogeneity of rush hours is stronger than other times.For example,αof 8:00—9:00 is smaller than 5:00—6:00,which is shown in Fig.6.The results above are consistent with the serious congestion of rush hours.

    Fig.6 Cumulative degree distribution of weighted network for different intervals

    4 Conclusions

    The weighted and unweighted US flight network are studied.The static network model is constructed,which contains unweighted network and weight network.The cumulative degree distribution,the shortest path length and clustering coefficient are discussed both for the unweighted and weighted networks,which indicates US flight network is of″scale-free″and″small world″.The results are also compared with previous research. The dynamic network model is also established. The hourly weight distributions are analyzed and the hierarchy of the network for different intervals is discussed.

    The research in this paper displays that US flight network is not a random network,but a scale free network.The fluctuation of the number of flights on the non-random structure should be addressed for the next step,which is used to explain the behavior of traffic congestion.

    Acknowledgemenrs

    This work was supported by the Projects in the National Science&Technology Pillar Program(2011-BAH24B10),the Joint Funds of National Natural Science Foundation of China(61571441),the Fundamental Research Funds for the Central Universities of Civil Aviation University of China in 2016,the Open Fund of Air Traffic Management Research Base(No.KGJD201503),and the Scientific Research Foundation of Civil Aviation University of China(No.2014QD01S).

    [1] Watts D J,Strogatz S H.Collective dynamics of″small-world″networks[J].Nature,1998,393(6684):440-442.

    [2] Barabási A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286(5439):509-512.

    [3] Amaral L A N,Scala A,Barthelemy M,et al.Classes of small-world networks[J].Proceedings of the National Academy of Sciences,2000,97(21):11149-11152.

    [4] Guimer′a R,Mossa S,Turtschi A,et al.The worldwide air transportation network:Anomalous centrality,community structure,and cities global roles[J]. Proceedings of the National Academy of Sciences,2005,102(22):7794-7799.

    [5] Li W,Cai X.Statistical analysis of airport network of China[J].Physical Review E,2004,69(4):046106.

    [6] Barrat A,Barthelemy M,Pastor-Satorras R,et al. The architecture of complex weighted networks[J]. Proceedings of the National Academy of Sciences,2004,101(11):3747-3752.

    [7] Guimera R,Amaral L A N.Modeling the worldwide airport network[J].The European Physical Journal B-Condensed Matter and Complex Systems,2004,38(2):381-385.

    [8] Colizza V,Barrat A,Barthélemy M,et al.The role of the airline transportation network in the prediction and predictability of global epidemics[J].Proceedings of the National Academy of Sciences,2006,103(7):2015-2020.

    [9] Gautreau A,Barrat A,Barthélemy M.Microdynamics in stationary complex networks[J].Proceedings of the National Academy of Sciences,2009,106(22):8847-8852.

    [10]Zhang J,Cao X B,Du W B,et al.Evolution of Chinese airport network[J].Physica A:Statistical Mechanics and Its Applications,2010,389(18):3922-3931.

    [11]da Rocha L E.Structural evolution of the Brazilian airport network[J].Journal of Statistical Mechanics:Theory and Experiment,2009,4(1):P04020.

    [12]Bagler G.Analysis of the airport network of India as a complex weighted network[J].Physica A:Statistical Mechanics and Its Applications,2008,387(12):2972-2980.

    [13]Zheng J F,Gao Z Y,Zhao X M.Properties of transportation dynamics on scale-free networks[J].Physica A:Statistical Mechanics and Its Applications,2007,373(36):837-844.

    [14]Albert R,Jeong H,Barabási A L.Internet:Diameter of the world-wide web[J].Nature,1999,401(6749):130-131.

    [15]Chi L P,Wang R,Su H,et al.Structural properties of US flight network[J].Chinese Physics Letters,2003,20(8):1393.

    (Executive Editor:Xu Chengting)

    V355Documenr code:AArricle ID:1005-1120(2015)05-0555-05

    *Corresponding aurhor:Li Shanmei,Lecturer,E-mail:yma820203@163.com.

    How ro cire rhis arricle:Li Shanmei,Xu Xiaohao,Wang Fei,et al.Topological structure of US flight network based on complex network theory[J].Trans.Nanjing U.Aero.Astro.,2015,32(5):555-559.

    http://dx.doi.org/10.16356/j.1005-1120.2015.05.555

    猜你喜歡
    王飛興隆
    滬指失守3000點
    家人春節(jié)照
    興隆山楂管理技術(shù)
    河北果樹(2020年2期)2020-05-25 06:58:44
    市場觀察(1)
    市場觀察(2)
    A Similarity Transformation and the Decay Mode Solutions for Three-Dimensional Cylindrical Kadomtsev-Petviashvili Equation
    萬寧之旅·興隆植物小姐模特大賽(二)
    新教育(2018年27期)2019-01-08 02:23:18
    市場觀察(1)
    特別的生日禮物
    我要飛翔
    国产麻豆成人av免费视频| 日韩欧美在线乱码| 午夜福利在线观看免费完整高清在 | 亚洲真实伦在线观看| 五月玫瑰六月丁香| 国模一区二区三区四区视频| 国产精品久久久久久久久免| 欧美日韩国产亚洲二区| 国产爱豆传媒在线观看| 变态另类丝袜制服| 日韩欧美精品免费久久| 丝袜喷水一区| 日本黄大片高清| 国产 一区精品| 亚州av有码| videossex国产| 极品教师在线视频| 免费看光身美女| 国产精品福利在线免费观看| 18禁在线播放成人免费| 免费看av在线观看网站| av在线亚洲专区| 大型黄色视频在线免费观看| 精品久久久久久久久av| 日本一二三区视频观看| 最近最新中文字幕大全电影3| 日本熟妇午夜| 亚洲欧洲国产日韩| 卡戴珊不雅视频在线播放| 女人被狂操c到高潮| 国产成人午夜福利电影在线观看| 日产精品乱码卡一卡2卡三| 亚洲国产欧美人成| 99久国产av精品国产电影| 国产色爽女视频免费观看| 人妻制服诱惑在线中文字幕| 亚洲欧洲国产日韩| 男插女下体视频免费在线播放| 高清在线视频一区二区三区 | 亚洲中文字幕日韩| 亚洲国产欧美在线一区| 国产精品美女特级片免费视频播放器| 在线国产一区二区在线| 国产三级在线视频| 久久6这里有精品| 最近的中文字幕免费完整| 亚洲欧美日韩高清在线视频| 麻豆久久精品国产亚洲av| 国产精品人妻久久久影院| 国产精华一区二区三区| av专区在线播放| 天堂中文最新版在线下载 | 婷婷色av中文字幕| 最近最新中文字幕大全电影3| 成人综合一区亚洲| 少妇高潮的动态图| 国产亚洲5aaaaa淫片| 亚洲av.av天堂| 国产精品爽爽va在线观看网站| or卡值多少钱| 国模一区二区三区四区视频| 麻豆成人午夜福利视频| 夜夜夜夜夜久久久久| 青春草国产在线视频 | 欧美色视频一区免费| 欧美成人一区二区免费高清观看| 卡戴珊不雅视频在线播放| 欧美成人a在线观看| 免费人成视频x8x8入口观看| 最近手机中文字幕大全| 麻豆国产av国片精品| 欧美xxxx性猛交bbbb| 成人二区视频| 免费黄网站久久成人精品| 欧美色欧美亚洲另类二区| 一本久久精品| 国产高清有码在线观看视频| 国产黄色小视频在线观看| 国产一区二区激情短视频| 麻豆国产97在线/欧美| 欧美一区二区亚洲| 国产黄a三级三级三级人| 男女做爰动态图高潮gif福利片| 12—13女人毛片做爰片一| av福利片在线观看| 亚洲最大成人中文| 精品国内亚洲2022精品成人| 日本三级黄在线观看| 热99re8久久精品国产| 性插视频无遮挡在线免费观看| 亚洲最大成人av| 免费不卡的大黄色大毛片视频在线观看 | 成人毛片60女人毛片免费| 久久久午夜欧美精品| 国内少妇人妻偷人精品xxx网站| 国产精品一区二区在线观看99 | 热99在线观看视频| 国产 一区精品| 久久精品国产自在天天线| 久久99蜜桃精品久久| 三级经典国产精品| 免费av不卡在线播放| 欧美日韩综合久久久久久| 人妻制服诱惑在线中文字幕| 亚洲国产精品合色在线| 特级一级黄色大片| 午夜免费男女啪啪视频观看| 欧美变态另类bdsm刘玥| 级片在线观看| 欧美最黄视频在线播放免费| 国产乱人偷精品视频| 国产大屁股一区二区在线视频| 国产乱人偷精品视频| 国产在视频线在精品| 亚洲精品456在线播放app| 桃色一区二区三区在线观看| 中出人妻视频一区二区| 亚洲精品456在线播放app| 欧洲精品卡2卡3卡4卡5卡区| 成人一区二区视频在线观看| 老女人水多毛片| 国产又黄又爽又无遮挡在线| 中文字幕免费在线视频6| 如何舔出高潮| 99热6这里只有精品| 99久国产av精品国产电影| 日本一二三区视频观看| 给我免费播放毛片高清在线观看| 精品欧美国产一区二区三| 少妇熟女欧美另类| 成人鲁丝片一二三区免费| 亚洲av不卡在线观看| 成人亚洲精品av一区二区| 毛片女人毛片| 乱系列少妇在线播放| 乱系列少妇在线播放| 简卡轻食公司| 久久精品国产亚洲av天美| 一级av片app| 国产在视频线在精品| 可以在线观看毛片的网站| 最近最新中文字幕大全电影3| 三级毛片av免费| 亚洲精品国产av成人精品| 欧美日韩乱码在线| 99riav亚洲国产免费| 中出人妻视频一区二区| 赤兔流量卡办理| 欧美区成人在线视频| www.av在线官网国产| 网址你懂的国产日韩在线| 三级男女做爰猛烈吃奶摸视频| 三级男女做爰猛烈吃奶摸视频| 国产白丝娇喘喷水9色精品| h日本视频在线播放| 伊人久久精品亚洲午夜| 欧美不卡视频在线免费观看| 1000部很黄的大片| 亚洲欧美精品专区久久| 成人国产麻豆网| 亚洲欧洲日产国产| 搡老妇女老女人老熟妇| 99riav亚洲国产免费| 熟女人妻精品中文字幕| 嘟嘟电影网在线观看| 国产av一区在线观看免费| 可以在线观看毛片的网站| 国产午夜精品论理片| 亚洲欧美成人精品一区二区| 亚洲最大成人中文| h日本视频在线播放| 美女脱内裤让男人舔精品视频 | 免费av不卡在线播放| 国产精品久久久久久亚洲av鲁大| 日韩欧美精品v在线| 最好的美女福利视频网| 18禁黄网站禁片免费观看直播| 深夜a级毛片| 精品人妻视频免费看| 五月伊人婷婷丁香| 自拍偷自拍亚洲精品老妇| 国产极品天堂在线| 村上凉子中文字幕在线| 亚洲激情五月婷婷啪啪| 日本色播在线视频| 国产成人91sexporn| 黑人高潮一二区| 久久精品综合一区二区三区| 免费看美女性在线毛片视频| av在线播放精品| 最后的刺客免费高清国语| 中文字幕精品亚洲无线码一区| 国产91av在线免费观看| 真实男女啪啪啪动态图| 日本一本二区三区精品| 又爽又黄a免费视频| 久久精品国产99精品国产亚洲性色| 精品欧美国产一区二区三| 国内精品宾馆在线| 热99re8久久精品国产| 国产人妻一区二区三区在| 日本av手机在线免费观看| 一边摸一边抽搐一进一小说| 可以在线观看的亚洲视频| 成人性生交大片免费视频hd| 一级av片app| 国内精品久久久久精免费| 国产伦一二天堂av在线观看| 波野结衣二区三区在线| 一进一出抽搐gif免费好疼| 欧美日韩在线观看h| 色吧在线观看| 亚洲无线在线观看| 久久韩国三级中文字幕| 亚洲国产色片| 免费看av在线观看网站| 老女人水多毛片| 日日摸夜夜添夜夜添av毛片| 小说图片视频综合网站| 国产爱豆传媒在线观看| 男女做爰动态图高潮gif福利片| 国产一区二区在线av高清观看| 狠狠狠狠99中文字幕| 亚洲精品国产av成人精品| 国产精品一二三区在线看| 天堂影院成人在线观看| 精品少妇黑人巨大在线播放 | 伦精品一区二区三区| 小说图片视频综合网站| 中文欧美无线码| 九色成人免费人妻av| 亚洲七黄色美女视频| 欧美xxxx性猛交bbbb| 国产亚洲av片在线观看秒播厂 | 午夜福利在线在线| 国产伦精品一区二区三区视频9| 久久久久久国产a免费观看| 国产精品久久视频播放| 韩国av在线不卡| 日韩欧美国产在线观看| 亚洲欧美成人精品一区二区| 免费av不卡在线播放| 久久热精品热| 热99在线观看视频| 欧美一区二区国产精品久久精品| 国产精品久久视频播放| 人妻久久中文字幕网| 欧美高清成人免费视频www| 寂寞人妻少妇视频99o| 少妇丰满av| 丝袜美腿在线中文| 麻豆av噜噜一区二区三区| 亚洲av中文字字幕乱码综合| 欧美区成人在线视频| 亚洲精品日韩av片在线观看| 97在线视频观看| 男人和女人高潮做爰伦理| 蜜桃久久精品国产亚洲av| 午夜免费男女啪啪视频观看| 人体艺术视频欧美日本| 亚洲av男天堂| 日本免费a在线| 老司机影院成人| 国产精品久久电影中文字幕| 欧美日本视频| 欧美区成人在线视频| 哪个播放器可以免费观看大片| 精品午夜福利在线看| 亚洲婷婷狠狠爱综合网| 又爽又黄无遮挡网站| 波多野结衣巨乳人妻| 人体艺术视频欧美日本| 村上凉子中文字幕在线| 狂野欧美激情性xxxx在线观看| 插阴视频在线观看视频| 在线播放国产精品三级| 国内精品一区二区在线观看| 此物有八面人人有两片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 岛国毛片在线播放| 99久久久亚洲精品蜜臀av| 日韩欧美精品v在线| 亚州av有码| 我要看日韩黄色一级片| 国产亚洲精品久久久com| 九九爱精品视频在线观看| 成人永久免费在线观看视频| 精品人妻视频免费看| 精品久久国产蜜桃| 男女视频在线观看网站免费| 成人性生交大片免费视频hd| 成人美女网站在线观看视频| 国产黄片美女视频| 变态另类成人亚洲欧美熟女| 黄片无遮挡物在线观看| 久久久久久久午夜电影| 一个人观看的视频www高清免费观看| 中出人妻视频一区二区| 成人高潮视频无遮挡免费网站| 日产精品乱码卡一卡2卡三| 丰满乱子伦码专区| 能在线免费观看的黄片| 久久久久久久久久久丰满| 国产精品一区二区在线观看99 | 日韩强制内射视频| 日韩 亚洲 欧美在线| 久久久精品大字幕| 天堂中文最新版在线下载 | 色5月婷婷丁香| 国产成人精品久久久久久| 男人舔女人下体高潮全视频| 亚洲av一区综合| 久久精品国产亚洲网站| 国产精品麻豆人妻色哟哟久久 | 综合色av麻豆| 国内精品宾馆在线| 久久久久久久亚洲中文字幕| 三级经典国产精品| 精品久久久久久久久亚洲| 噜噜噜噜噜久久久久久91| 可以在线观看的亚洲视频| 国产日韩欧美在线精品| av.在线天堂| 国产精品国产三级国产av玫瑰| 一个人观看的视频www高清免费观看| 麻豆av噜噜一区二区三区| 可以在线观看毛片的网站| 国产高潮美女av| 天堂√8在线中文| 国产精品嫩草影院av在线观看| 蜜桃久久精品国产亚洲av| 美女脱内裤让男人舔精品视频 | 国模一区二区三区四区视频| 午夜精品一区二区三区免费看| 日日啪夜夜撸| 99在线人妻在线中文字幕| 一级黄片播放器| 伊人久久精品亚洲午夜| 黄片无遮挡物在线观看| 青青草视频在线视频观看| 成年免费大片在线观看| 久久亚洲国产成人精品v| 国产亚洲5aaaaa淫片| 成人特级av手机在线观看| 国产老妇伦熟女老妇高清| 亚洲三级黄色毛片| 一区二区三区高清视频在线| 亚洲熟妇中文字幕五十中出| 美女cb高潮喷水在线观看| 午夜久久久久精精品| 边亲边吃奶的免费视频| 美女国产视频在线观看| 日本一二三区视频观看| av专区在线播放| 日韩人妻高清精品专区| 日韩强制内射视频| 能在线免费观看的黄片| kizo精华| 国产一区二区三区av在线 | 精品久久久久久久久久免费视频| 夜夜看夜夜爽夜夜摸| 色吧在线观看| 亚洲四区av| 欧美日韩国产亚洲二区| 国产精品一及| 午夜精品在线福利| 国产激情偷乱视频一区二区| 一进一出抽搐gif免费好疼| 亚洲国产欧美人成| 精品日产1卡2卡| av天堂中文字幕网| 美女黄网站色视频| 好男人在线观看高清免费视频| 精品久久久噜噜| 91久久精品电影网| 我要看日韩黄色一级片| 成人亚洲精品av一区二区| av福利片在线观看| 99在线人妻在线中文字幕| 一级黄片播放器| 精品少妇黑人巨大在线播放 | 高清在线视频一区二区三区 | 久久久色成人| 午夜精品一区二区三区免费看| 日本免费一区二区三区高清不卡| 我要看日韩黄色一级片| 欧美3d第一页| 精品不卡国产一区二区三区| 大又大粗又爽又黄少妇毛片口| 看十八女毛片水多多多| 少妇丰满av| 插阴视频在线观看视频| 免费av观看视频| 深夜a级毛片| 国产成人a∨麻豆精品| 日韩视频在线欧美| 此物有八面人人有两片| а√天堂www在线а√下载| 国产综合懂色| 亚洲精品自拍成人| 狠狠狠狠99中文字幕| 高清毛片免费看| 免费观看在线日韩| 日韩成人av中文字幕在线观看| 最近最新中文字幕大全电影3| 大型黄色视频在线免费观看| 欧美性猛交╳xxx乱大交人| 午夜精品国产一区二区电影 | 天堂网av新在线| 国产午夜精品久久久久久一区二区三区| 毛片一级片免费看久久久久| 老师上课跳d突然被开到最大视频| 午夜福利在线在线| videossex国产| 欧美高清成人免费视频www| 久久久成人免费电影| 亚洲人与动物交配视频| 网址你懂的国产日韩在线| 黄色视频,在线免费观看| 观看免费一级毛片| 村上凉子中文字幕在线| 夜夜爽天天搞| 日韩欧美在线乱码| 久久精品久久久久久噜噜老黄 | 国产精品一区www在线观看| 岛国毛片在线播放| 淫秽高清视频在线观看| 成人美女网站在线观看视频| 26uuu在线亚洲综合色| 国产日本99.免费观看| 高清午夜精品一区二区三区 | 熟妇人妻久久中文字幕3abv| 变态另类丝袜制服| 又爽又黄a免费视频| 亚洲精品成人久久久久久| 人妻少妇偷人精品九色| 九九在线视频观看精品| 欧美一区二区国产精品久久精品| 丝袜喷水一区| 成人国产麻豆网| 亚洲精品456在线播放app| 午夜福利高清视频| 禁无遮挡网站| 久久久久久久久久久免费av| 在线观看美女被高潮喷水网站| 久久这里有精品视频免费| 爱豆传媒免费全集在线观看| 欧美另类亚洲清纯唯美| 美女大奶头视频| 日韩欧美一区二区三区在线观看| 久久午夜福利片| 国产免费男女视频| 久久久精品欧美日韩精品| 中文字幕久久专区| 99热网站在线观看| 国产91av在线免费观看| 中文欧美无线码| 乱系列少妇在线播放| 欧美日韩一区二区视频在线观看视频在线 | 身体一侧抽搐| 高清毛片免费观看视频网站| 九草在线视频观看| 日韩成人av中文字幕在线观看| 亚洲欧美成人精品一区二区| 欧美一区二区国产精品久久精品| 国产在线精品亚洲第一网站| 高清日韩中文字幕在线| 成人亚洲精品av一区二区| 欧美日韩在线观看h| 麻豆精品久久久久久蜜桃| 日本免费一区二区三区高清不卡| 春色校园在线视频观看| 欧美激情久久久久久爽电影| 色综合站精品国产| 国产在视频线在精品| 国产一区二区三区av在线 | 亚洲性久久影院| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲网站| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧洲综合997久久,| 久久精品国产99精品国产亚洲性色| 欧美日韩一区二区视频在线观看视频在线 | 亚洲第一电影网av| 国产三级中文精品| 欧美在线一区亚洲| 精品少妇黑人巨大在线播放 | 欧美日韩乱码在线| 精品久久久噜噜| 久久亚洲精品不卡| 欧美色欧美亚洲另类二区| 天堂中文最新版在线下载 | av免费在线看不卡| 亚洲av不卡在线观看| 男女啪啪激烈高潮av片| 国产精华一区二区三区| 久久鲁丝午夜福利片| 一级毛片电影观看 | 欧美在线一区亚洲| 日韩欧美在线乱码| 深夜精品福利| 欧美极品一区二区三区四区| 久久欧美精品欧美久久欧美| 毛片女人毛片| 国产精品一区二区三区四区免费观看| 97超视频在线观看视频| 成人亚洲精品av一区二区| 在线观看av片永久免费下载| 国产成人影院久久av| 看免费成人av毛片| 成人特级av手机在线观看| 久久人妻av系列| 男人舔女人下体高潮全视频| 国产亚洲5aaaaa淫片| 午夜福利视频1000在线观看| 人妻制服诱惑在线中文字幕| 色综合站精品国产| av在线老鸭窝| 国产不卡一卡二| 日韩一区二区三区影片| 寂寞人妻少妇视频99o| 99久久无色码亚洲精品果冻| 亚洲人成网站在线观看播放| 亚洲一级一片aⅴ在线观看| 午夜福利成人在线免费观看| 蜜臀久久99精品久久宅男| 禁无遮挡网站| 亚洲成人av在线免费| 日日干狠狠操夜夜爽| 91精品一卡2卡3卡4卡| 国产成年人精品一区二区| 国产91av在线免费观看| 欧美日本亚洲视频在线播放| 成人av在线播放网站| 国产老妇女一区| 欧美zozozo另类| av在线亚洲专区| 国国产精品蜜臀av免费| 国产av麻豆久久久久久久| 久久久久久久久久黄片| av黄色大香蕉| 久久久成人免费电影| 亚洲久久久久久中文字幕| 欧美日韩精品成人综合77777| 久久精品久久久久久久性| 男的添女的下面高潮视频| 精品欧美国产一区二区三| 国产精品久久久久久久电影| 好男人视频免费观看在线| 国产精品国产高清国产av| 两个人视频免费观看高清| 亚洲欧美日韩东京热| 亚洲av第一区精品v没综合| 亚洲无线观看免费| 国产一区二区三区在线臀色熟女| 国产欧美日韩精品一区二区| 免费不卡的大黄色大毛片视频在线观看 | 免费一级毛片在线播放高清视频| 久久精品国产清高在天天线| 久久精品国产鲁丝片午夜精品| 男女做爰动态图高潮gif福利片| 精品99又大又爽又粗少妇毛片| av免费观看日本| 人妻久久中文字幕网| 久久久久久久久大av| 成人亚洲精品av一区二区| 91aial.com中文字幕在线观看| 久久久国产成人精品二区| 亚洲成人精品中文字幕电影| 最近2019中文字幕mv第一页| 亚洲一区二区三区色噜噜| 日本欧美国产在线视频| 午夜福利在线观看免费完整高清在 | 国产单亲对白刺激| 26uuu在线亚洲综合色| 久久久色成人| 九九在线视频观看精品| 能在线免费看毛片的网站| 日本黄色视频三级网站网址| 亚洲欧美日韩高清专用| 久久久久久九九精品二区国产| 在线免费观看不下载黄p国产| 国内少妇人妻偷人精品xxx网站| 精品一区二区三区视频在线| 日本免费一区二区三区高清不卡| 美女 人体艺术 gogo| 2021天堂中文幕一二区在线观| 国产人妻一区二区三区在| 91久久精品电影网| 国产精品久久久久久精品电影小说 | av在线观看视频网站免费| 人妻系列 视频| 黄片无遮挡物在线观看| 国产精品伦人一区二区| 国产真实伦视频高清在线观看| 干丝袜人妻中文字幕| 国产 一区精品| 成熟少妇高潮喷水视频| 精品国产三级普通话版| 级片在线观看| 国产精品一区二区三区四区久久| 久久久精品大字幕| 国产一区二区在线av高清观看| 麻豆乱淫一区二区| 国产午夜福利久久久久久| 男人和女人高潮做爰伦理| 日韩欧美 国产精品| 少妇人妻精品综合一区二区 | 国产国拍精品亚洲av在线观看| 看片在线看免费视频| 成人漫画全彩无遮挡| 久久久久久久久久久免费av| videossex国产| 男的添女的下面高潮视频| 人妻系列 视频|