• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feasibility of applying the lower cut-off frequency for the density radial coverage extension in EAST reflectometry measurement

    2022-06-01 07:55:50JiaHUANG黃佳XiangHAN韓翔KaixuanYE葉凱萱TaoZHANG張濤FeiWEN文斐MingfuWU吳茗甫KangningGENG耿康寧GongshunLI李恭順FubinZHONG鐘富彬YukaiLIU劉煜鍇HaomingXIANG向皓明ShuqiYANG楊書琪ShoubiaoZHANG張壽彪XiangGAO高翔GeZHUANG莊革andtheEASTTeam
    Plasma Science and Technology 2022年5期
    關鍵詞:劉煜

    Jia HUANG (黃佳), Xiang HAN (韓翔), Kaixuan YE (葉凱萱),Tao ZHANG (張濤), Fei WEN (文斐), Mingfu WU (吳茗甫)Kangning GENG(耿康寧),Gongshun LI(李恭順),Fubin ZHONG(鐘富彬),Yukai LIU (劉煜鍇), Haoming XIANG (向皓明), Shuqi YANG (楊書琪),Shoubiao ZHANG (張壽彪), Xiang GAO (高翔), Ge ZHUANG (莊革) and the EAST Team

    1 University of Science and Technology of China, Hefei 230026, People's Republic of China

    2 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

    3 Advanced Energy Research Center,Shenzhen University,Shenzhen 518060,People's Republic of China

    4 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China

    Abstract The extraordinary mode (X-mode) lower cut-off frequency is proposed for use in the reflectometry diagnostic on ITER for the electron density profile measurement,which is a trade-off between extreme plasma parameters and the accessible probing frequency.In contemporary experiments,the lower cutoff frequency can be identified at the probing frequency below the electron cyclotron frequency(fce)under certain plasma conditions.We provide here,for the first time,the experimental validation of the use of the lower cut-off frequency for the density profiles via the reflectometry measurement on EAST.The corresponding group delay of the lower cut-off frequency evolves continuously with the upper one, revealing a reasonable radial coverage extension of reflectometry measurement toward the plasma core.It is concluded that the lower cut-off frequency can be used as a supplement to the upper one in the density profile inversion process,which is of particular interest in the high magnetic field and/or density discharge to extend the radial coverage of reflectometry measurement.

    Keywords: X-mode reflectometry, density profile, EAST, lower cut-off frequency

    1.Introduction

    The high-confinement mode (H-mode) is scheduled to be the base operational scenario in ITER, where the core density is close to or even beyond the Greenwald density nGwto maximize the fusion power[1,2].The measurement of the density profile in the high-density operation is important for a better understanding of density control, transport and plasma fueling.In contemporary experiments, microwave reflectometry has been applied in many fusion devices, such as DIII-D [3, 4], JET [5],Tore Supra [6, 7], the ASDEX Upgrade [8] and LHD [9].The high spatial and temporal measurement of the electron density profile and its associated fluctuation is preferable for plasma physical studies in the fields of, e.g.transport behavior [10],H-mode physics [11] and magneto-hydro-dynamic (MHD)instabilities [12].

    Based on the direction of the electric field vector()of the probing wave to the magnetic field (), the reflectometry measurement is categorized to be the extraordinary mode(X-mode,⊥and ordinary mode(O-mode,and the X-mode polarization is preferable for three reasons.Firstly, the radial resolution of X-mode measurement is higher than that of the O-mode because of its higher detection frequency and shorter wavelength.Secondly, the X-mode measurement is more suitable for probing the boundary region, particularly near the so-called zero-density (ne0) layer.Lastly, the X-mode measurement can be adapted to the weak density gradient region to reveal a finite cut-off layer, whereas the O-mode cut-off layer becomes dispersed.There are studies that focus on reflectometry with a lower cut-off frequency [13-16].In experimental measurements on the ASDEX Upgrade [17], DIIID [18] and NSTX [19], previous attempts were made using both O-mode and X-mode upper cut-off frequencies in the process of density profile inversion, yielding an important potential to expand the measurable density radial range of reflectometry.

    X-mode multi-band reflectometry for plasma density profile measurement has been in operation on EAST since 2015 [20-22].This system involves a probing frequency range of 33 to 110 GHz,and its antenna array is installed on the equatorial plane of the low-field side.The voltagecontrolled oscillator is utilized as the source of the probing frequency,whose output waveform and sweeping speed are remotely controlled by a customized field-programmable gate array processor circus, enabling sub-millisecond density profile measurement.The upper cut-off frequency is used; however, in high-density discharges, e.g.H-mode and fueling experiments, the required probing frequency at the upper cut-off layer will exceed the accessibility of the EAST reflectometry.The accessible cut-off layer of the upper cut-off frequency tends to be restricted in the edge region.Nevertheless, when the density and/or magnetic field is satisfied, the lower cut-off reflection layer will be identified in the probing frequency range below the electron cyclotron frequency fce.This enables us to use both the upper and lower cut-off frequencies,and hence expands the density profile measurement.

    This paper presents the experimental measurement on the density profile using both the upper and lower cut-off frequencies of X-mode on EAST.The results prove the capability of the X-mode lower cut-off frequency for the radial extension of reflectometry measurement, which is particularly favored in high-density operations, such as H-mode and pellet injection, and can be used for the reflectometry measurement on ITER.In section 2, a brief introduction to the reflectometry architecture and the density profile inversion method is given.The experimental results are presented in section 3, and the work is summarized in section 4.

    2.Reflectometry architecture and the density profile inversion process

    For an electromagnetic wave propagating in X-mode polarization,the refraction index associated with both the magnetic field and local density is given by

    where r is the radial location along the sight line of the beam,

    and B(r)is the local magnetic field.For given neand B values,the incident beam is reflected at the corresponding cut-off layer, where the Nx=0.The two solutions can be deduced,namely the upper fLand lower fRcut-off frequencies,respectively,

    In the EAST experiments, the upper cut-off frequency is regularly used during the density profile inversion process because the lower one is rarely observed by reflectometry in EAST’s typical operational regimes.In high magnetic field and/or density discharges, the lower cut-off frequency is detected in the delay-time spectrum.The appearance of the lower cut-off frequency can be estimated using equation (4).

    Figure 1 shows the density coverage ability for the lower and upper cut-off, respectively, under different magnetic fields.The so-called zero electron density ne0occurs when the probing frequency equals fce, as indicated by the black slash.The probing frequency is below fceon the left side,where the microwave is reflected at the lower cut-off layer.In contrast,on the right side, when f >fce, the microwave is reflected at the upper cut-off layer.It is clear that with the increasing magnetic field and plasma density,the range of the upper cutoff frequency becomes narrower.Furthermore, the influence of the second harmonic of the electron cyclotron frequency(f2ce)needs to be taken into account when fRand/or fLexceed the f2ceat the plasma boundary (ne=0).As shown by the white slashed line in figure 1, at the relatively low magnetic field (Bt<1.8 T), the location of f2cemoves toward the low probing frequency,which will significantly limit the coverage of the probing frequency in the X-mode upper cut-off reflectometry as the probing beam could be absorbed at fprob=f2ce.With the increase in the magnetic field, the range of detection frequency affected by f2cegradually decreases.Typically, the pedestal density covers a range up to 3.5×1019m-3[23] and the density coverage is up to~7.0×1019m-3at fprob=fR=110 GHz.In the experimental measurement,the raw signal in the probing frequency beyond 95 GHz becomes rather weak and is close to the noise level due to the influence of f2ce.Thus, the typical accessible density by the upper cut-off frequency is around 5×1019m-3.However, when the plasma parameters meet the requirements, the lower cut-off frequency can be observed in the probing frequency range of 33-50 GHz, which can be identified at fprob<fce.With the supplementary lower cut-off frequency, the X-mode reflectometry on EAST can potentially extend its radial coverage of high-density operations,e.g.the high-density H-mode or fueling experiments [24].

    Figure 1.The measurable density range by the corresponding lower and upper cut-off frequencies under different magnetic fields.The frequency bands of EAST reflectometry are indicated by the vertical dashed line.The contour lines indicate the equal ne level that can be measured by the reflectometry on EAST.

    The group delay time (τg) is calculated using τg=fbeat/(dfprob/dt), where fbeatis the beat frequency and dfprob/dt is the sweeping rate of the probing wave frequency.The phase delay associated with the detected frequency, as derived from the group delay spectrum, is used for the determination of microwave reflectometry electron density profiles[15,25].Figure 2 compares the time-delay spectra of the X-mode reflectometry measurements at different magnetic fields and plasma densities.The probing starts of the upper cut-off frequency are indicated by the vertical line.As shown in figures 2(a)and(c),the higher magnetic field(Bt=2.3 T)requires higher probing frequency at zero density, which is consistent with the results in figure 1.Furthermore,the lower cut-off frequency is visible in the Q-band (33-50 GHz)spectrum in figures 2(a), (b) and (d) in high plasma electron density cases.With the increase in the magnetic field and/or the plasma density,the lower cut-off reflection region extends gradually.

    Figure 2.Time-delay spectra obtained from the X-mode reflectometry measurements on EAST with different magnetic fields and plasma densities.The frequency windows with reflection at the lower cut-off(left)and the upper cut-off(right)are marked,respectively.The empty region at fprob ~80 GHz is caused by the overlapped wave-mixing process in the optical combiner [26].

    3.Experimental measurements of density profile

    Figure 3 shows the delay-time spectra of the reflectometry signals at 5.62 s in a typical L-mode EAST discharge (#90330, BT=2.47 T) and at 4.9622 s in a typical H-mode EAST discharge (#88004,BT=2.32 T).The line-integrated density is measured by the 11-channel POlarimeter-INTerferometer (POINT) [27]; the values at the center chord are ne,line≈4.23×1019m-3and 4.64×1019m-3, respectively.As shown in figure 3, the lower cut-off reflection emerges at the incident frequency below 50 GHz, and the appearance is attributed to the high plasma density, regardless of the L-mode or H-mode regime.The transition between the lower and upper cut-off frequencies occurs at 53 GHz and 51 GHz.Note that τg≈13-14 ns at the probing frequency ranging from 41 GHz to 53 GHz in the discharge #90330 is caused by the back wall reflection.The corresponding τgof both upper and lower cut-off frequencies can be distinguished in the frequency range beyond and below the fce, respectively,which is indicated by the vertical dashed line in figure 3.

    Figure 3.Delay-time spectra of reflectometry measurement in L-mode of discharge #90330 (above) and H-mode of discharge #88004(below).The transitions between the upper and lower cut-off frequencies are at 53 GHz and 51 GHz, respectively, during L- and H-mode,where the zero-density layer locates.

    Figure 4 shows the group delays measured by the lower cut-off frequency (red dotted lines) and the equivalent group delay via the upper one (black solid lines).By assuming the density profile of the upper cut-off frequency, its equivalent group delay of the lower cut-off frequency can be simultaneously deduced (the black solid lines in figure 4).This equivalent τg,loweris then compared with the experimental measurement(the red line in figure 4).The confidence interval of the group delay is estimated to be the 1/e bandwidth of τgin figure 3.It would make sense if the τg,lowerwas overlapped or continued with the equivalent τg,upperthat is calculated using the upper cut-off frequency.Thus, the group delays of the upper and lower cut-off frequencies can be combined to reveal the overall density profile.In the reflection signal of the upper cut-off frequency,only a fraction of signals is reasonable in the probing frequency below 95 GHz, which restricts the measurable density profile in the plasma edge region.It is clearly seen that in both L-mode (figure 4 left) and H-mode (figure 4 right),a continuous τgis obtained in the overlapped frequency range of 35-48 GHz,yielding validation of the density profile inversion using the overall τg.It is also worth noting that the frequency coverage of the lower cut-off is much higher than the equivalent group delay that is obtained from the upper cutoff, which indicates that the density coverage can be further extended by supplementing the upper cut-off frequency with the lower cut-off frequency.

    The overall neprofiles in the H- and L-modes obtained by the X-mode lower (red solid and dotted line) and upper(black and blue dots) cut-off frequencies are compared and depicted in figure 5.The error bars are calculated from the delay-time spectra in figure 3 and are mainly contributed by the bandwidth of the delay-time spectra.The method used for error calculation of the density profiles is taken from[20].The consistent evolution of two density profiles with the line-integrated densities yields a reliable validation of the lower cut-off reflection in the measurement of density profiles.In the weak signal level of τg,upperin the highdensity region, e.g.in the plasma core region, the profile resolution can be significantly improved by utilizing the τg,lowerindirectly.Density profiles during L-mode measured by reflectometry are further compared with the inversed profile of POINT.As shown by the green line in figure 5,the inversed density profile in the L-mode is overlapped for a benchmark.The agreement of the neprofiles from POINT and the reflectometry measurements, especially at the core region, implies that the lower cut-off frequency is capable of supplementing the density profile measurement via reflectometry.

    Figure 4.Group delays measured by the lower cut-off frequency (red dotted lines) and the equivalent group delay via the upper cut-off frequency (black solid lines) in L- (left) and H-mode (right), respectively.

    Figure 5.Density profiles obtained by the upper (black and blue triangles) and lower (red lines) cut-off frequencies in H-mode and L-mode.The green line is the ne profile of the POINT measurement.

    4.Summary

    To summarize our work, the density profile inversion process,using both the lower and upper cut-off frequencies, enables radial coverage expansion of reflectometry measurement with the emergence of the lower cut-off frequency.On the EAST tokamak, the lower and upper cut-off reflections have been simultaneously obtained in the X-mode polarized multi-band reflectometry diagnostic in high-density experiments, e.g.the H-mode and/or fueling discharges.The feasibility of the density profile measurements shown in this paper indicates that the application of the lower cut-off frequency is successfully accessible for the density profile inversion process and the radial coverage expansion.This experimental validation of density profile inversion by the lower cut-off frequency is of great importance for the measurement accessibility when developing the high-field side reflectometry system in ITER.Although the fprob,lowerrange is limited by the system bandwidth, the use of both lower and upper cut-off frequencies in the density profile inversion process can significantly extend the radial coverage of the reflectometry measurement, which provides a reference for the ITER reflectometry system in the radial coverage of the density profile in the high-density discharge.

    Acknowledgments

    The authors wish to acknowledge Dr.S.X.Wang for helping to analyze the POINT data.This work has been supported by the National Key R&D Program of China(Nos.2017YFE0301205 and 2019YFE03040002), National Natural Science Foundation of China (Nos.11875289,11975271, 11805136, 12075284, and 12175277) and China Postdoctoral Science Foundation (No.2021M703256).

    ORCID iDs

    猜你喜歡
    劉煜
    讀迷作品
    Game Theory in Climate Change Economics
    留學(2022年14期)2022-09-27 09:21:12
    The Foundations of Physics
    留學(2022年14期)2022-09-27 09:21:04
    遼東學院藝術與設計學院劉煜哲抗聯(lián)題材美術作品《濛江雪》(節(jié)選)
    Experimental study of core and edge fluctuations by reflectometry on EAST tokamak
    過度關愛會讓孩子無所適從
    生命不息,傳承不止
    A Guardian Angel in My Mind
    劉煜:“90后”閨門旦的水墨青春
    金色年華(2017年7期)2017-06-21 09:27:53
    Changes in Stratospheric ClO and HCl Concentrations Under Different Greenhouse Gas Emission Scenarios
    欧美最新免费一区二区三区| 如何舔出高潮| 国产大屁股一区二区在线视频| 久久久久久久久中文| 国产亚洲精品久久久久久毛片| 五月伊人婷婷丁香| 亚洲性夜色夜夜综合| 日本欧美国产在线视频| 亚洲av电影不卡..在线观看| 色5月婷婷丁香| 国产精品1区2区在线观看.| 亚洲欧美日韩无卡精品| 亚洲七黄色美女视频| 亚洲人与动物交配视频| 色综合婷婷激情| 国产精品1区2区在线观看.| eeuss影院久久| 精品久久国产蜜桃| 久久午夜亚洲精品久久| 99热精品在线国产| 日韩一本色道免费dvd| 亚洲国产欧洲综合997久久,| 亚洲国产色片| 精品久久久久久久人妻蜜臀av| 亚洲中文字幕一区二区三区有码在线看| 亚洲美女视频黄频| 日韩高清综合在线| 亚洲av成人精品一区久久| 亚洲色图av天堂| 精华霜和精华液先用哪个| 嫩草影院精品99| 国产精品美女特级片免费视频播放器| 欧美国产日韩亚洲一区| 变态另类成人亚洲欧美熟女| 我的女老师完整版在线观看| 亚洲四区av| 国产大屁股一区二区在线视频| 在线a可以看的网站| avwww免费| 69人妻影院| 桃色一区二区三区在线观看| 尾随美女入室| 久久国产乱子免费精品| 亚洲黑人精品在线| 老女人水多毛片| 小说图片视频综合网站| 在线免费观看的www视频| 一区二区三区免费毛片| 九色国产91popny在线| 欧美激情久久久久久爽电影| 久久亚洲精品不卡| av视频在线观看入口| 免费看日本二区| 国产精品亚洲美女久久久| 欧美又色又爽又黄视频| 搡老妇女老女人老熟妇| 精品午夜福利视频在线观看一区| 黄色日韩在线| 日韩欧美三级三区| 简卡轻食公司| av在线亚洲专区| 99国产极品粉嫩在线观看| 91久久精品国产一区二区三区| 国产精品一区www在线观看 | 美女xxoo啪啪120秒动态图| 一进一出抽搐动态| av在线亚洲专区| 国产精品无大码| 黄色视频,在线免费观看| 三级毛片av免费| 午夜视频国产福利| 国产乱人视频| 偷拍熟女少妇极品色| 国产日本99.免费观看| 18+在线观看网站| 久久久午夜欧美精品| 狂野欧美激情性xxxx在线观看| 中文字幕精品亚洲无线码一区| 别揉我奶头 嗯啊视频| 国产精品电影一区二区三区| 91午夜精品亚洲一区二区三区 | 日韩在线高清观看一区二区三区 | 麻豆国产av国片精品| 日韩大尺度精品在线看网址| 婷婷精品国产亚洲av在线| 琪琪午夜伦伦电影理论片6080| 非洲黑人性xxxx精品又粗又长| 成人美女网站在线观看视频| 一进一出抽搐gif免费好疼| 成年女人永久免费观看视频| 岛国在线免费视频观看| 长腿黑丝高跟| 高清在线国产一区| 国产精品一区www在线观看 | 国产av一区在线观看免费| 无人区码免费观看不卡| 99九九线精品视频在线观看视频| 国产淫片久久久久久久久| 内地一区二区视频在线| 国产精品98久久久久久宅男小说| 少妇被粗大猛烈的视频| 一区二区三区免费毛片| 国产综合懂色| 国产女主播在线喷水免费视频网站 | 国国产精品蜜臀av免费| 一本一本综合久久| 午夜免费男女啪啪视频观看 | 国产精品久久久久久久电影| 美女大奶头视频| 在线观看舔阴道视频| 国产国拍精品亚洲av在线观看| 成人三级黄色视频| 人妻久久中文字幕网| 精品99又大又爽又粗少妇毛片 | 欧美最新免费一区二区三区| 99riav亚洲国产免费| 国产精品乱码一区二三区的特点| 亚洲久久久久久中文字幕| 日本在线视频免费播放| 亚洲精华国产精华液的使用体验 | 成人二区视频| 少妇高潮的动态图| 日本色播在线视频| 精品免费久久久久久久清纯| 久久精品国产99精品国产亚洲性色| 精品久久久久久久人妻蜜臀av| 日韩欧美国产一区二区入口| 精品久久久久久久久av| 午夜爱爱视频在线播放| 内射极品少妇av片p| 美女免费视频网站| 毛片一级片免费看久久久久 | 国产精品1区2区在线观看.| 男女做爰动态图高潮gif福利片| 亚洲精品久久国产高清桃花| 精品人妻一区二区三区麻豆 | 麻豆成人午夜福利视频| 一夜夜www| 国产精品人妻久久久影院| 亚洲熟妇中文字幕五十中出| 久久久久久国产a免费观看| 制服丝袜大香蕉在线| 99国产精品一区二区蜜桃av| 嫩草影院入口| 97热精品久久久久久| 国产欧美日韩一区二区精品| 国产视频内射| 黄色丝袜av网址大全| 黄色丝袜av网址大全| 久久久精品大字幕| 免费观看精品视频网站| 亚洲精华国产精华液的使用体验 | 国产精品嫩草影院av在线观看 | 欧美日韩瑟瑟在线播放| 热99re8久久精品国产| 日本撒尿小便嘘嘘汇集6| 俺也久久电影网| 日本撒尿小便嘘嘘汇集6| 精品久久久久久成人av| 人妻久久中文字幕网| 国产色婷婷99| 老司机深夜福利视频在线观看| 国产一级毛片七仙女欲春2| 精品久久久久久,| 国产 一区精品| 热99在线观看视频| 香蕉av资源在线| 精品乱码久久久久久99久播| 美女高潮喷水抽搐中文字幕| 国产成年人精品一区二区| 最新中文字幕久久久久| 神马国产精品三级电影在线观看| 热99re8久久精品国产| 日本爱情动作片www.在线观看 | 九色成人免费人妻av| 俺也久久电影网| x7x7x7水蜜桃| 国产精品日韩av在线免费观看| 免费大片18禁| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久大精品| 久久久成人免费电影| 18禁裸乳无遮挡免费网站照片| 中亚洲国语对白在线视频| 日本黄大片高清| 国产老妇女一区| 亚洲欧美激情综合另类| 成人二区视频| 欧美人与善性xxx| 免费在线观看影片大全网站| 免费看a级黄色片| 亚洲久久久久久中文字幕| 欧美另类亚洲清纯唯美| 国产69精品久久久久777片| 国产色爽女视频免费观看| 免费在线观看日本一区| .国产精品久久| 日本与韩国留学比较| 国产精品福利在线免费观看| 国产私拍福利视频在线观看| 99国产精品一区二区蜜桃av| 搡老妇女老女人老熟妇| 亚洲欧美清纯卡通| 亚洲欧美日韩高清专用| 无人区码免费观看不卡| 亚洲图色成人| 人人妻人人看人人澡| 精品午夜福利视频在线观看一区| 免费av观看视频| 韩国av一区二区三区四区| 中国美白少妇内射xxxbb| 国产在线男女| 国产综合懂色| 极品教师在线视频| 亚洲男人的天堂狠狠| 真实男女啪啪啪动态图| 日韩欧美在线二视频| 成人综合一区亚洲| 精品人妻一区二区三区麻豆 | 久久久久国内视频| 久久九九热精品免费| av女优亚洲男人天堂| 国产亚洲欧美98| 国产单亲对白刺激| 日韩 亚洲 欧美在线| 精品午夜福利视频在线观看一区| 美女高潮的动态| 三级毛片av免费| 特大巨黑吊av在线直播| 男插女下体视频免费在线播放| 一级av片app| 国产色爽女视频免费观看| 久久久久免费精品人妻一区二区| 99国产极品粉嫩在线观看| 国产男靠女视频免费网站| 午夜免费成人在线视频| 久久99热这里只有精品18| 精品乱码久久久久久99久播| 免费看美女性在线毛片视频| 午夜福利在线在线| 精品久久久久久久久久久久久| 赤兔流量卡办理| 亚洲人成网站在线播放欧美日韩| 人人妻人人澡欧美一区二区| 男人舔女人下体高潮全视频| 91av网一区二区| 九色国产91popny在线| 亚洲三级黄色毛片| 色综合色国产| 免费看a级黄色片| 狂野欧美激情性xxxx在线观看| 春色校园在线视频观看| 国产精品美女特级片免费视频播放器| 97超级碰碰碰精品色视频在线观看| 校园春色视频在线观看| 日本a在线网址| 国产男靠女视频免费网站| 国产精品一及| 亚洲va在线va天堂va国产| 免费观看的影片在线观看| 国产色婷婷99| 亚洲一区二区三区色噜噜| 精品久久久久久久久av| 69人妻影院| 欧美xxxx性猛交bbbb| 99久久精品一区二区三区| 国产av在哪里看| 噜噜噜噜噜久久久久久91| 性插视频无遮挡在线免费观看| 午夜精品久久久久久毛片777| 成人亚洲精品av一区二区| 欧美国产日韩亚洲一区| 女人被狂操c到高潮| 亚洲一级一片aⅴ在线观看| 国产亚洲91精品色在线| 亚州av有码| 女生性感内裤真人,穿戴方法视频| 欧美色视频一区免费| 国产精品不卡视频一区二区| 成人国产一区最新在线观看| 国产男人的电影天堂91| 午夜爱爱视频在线播放| 国产aⅴ精品一区二区三区波| 国产在线男女| 精品久久久久久久久久免费视频| 99热精品在线国产| 在线国产一区二区在线| 国产熟女欧美一区二区| 一级黄色大片毛片| 日本-黄色视频高清免费观看| 99热这里只有是精品50| 欧美区成人在线视频| 在线a可以看的网站| 永久网站在线| 永久网站在线| 亚洲av中文av极速乱 | 午夜老司机福利剧场| 人妻少妇偷人精品九色| 国产精品永久免费网站| 波多野结衣巨乳人妻| 午夜福利在线观看免费完整高清在 | 色av中文字幕| 大又大粗又爽又黄少妇毛片口| 国产在视频线在精品| 成人特级av手机在线观看| 狠狠狠狠99中文字幕| 真人一进一出gif抽搐免费| 男人的好看免费观看在线视频| 精品人妻一区二区三区麻豆 | 一进一出抽搐动态| 亚洲图色成人| 国产视频一区二区在线看| 又粗又爽又猛毛片免费看| 免费高清视频大片| 国产成人av教育| 日日摸夜夜添夜夜添小说| 99视频精品全部免费 在线| 91av网一区二区| 日本一二三区视频观看| 日韩一区二区视频免费看| 欧美日韩瑟瑟在线播放| 午夜福利18| 国产黄色小视频在线观看| 国产亚洲欧美98| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲真实伦在线观看| 亚洲最大成人av| 久久草成人影院| 亚洲国产高清在线一区二区三| 日本 av在线| 嫁个100分男人电影在线观看| 国产精品伦人一区二区| 日韩欧美在线乱码| 在线观看av片永久免费下载| 变态另类丝袜制服| 亚洲人成伊人成综合网2020| av在线亚洲专区| 一a级毛片在线观看| 亚洲欧美日韩卡通动漫| 国产 一区 欧美 日韩| 内射极品少妇av片p| 男女下面进入的视频免费午夜| 日韩欧美免费精品| 午夜激情福利司机影院| 久久久久精品国产欧美久久久| 亚洲av五月六月丁香网| 色噜噜av男人的天堂激情| 一夜夜www| 免费看av在线观看网站| 亚洲av成人精品一区久久| 看十八女毛片水多多多| 999久久久精品免费观看国产| 成人国产一区最新在线观看| 久久精品国产清高在天天线| 国产乱人视频| 国产精品亚洲美女久久久| 久久香蕉精品热| av福利片在线观看| 日日啪夜夜撸| 成年免费大片在线观看| a在线观看视频网站| 精品欧美国产一区二区三| 又爽又黄无遮挡网站| 国产一区二区三区在线臀色熟女| 高清日韩中文字幕在线| 久久6这里有精品| 欧美xxxx性猛交bbbb| 成人无遮挡网站| 男插女下体视频免费在线播放| 日韩亚洲欧美综合| 精品无人区乱码1区二区| 免费观看精品视频网站| 日韩欧美一区二区三区在线观看| 久久人妻av系列| 色吧在线观看| av在线老鸭窝| 亚洲熟妇中文字幕五十中出| 亚洲av中文字字幕乱码综合| 天堂动漫精品| 免费看av在线观看网站| 乱人视频在线观看| 国产乱人视频| 成人综合一区亚洲| 国产精品久久久久久久电影| 日韩人妻高清精品专区| 99国产极品粉嫩在线观看| 最近中文字幕高清免费大全6 | 99精品在免费线老司机午夜| 国产精品不卡视频一区二区| 五月伊人婷婷丁香| 欧美性感艳星| 一边摸一边抽搐一进一小说| 国产亚洲欧美98| 啦啦啦韩国在线观看视频| 久久精品国产亚洲av涩爱 | 日日夜夜操网爽| 不卡一级毛片| 一级毛片久久久久久久久女| 国产精品美女特级片免费视频播放器| 亚洲久久久久久中文字幕| 一区二区三区四区激情视频 | 别揉我奶头 嗯啊视频| 尾随美女入室| 两个人的视频大全免费| 91av网一区二区| 亚洲国产精品sss在线观看| 国产一区二区在线av高清观看| 日本免费a在线| 国产亚洲av嫩草精品影院| 日本在线视频免费播放| 精品一区二区三区视频在线观看免费| 亚洲狠狠婷婷综合久久图片| 精品99又大又爽又粗少妇毛片 | 成人特级av手机在线观看| 国产一级毛片七仙女欲春2| 日韩精品有码人妻一区| 99九九线精品视频在线观看视频| 美女 人体艺术 gogo| 白带黄色成豆腐渣| 热99在线观看视频| 两个人视频免费观看高清| 乱码一卡2卡4卡精品| 人妻夜夜爽99麻豆av| 久久人人爽人人爽人人片va| 97超级碰碰碰精品色视频在线观看| 国产精品人妻久久久久久| 国产91精品成人一区二区三区| 夜夜夜夜夜久久久久| av.在线天堂| 69av精品久久久久久| 波多野结衣巨乳人妻| 国产精品一及| 午夜福利成人在线免费观看| 91午夜精品亚洲一区二区三区 | 成人综合一区亚洲| 亚洲自偷自拍三级| 国产高清三级在线| 日韩欧美一区二区三区在线观看| 久久草成人影院| 成年女人看的毛片在线观看| 在线观看美女被高潮喷水网站| 中文在线观看免费www的网站| 国产男靠女视频免费网站| 在线天堂最新版资源| 国产成年人精品一区二区| 日韩欧美在线二视频| 午夜影院日韩av| 一进一出抽搐动态| 亚洲成人免费电影在线观看| 一区二区三区四区激情视频 | 露出奶头的视频| 夜夜爽天天搞| 91在线观看av| 哪里可以看免费的av片| 美女cb高潮喷水在线观看| 十八禁国产超污无遮挡网站| www日本黄色视频网| 99精品久久久久人妻精品| 国内精品一区二区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产精品野战在线观看| 精品久久久久久久久av| 国产色婷婷99| 亚洲熟妇熟女久久| 日韩大尺度精品在线看网址| 国产精品一区二区三区四区久久| 尤物成人国产欧美一区二区三区| 少妇丰满av| 无人区码免费观看不卡| 亚洲精品亚洲一区二区| 国产精品美女特级片免费视频播放器| 成人毛片a级毛片在线播放| 亚洲va在线va天堂va国产| 国内精品一区二区在线观看| 中文字幕熟女人妻在线| 99精品在免费线老司机午夜| www.色视频.com| 国产人妻一区二区三区在| 我要搜黄色片| 在线国产一区二区在线| 色哟哟·www| 99热精品在线国产| 久久精品国产亚洲av香蕉五月| 麻豆av噜噜一区二区三区| 国产视频一区二区在线看| 男女之事视频高清在线观看| 联通29元200g的流量卡| 婷婷色综合大香蕉| 成年女人毛片免费观看观看9| 此物有八面人人有两片| 日韩 亚洲 欧美在线| 日韩精品青青久久久久久| 91麻豆av在线| 99热只有精品国产| 免费在线观看日本一区| 亚洲精品粉嫩美女一区| 日日夜夜操网爽| 精品久久久久久久久av| 窝窝影院91人妻| 九色成人免费人妻av| 欧洲精品卡2卡3卡4卡5卡区| 国产在线男女| 亚洲自偷自拍三级| 精品人妻一区二区三区麻豆 | 日韩高清综合在线| 两性午夜刺激爽爽歪歪视频在线观看| 九九热线精品视视频播放| 美女被艹到高潮喷水动态| 亚洲狠狠婷婷综合久久图片| 两性午夜刺激爽爽歪歪视频在线观看| 欧美成人性av电影在线观看| 亚洲av二区三区四区| 色精品久久人妻99蜜桃| 免费观看在线日韩| 男插女下体视频免费在线播放| 亚洲成人免费电影在线观看| 桃红色精品国产亚洲av| 欧美区成人在线视频| 美女cb高潮喷水在线观看| 亚洲一区二区三区色噜噜| 熟女人妻精品中文字幕| 午夜影院日韩av| 国产69精品久久久久777片| 日韩欧美国产一区二区入口| 国产精品美女特级片免费视频播放器| ponron亚洲| 欧美色视频一区免费| 日本成人三级电影网站| 一区二区三区免费毛片| 熟女电影av网| 在线观看午夜福利视频| 九九在线视频观看精品| 国模一区二区三区四区视频| 国产白丝娇喘喷水9色精品| 国产精品日韩av在线免费观看| 久久久久久国产a免费观看| 99热这里只有精品一区| 成人三级黄色视频| 老司机福利观看| 亚洲成人中文字幕在线播放| 91精品国产九色| 欧美一区二区精品小视频在线| av女优亚洲男人天堂| 老熟妇仑乱视频hdxx| 99热6这里只有精品| 无遮挡黄片免费观看| 极品教师在线视频| 午夜a级毛片| 欧美高清性xxxxhd video| 精华霜和精华液先用哪个| 久久精品国产亚洲av天美| 久久久久久久久久黄片| 国内精品久久久久精免费| 床上黄色一级片| 国产伦精品一区二区三区四那| 国产一区二区激情短视频| 赤兔流量卡办理| 在线观看免费视频日本深夜| 久久精品久久久久久噜噜老黄 | 国产精品伦人一区二区| 成人三级黄色视频| 亚洲美女搞黄在线观看 | 91麻豆精品激情在线观看国产| 精品人妻一区二区三区麻豆 | .国产精品久久| 性色avwww在线观看| 国产亚洲精品久久久久久毛片| 国模一区二区三区四区视频| 日本熟妇午夜| 欧美激情在线99| 亚洲专区国产一区二区| 毛片女人毛片| 成熟少妇高潮喷水视频| 欧美日韩国产亚洲二区| 91久久精品国产一区二区三区| 日日摸夜夜添夜夜添av毛片 | 国产av一区在线观看免费| 国产精品免费一区二区三区在线| 国产在线精品亚洲第一网站| 亚洲av美国av| 国产av麻豆久久久久久久| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 丝袜美腿在线中文| 小说图片视频综合网站| 日本欧美国产在线视频| 国内精品美女久久久久久| 国产麻豆成人av免费视频| 日韩精品青青久久久久久| 久久久久国内视频| 白带黄色成豆腐渣| 午夜老司机福利剧场| 欧美精品啪啪一区二区三区| 久久久久久久久大av| 九九爱精品视频在线观看| 我的女老师完整版在线观看| 久久国产精品人妻蜜桃| 亚洲国产欧洲综合997久久,| 免费观看精品视频网站| 男女边吃奶边做爰视频| 午夜视频国产福利| 18禁在线播放成人免费| 成人高潮视频无遮挡免费网站| 国模一区二区三区四区视频| 精品一区二区三区人妻视频| 欧美xxxx性猛交bbbb| 18禁黄网站禁片免费观看直播| 黄色丝袜av网址大全| 精品久久国产蜜桃| 国产探花极品一区二区| 国产精品久久视频播放| 悠悠久久av| 免费看日本二区| 国产私拍福利视频在线观看| 天堂av国产一区二区熟女人妻|