黃旭東
(湖北省黃石市第一中學(xué) 435000)
(2)(官方解答)當(dāng)l與x軸重合時(shí),∠OMA=∠OMB=0°;
當(dāng)l與x軸時(shí)垂直時(shí),OM為AB的垂直平分線,所以∠OMA=∠OMB.
對(duì)(2)下面從不同的視角進(jìn)行探究,作出幾種不同解答.
視角一 考慮到若將坐標(biāo)系坐標(biāo)原點(diǎn)平移到M點(diǎn),則計(jì)算kMA+kMB時(shí),利用韋達(dá)定理可較快計(jì)算出結(jié)果,可大大簡(jiǎn)化運(yùn)算.要說明的是這種方法是對(duì)方法一的改進(jìn).
故MA,MB的傾斜角互補(bǔ),所以∠OMA=∠OMB.
視角二 要證∠OMA=∠OMB,考慮點(diǎn)A關(guān)于x軸對(duì)稱點(diǎn)A′ ,則必有A′,B,M三點(diǎn)共線即可.
法2 (利用軸軸對(duì)稱,證明三點(diǎn)共線)
則kMA′=kMB,故M,A′,B三點(diǎn)共線.由于A(x1,y1)關(guān)于x軸對(duì)稱點(diǎn)A′(x1,-y1),則∠OMA=∠OMB
視角三 巧妙構(gòu)建過定點(diǎn)M(2,0)的二次齊次式,處理斜率問題.
法3 當(dāng)l與x軸重合時(shí),∠OMA=∠OMB=0°.
視角四 考慮角平分線性質(zhì),結(jié)合極坐標(biāo)工具,可化成極坐標(biāo)求解.
視角五 考慮角平分線性質(zhì),結(jié)合參數(shù)方程工具,可利用參數(shù)求解
法5 設(shè)直線l傾斜角為θ,則直線l的參數(shù)方程為
本題來源于下面定理
證明過程同上面方法相似,限于篇幅,此處略.同理類似上述性質(zhì)可推廣到雙曲線與拋物線,即有:
定理3 設(shè)拋物線:C:y2=2px(p>0),直線l過點(diǎn)P(t,0)與C交于A,B兩點(diǎn),點(diǎn)M的坐標(biāo)為(-m,0) 則有∠OMA=∠OMB.