• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Galerkin Finite Element Study on the Effects of Variable Thermal Conductivity and Variable Mass Diffusion Conductance on Heat and Mass Transfer?

    2018-07-09 06:46:32ImranHaiderQureshiNawazShafiaRanaandZubair
    Communications in Theoretical Physics 2018年7期

    Imran Haider Qureshi,M.Nawaz,Shafia Rana,and T.Zubair

    Department of Applied Mathematics and Statistics,Institute of Space and Technology,Islamabad 44000,Pakistan

    1 Introduction

    Heat and mass transfer is an important mechanism of several industrial and engineering processes.For example,refrigeration,air conditioning,space heating,power generation are well known engineering applications where transfer of heat plays significant role.Beside this,transport of species also occurs in many processes including food processing,oil transport phenomenon and diffusion of certain medicines in blood(drug delivery).Such applications motivate engineers and scientists to investigate the phenomenon of heat and mass transfer both theoretically and experimentally.Theoretical studies in many cases are preferred as these provide sound information without consuming resources in term of money and time.Many theoretical studies on heat and mass are available.However,some recent studies are mentioned here.For instance,Iqbal et al.[1]discussed the transport of heat and mass in magnetohydrodynamic flow of voscoelastic fluid by computing the exact solutions.The effects of dispersion of different nano-sized particles and thermal radiation on heat transfer in hydrodynamic flow of water in the presence of applied magnetic field was studied by Iqbal et al.[2]using shooting algorithm.Theoretical investigation of induced magnetic field on flow of nanofluid is carried out by Iqbal et al.[3]applying Keller Box approach.Mehmood et al.[4]theoretically studied micro-rotation effects(for both weak and strong interactions)on mixed convection flow of Casson fluid over a moving surface.Iqbal et al.[5]numerically analysed the inclined magnetic field on a micropolar Casson fluid flow over a stretching sheet.Iqbal et al.[6]considered nanofluidic transport of gyrotactic microorganisms submerged in water towards Riga plate.Riga plate analysis was carried out by Iqbal et al.[7]employing Keller Box method and shooting technique with Runge-Kutta Fehlberg method of order five.Hayat et al.[8]discussed the effects of temperature and concentration gradients caused by density differences in an axisymmetric flow of second grade fluid by considering constant thermal conductivity and constant mass diffusion coefficient and concluded that the temperature and concentration gradients have significant effects on the transport of mass and heat.Nawaz and Hayat[9]studied transport of nanoparticles in the axisymmetric flow of Newtonian fluid taking diffusion coefficients constant and noted that inclusion of nano-particles enhance the thermal conductivity of the fluid.Nawaz et al.[10]considered thermal diffusion and diffusion thermos effects on transport of heat and mass in axisymmetric flow of second grade fluid taking diffusion coefficients as constant.Tsai and Huang[11]analysed the effect of porous medium on heat and mass transfer in the presence of temperature and concentration gradients taking constant material properties.Beg et al.[12]considered constant diffusion coefficients to investigate thermal diffusion and diffusion thermos effects on the transfer of heat and mass from an isothermal sphere.Simultaneous effects of Newtonian heating on temperature and concentration gradients of Jeffry fluid with constant thermal conductivity are examined by Awais et al.[13]Nadeem and Saleem[14]discussed analytically the effects of nano particles on the conductions of heat transfer in third grade fluid.The effect of Ohmic and viscous dissipation on transfer of heat and mass over a vertical surface were studied by Chen.[15]In studies,mentioned in Refs.[8–15]investigators considered constant diffusion coefficients(thermal conductivity and mass diffusion conductance).However,there are few studies which investigate temperature dependent thermal conductivity.For example,Salahuddin[16]performed numerical study to analyse the effect of variable thermal conductivity on heat transfer in the flow non Newtonian fluid using Keller Box method.Bhuvanavijaya and Malikarjuna[17]studied the effects of variable thermal conductivity on heat and mass transfer in the fluid flow in a rotating system.

    Chemical reaction has significant effects on the transport of mass in the fluid flows. The transport rate of mass can be increased/decreased by the constructive/destructive chemical reaction. Several researchers have investigated the effects of chemical reaction on the transport of mass in fluid flows.Some recent studies are mentioned through Refs.[18–20].However it is important to note that,in these studies,[18?20]mass diffusion coefficient is taken constant.

    Review of existing literature on the transport of mass and heat in fluid flows reveals that already published work considers diffusion of solute with constant mass diffusion coefficient.No study dealing with both temperature dependent thermal conductivity and concentration dependant diffusion coefficient is available yet.Further,no study considers variable mass diffusion coefficient and variable thermal conductivity simultaneously.Based on this fact,the present investigation has novelty and considers the behaviour of temperature and concentration under variable thermal conductivity and variable diffusion coefficient in the presence viscous dissipation and Joule heating.Dimensionless conservation laws with appropriate boundary conditions are solved numerically by Galerkin finite element method.[21?23]This manuscript comprises of five sections.Mathematical modelling is given in Sec.2.Finite element formulation and assembly process given in Sec.3.In Sec.4 simulated results are discussed.Conclusion is given in Sec.5.

    2 Technical Description and Non-Newtonian Rheology

    Let us investigate the effects of variable diffusion coefficients(thermal conductivity and mass diffusion coefficient)on the transfer of heat and mass in the flow of Casson fluid over an elastic surface stretching with linear velocity Uw=ar in a radial direction.The elastic stretchable surface is subjected to a constant magnetic field in axial direction.The induced magnetic field is neglected under the assumption of small magnetic Reynolds number.[24]No external electric current is applied.First order chemical reaction is considered.The ambient fluid is also moving in a radial direction with linear velocity Uf=cr.T∞and C∞denote the ambient temperature and concentration respectively.The physical model and coordinate system are given in Fig.1.

    Fig.1 Physical model and coordinates system.

    Casson fluid model(non-Newtonian fluid model)characterizes the behaviour of printing inks,food dispersion and chocolate.The constitutive equation of Casson fluid[25?27]is given by

    whereμis the plastic dynamic viscosity,eijis the rate of deformation,πcis the critical value of π =eijand pyis the yield stress.For n=1,Eq.(1)becomes

    where P is the pressure,is the Casson fluid parameter and A1is the first Revilion-Ericksen tensor defined by A1=gradV+(gradV)t.Analogy between heat and mass transfer are generally governed by general transport convection-diffusion equation.Number of analogies between transport of mass and heat in the flows can be observed. For example first Fick’s Law,J= ?D?C is an analogy of Fourier law of heat conduction q= ?k?T,where D and k,respectively,are diffusion conductance for solute and thermal conductivity of fluid,simultaneously called the diffusion coefficients.These diffusion coefficients,in general,are variable and may be function of temperature,pressure,concentration etc.Through derivation,one can prove that?div(?k?T)is the amount of heat added to the fluid through conduction and?div(?D?C)is the amount of solute transported due to concentration differences.This is another analogy between heat and mass transfer.The heat generation and absorption phenomenon is usually formulated by adding the term Q(T?T∞)to the energy equation.First order destructive/constructive chemical reaction is captured by adding the term k(C?C∞)in the mass transport equation.Hence Q(T?T∞)and k(C?C∞)are analogue.These analogies can be proved through derivation of energy and mass transport equations considering heat generation/absorption in heat transfer process and chemical reaction in mass transfer.Studies considering temperature dependent thermal conductivity can be mentioned through Refs.[16–17]and temperature dependent thermal conductivity model used in Refs.[16–17]is given by

    whereis a very small parameter.For=0,Eq.(3)reduces to the case of constant thermal conductivity.In view of several analogies between heat and mass transfer,one can consider the diffusion coefficient D as a linear function of concentration C i.e.

    where C∞is the ambient concentration,Cwdenotes the constant concentration at wall and1is a very small parameter.For1=0,Eq.(4)reduces to the case of constant mass diffusion coefficient.

    Basic equations of heat and mass transfer in the flow of electrically conducting Casson fluid in the presence of applied constant magnetic field are

    where V the velocity of the fluid,d/dt is the material derivative,τ is the stress tensor defined in Eq.(2),ρ is the density of the fluid,σ is the electrical conductivity of the fluid,J is the current density,B is the applied magnetic field,T is the temperature of the fluid,k(T)and D(C)are diffusion coefficients defined in Eqs.(3)and(4),k1is the chemical reaction constant,tr denotes the trace and L=gradV.

    For axisymmetric flow,velocity,temperature and concentration fields are

    The use of above expressions in Eqs.(5)–(9)gives the following boundary layer equations

    where Ufis the free stream velocity.

    No slip at the surface of elastic sheet and state of ambient fluid give the following boundary conditions

    where Uw=ar is the stretching velocity of the elastic surface.

    The transformation

    converts Eqs.(10)–(15)to coupled system of nonlinear boundary value problems in the following dimensionless for m

    In above equations,Ec=a2r2/cp(Tw? T∞),A=c/a,Sc= ν/D,and γ = k1/c are respectively called Hartmann number,Prandtl number,local Eckert number,stretching parameter,Schmidt number and chemical reaction parameter.It is important to note that boundary value problems(18)and(19)reduce to the classical case of Newtonian fluid of constant thermal conductivity and constant mass diffusion coefficient when=1=0 and β → ∞.

    Dimensionless heat flux(Nusselt number)of stretching sheet is defined as

    and similarly the dimensionless mass flux(Sherwood number)at the surface of elastic sheet is defined as

    where Rer=(ar2)/ν is the local Reynolds number.

    3 Finite Element Formulation

    The weighted integral form of residuals for coupled nonlinear system of boundary value problems(17)–(19)over the typical element(ηe,ηe+1)are

    where h=f′and wl(l=1,2,3,4)are the weight functions to minimize the residuals associated with f,h,θ,?.The unknown dependent variables f,h,θ,and ? are approximated by the following expansions[22?23]

    where fj,hj, θj,and ?jare the unknown nodal values and ψjare linear shape functions defined by

    For Galerkin finite element method wl=ψi,i=1,2.[21?23]Substitution of expressions defined by Eq.(24)in residual Eqs.(20)–(23),one can obtain the following stiffness matrices

    where[Kαξ]and[bα](α = ξ=1,2,3,4)are as follow

    After the implementation of assembly process of the elements,we obtain non-linear system of equations.This nonlinear system is linearized by using the following function[22?23]

    whereare nodal values at previous iteration.

    4 Results and Discussion

    The use of finite element formulation of nonlinear boundary value problems gives nonlinear algebraic equations.The coefficients defined above are evaluated for each element and then globalization is performed.The assembled equations are solved iteratively using Picard linearization with computational tolerance 10?8.

    4.1 Grid Independent Study

    Certain numerical experiments are performed to search infinity physically i.e.to search ηmaxso that asymptotic boundary conditions are satisfied.Performed numerical experiments are recorded in Table 1.This table shows that ηmax=8 where the ambient boundary conditions are satisfied.Hence ηmax=8 is taken as infinity for the coming analysis.The argument of ηmax=8 is also supported by Figs.1–6.The computations become grid independent at 900 elements up to five decimal places(see Table 2).Therefore,forthcoming computations are carried out by discretizing the domain[0,ηmax)into 1000 elements.

    Table 1 Numerical values of f′(η),θ(η)and ?(η)when Pr=0.72,β =4,= 1=0.8,Ec=1,A=2.5,Sc=1.5,γ=0.5,Ha=1,NE=1000.

    Table 1 Numerical values of f′(η),θ(η)and ?(η)when Pr=0.72,β =4,= 1=0.8,Ec=1,A=2.5,Sc=1.5,γ=0.5,Ha=1,NE=1000.

    η f′(η) θ(η) ?(η)1.000 000 000 1.000 000 00 1.000 000 00 0.785 571 142 4 2.411 694 108 1.307 925 015 0.175 314 168 6 1.587 174 349 2.507 649 303 1.254 640 505 0.001 743 939 600 2.388 777 555 2.507 184 488 1.180 010 036 7.910 650 601×10?7 3.190 380 762 2.506 156 942 1.084 585 732 1.590 576 733×10?11 3.991 983 968 2.505 129 853 0.967 530 583 7 1.314 590 354×10?17 4.793 587 175 2.504 103 245 0.827 714 534 2 4.224 725 250×10?25 5.595 190 381 2.503 077 009 0.663 614 930 0 5.016 936 561×10?34 6.396 793 588 2.502 051 079 0.473 151 373 1 2.087 537 702×10?44 7.198 396 794 2.501 025 415 0.253 397 678 7 2.870 223 022×10?56 8.000 000 000 2.500 000 000 0.000 000 000 0 0.000 000 000 000 000 0

    Table 2 Numerical values of f′(η), θ(η)and ?(η)for different grid points when Pr=1, β = ∞,= 1=0.8,Ec=1,A=2.5,Sc=1,γ =1,Ha=1.

    Table 2 Numerical values of f′(η), θ(η)and ?(η)for different grid points when Pr=1, β = ∞,= 1=0.8,Ec=1,A=2.5,Sc=1,γ =1,Ha=1.

    No of grids f′(η) θ(η) ?(η)10 0.214 814 539 8 0.555 070 446 6 0.000 111 024 736 1 20 0.210 048 378 4 0.527 949 323 9 0.000 154 421 631 1 30 0.208 820 789 1 0.519 752 220 7 0.000 135 723 821 8 40 0.208 266 056 8 0.515 805 581 0 0.000 120 716 129 9 50 0.207 949 308 8 0.513 485 738 7 0.000 110 703 799 1 100 0.207 352 456 7 0.508 953 484 7 0.000 089 945 405 72 150 0.207 163 692 8 0.507 474 707 5 0.000 083 032 229 62 200 0.207 071 139 0 0.506 741 263 4 0.000 079 611 386 55 250 0.207 016 336 6 0.506 303 100 0 0.000 077 573 094 43 300 0.206 979 844 5 0.506 011 898 9 0.000 076 221 568 62 350 0.206 953 954 1 0.505 804 239 0 0.000 075 259 707 06 400 0.206 934 578 1 0.505 648 571 5 0.000 074 540 790 69 450 0.206 919 980 0 0.505 520 051 4 0.000 073 981 771 71 500 0.206 906 300 0 0.505 423 303 7 0.000 073 537 828 61 550 0.206 898 893 9 0.505 346 291 5 0.000 073 171 167 65 600 0.206 890 299 9 0.505 274 534 9 0.000 072 868 830 94 700 0.206 876 148 4 0.505 177 637 6 0.000 072 394 427 10 800 0.206 806 882 2 0.505 108 902 3 0.000 072 036 324 74 900 0.206 860 200 9 0.505 044 544 0 0.000 071 761 015 32

    4.2 Error Analysis and Convergence

    The error defined by

    is plotted verses number of iterations in Fig.2.Figure 2 depicts that errors are decreasing functions of number of iterations.The dimensionless radial velocity f′(η),temperature θ(η)and concentration ?(η)for different number of elements are plotted in Figs.3–5 respectively.Solution curves become smooth as number of elements is increased(see Figs.3–5).These figures reflect that as number of elements NE is greater than 41,solution curve become smooth.This shows that computed results are going to be grid independent as number of elements are increased.

    Fig.2 Error verses number of iterations,when A=0.1,Pr=1,β = ∞,= 1=0.8,Ec=0.1,Sc=1,γ=0.5,Ha=1.

    Fig.3 Radial velocity curves for f′(η)at when A=0.2,Pr=0.3,β =1,= 1=0.2,Ec=0.1,Sc=1,γ =0.5,Ha=1.

    Fig.4 Temperature curves for θ(η)at different grid sizes,when A=0.2,Pr=0.3,β =1,= 1=0.2,Ec=0.1,Sc=1,γ=0.5,Ha=1.

    Fig.5 Concentration curves for ?(η)at different grid sizes,when A=0.2,Pr=0.3,β =1,= 1=0.2,Ec=0.1,Sc=1,γ=0.5,Ha=1.

    5 Results Validation

    Computed results are also validated by comparing them with already published results for special case i.e.β→∞(Newtonian fluid case).This comparison is recorded in Table 3. This table shows that an excellent agreement between the already published work and present results.

    Parametric studyIn order to explore the physics of the problem,dimensionless radial velocity,temperature and concentration of solute are displayed verses different values of dimensionless parameters β,A,Ha,,Ec,Pr,Sc,γ,and1as shown in Figs.6–12 respectively.

    Table 3 Results validation of f′′(0)for different values of A and Ha when β → ∞ (Newtonian fluid).

    Effect of Casson fluid parameter β on dimensionless radial velocityFigure 6 is sketched to examine the effect of Casson fluid parameter β on f′(η).Figure 6 reflects that velocity of non-Newtonian fluid is greater than that of Newtonian fluid(β → ∞).Momentum boundary layer thickness is increased by increasing Casson fluid parameter β.

    Effect of stretching parameter A on dimensionless radial velocityThe stretching parameter A=a/c,the ratio of stretching velocity Uw=cr to the radial velocity Uw=ar of the ambient fluid A>1,this is the case when stretching velocity is greater than the velocity of ambient fluid and vice versa for A<1.A=1 is the case when both of the velocities are of same order of magnitude.The effect of stretching parameter A is given in Fig.7.Figure 7 shows that for the case when ambient velocity is dominant,radial velocity f′(η)in boundary layer regime decreases by increasing the stretching parameter A.

    Effect of Hartmann number on dimensionless radial velocityThe effect of magnetic field on the radial velocity of fluid is noted in Fig.8.Figure 8 illustrates that the radial velocity component decreases by increasing the intensity of magnetic field.This is because of the fact that Lorentz force is opposing force and retards the flow in the radial direction.

    Fig.6 Variation of radial velocity f′(η)against different values of Casson fluid parameter β,when A=0.6,Pr=0.5,β = ∞,=0.2,1=0.5,Ec=0.5,Sc=0.5,γ=0.5,Ha=0.5.

    Fig.7 Variation of radial velocity f′(η)against stretching parameter A when Pr=0.7,=0.2,1=0.5,Ec=0.5,β =3,Sc=0.7,γ=0.5,Ha=0.5.

    Fig.8 Variation of radial velocity f′(η)against Ha,when Pr=0.7, =0.2,1=0.5,Ec=0.5, β =3,Sc=0.7,γ=0.5,Ha=0.5,A=0.2.

    Effect of parametereon temperatureFigure 9 represents the behaviour of dimensionless temperature θ(η)under the variation of parameter.A significant increase in the temperature is noted whenis increased.It is also noted that temperature of the fluid for the case of constant thermal conductivity(=0)is less than that of the fluid with variable thermal conductivity(0).Thermal boundary layer thickness increases significantly when parameteris increased.It is also observed that thermal boundary layer thickness for the case of fluid of constant thermal conductivity is less than that of fluid with variable thermal conductivity.

    Fig.9 Effect of variation of thermal conductivity on temperature θ(η),when Pr=0.7,Ha=0.5, 1=0.5,Ec=0.1,β=3,Sc=0.7,γ=0.5,Ha=0.5,A=0.2.

    Effect of Eckert number on temperatureThe effect of Eckert on temperature θ(η)is displayed in Fig.10.Figure 10 shows that there is a significant increase in temperature when Eckert number Ec is increased.This increase in temperature is obvious because Ec appears as coefficient of viscous dissipation and Joule heating terms(see second last and last term of Eq.(18)).It means that role of Eckert number is two fold i.e.(i)An increase in Ec corresponds to the case when more heat dissipates due to friction force(viscous force)and this dissipated heat adds to the fluid,consequently,temperature of the fluid increases,(ii)Since fluid is electrically conducting and flow is in the presence of magnetic field so current produce as a result of change of magnetic flux.Due to Joule heating phenomenon,some of the electrical energy converts into heat and fluid temperature rises.As Ec is the coefficient of Joule heating term and an increase in Eckert number,to correspond to an increase in Joule heating.Obviously temperature increases.These expectations are well supported by the computed results(see Fig.10).Thermal boundary layer thickness is greatly affected by viscous dissipation and Joule heating phenomena.Figure 10 reveals that boundary layer thickness increases as Ec is increased.Ec=0 is the case when viscous dissipation and Joule heating effects are insignificant.Figure 10 also shows that temperature of fluid for which viscous dissipation and Joule heating are insignificant is less than the temperature of the fluid for which viscous dissipation and Joule heating are significant.From practical point of view,to control thermal boundary layer thickness in magnetohydrodynamic(MHD) flow situations,Casson fluid with negligible viscous dissipation and Joule heating will be more appropriate.

    Fig.10 Variation of dimensionless temperature θ(η)against different values of Eckert number Ec when Pr=0.3,Ha=0.5,=0.2,1=0.2,β =3,Sc=0.3,γ=0.5,A=0.6.

    Effect of Prandtl number ProntemperatureBehavior of dimensionless temperature under variation of Prandtl number is illustrated by Fig.11.Fluid cools down when Prandtl number is increased because heat diffuse faster due to fast diffusion of momentum.Figure 11 also demonstrates that thermal boundary layer thickness reduces when Prandtl number is increased.

    Fig.11 Variation of dimensionless temperature θ(η)against different values of Prandtl number Pr when Ec=0.1,Ha=0.5,=0.2,1=0.2,β =3,Sc=0.7,γ=0.5,A=0.6.

    Effect of Schmidt number on concentration of soluteThe variation concentration of the solute in the fluid with variation of Schmidt number is examined and is shown in Fig.12.Figure 12 reveals that concentration increases when the Schmidt number Sc is increased and so is the concentration boundary layer thickness.

    Effect of variable diffusion coefficient on concentration of soluteThe effect of variable diffusion coefficient on the concentration of solute is depicted by Fig.13.From Fig.13 it can be seen that concentration of diffusing specie has an increasing behaviour under diffusion coefficient.Consequently,the concentration boundary layer thickness increases when1is increased.

    Fig.12 Variation of ?(η)against different values of Schmidt number Sc when Ec=0.5,Ha=0.5,=0.2,1=0.5,β =3,Pr=0.5,γ =0.5,A=0.2.

    Fig.13 Effect of variation of mass diffusion coefficient on concentration ?(η)when Ec=0.1,Ha=0.5,Sc=0.7,=0.2,β =3,Pr=0.7,γ=0.5,A=0.6.

    Fig.14 Effect of destructive chemical reaction parameter γ on concentration ?(η)when Ec=0.1,Ha=0.5,Sc=0.7,=0.2,1=0.5,β =3,Pr=0.7,A=0.6.

    Effect of chemical reaction on concentration of soluteThe effects of first order chemical reaction on the concentration of solute molecules are displayed in Figs.14 and 15.Figure 14 shows the variation of concentration for the case of destructive chemical reaction,whereas influence of constructive chemical reaction is given in Fig.15.Figure 15 shows the concentration of solute molecules decreases when chemical reaction parameter γ (γ >0)is increased as solute molecules are consumed in destructive chemical reaction.The behavior of concentration for the case of constructive chemical reaction(γ<0)is opposite to behavior of concentration in destructive chemical reaction.The influence of stretching ratio parameter A on the concentration of solute is sketched in Fig.16.It is obvious from Fig.16 that concentration decreases when A is increased.It is also clear from Fig.16 that concentration boundary layer thickness is decreased by increasing A.

    Fig.15 Effect of generative chemical reaction parameter γ on concentration ?(η)when Ec=0.1,Ha=0.5,Sc=0.7,=0.2,1=0.5,β =3,Pr=0.7,A=0.6.

    Behavior of skin frictionThe behavior of shear stress at the surface of elastic sheet at the surface of the elastic sheet is examined by varying the Casson fluid parameter β and Hartmann number Ha.This behavior of shear stress is recovered in Table 4.It can be observed from this table that shear stress at the surface decreases when Hartmann number Ha and the Casson fluid parameter β is increased.It is also obvious from Table 4 that the shear stress for Casson fluid is less than for the Newtonian fluid.

    Fig.16 Effect of stretching parameter A on concentration when Pr=0.7,=0.2,1=0.5,Ec=0.5,β =3,Sc=0.7,γ=0.5,Ha=0.5.

    Behavior of rate of heat transferThe Nusselt number is the dimensionless form of rate of heat transfer at the sheet and its behavior with respect to the variation of the Casson fluid parameter β and the parameteris represented in Table 5.It is found from Table 5 that the rate of heat transfer decreases when the thermal conductivity of the fluid varies with respect to the temperature.The rate of heat transfer at elastic surface is also decreased when the Casson fluid parameter β is increased.

    Table 4 Behavior of skin friction coefficient(Rer)?1/2Cf= ?(1+1/β)f′′(0)for different values of Casson fluid parameter β and Ha when A=0.1.

    Table 5 Behavior of Nusselt number(Rer)?1/2Nu= ?θ′(0)for different values of Casson fluid parameter β and when Pr=Ha=Ec=0.1.

    Table 5 Behavior of Nusselt number(Rer)?1/2Nu= ?θ′(0)for different values of Casson fluid parameter β and when Pr=Ha=Ec=0.1.

    β =0 =0.4 =0.8 0.125 680 349 0 0.125 401 350 9 0.125 272 622 5 2 0.125 559 237 4 0.125 336 342 6 0.125 232 328 2 3 0.125 519 023 6 0.125 314 795 2 0.125 219 057 3 4 0.125 498 936 5 0.125 304 094 6 0.125 212 407 0∞0.125 438 695 0 0.125 271 962 9 0.125 192 621 8 1

    Effect of chemical reaction on mass fluxThe effect of variation of diffusion coefficient and first order chemical reaction on mass transport rate(Sherwood number)is given in Table 6.Table 6 represents the variation of Sherwood number as the mass diffusion coefficients increases.It is clear that the Sherwood number decreases when mass diffusion coefficient is increased.Alternatively,mass diffusion rate of solute particles decreases with an increase in the mass diffusion coefficient.Sherwood number increases when chemical reaction parameter γ(γ >0)is increased.However opposite trend is noted for the case of constructive chemical reaction(γ<0).

    Table 6 Behavior of Sherwood number(Rer)?1/2Sh= ??′(0)for different values of γ and 1 when Sc=0.1.

    Table 6 Behavior of Sherwood number(Rer)?1/2Sh= ??′(0)for different values of γ and 1 when Sc=0.1.

    γ 1=0 1=0.4 1=0.8–1 0.116 104 439 186 866 0.069 140 042 908 898 8 0.041 181 237 871 941 3–0.5 0.106 239 811 484 620 0.085 008 795 302 718 9 0.074 779 526 862 256 7 0.0 0.232 923 739 874 625 0.183 450 740 662 194 0.155 356 768 748 481 0.5 0.323 346 585 020 095 0.255 844 784 988 349 0.216 525 427 667 133 1.0 0.395 361 128 345 113 0.313 991 460 522 392 0.266 226 395 324 932

    6 Conclusion

    The transport of mass and heat in fluid flows reveals that already published work considers diffusion of solute with constant mass diffusion coefficient.No study dealing with both temperature dependent thermal conductivity and concentration dependant mass diffusion coefficient is studied yet.This study fills this gap.Present work also considers variable mas diffusion coefficient and variable thermal conductivity simultaneously.Based on this fact,the present investigation has novelty and considers the behaviour of temperature and concentration under variable thermal conductivity and variable mass diffusion coefficient in the presence viscous dissipation and Joule heating.Some of the observations from this study are listed below:

    (i) Temperature of the Casson fluid(β0)with variable thermal conductivity is high as compare to the Casson fluid with constant thermal conductivity.Thermal boundary layer thickness has an increasing trend as the parameteris increased(increase incharacterises the change in thermal conductivity).Moreover,variation in thermal conductivity causes a significant change in the temperature and the boundary layer thickness.Heat transfer can be enhanced through using fluid with variable thermal conductivity rather than fluid with constant thermal conductivity.

    (ii)Mass transport phenomenon can be increased using solute of variable diffusion coefficient rather than solute of constant diffusion coefficient.

    (iii) Joule heating and viscous dissipation have vital role in the enhancement of transport of heat.Thus fluid exhibiting viscous dissipation and Joule heating have higher temperature than the fluid having negligible viscous and Joule heating dissipation effects.

    (iv)Due to analogy between heat conduction and diffusion of solute(due to concentration differences),the effect of Prandtl number on temperature is similar to the effect of Schmidt number on concentration of solute.

    (v)Shear stresses at the surface of stretching sheet have tendency to increase as the Casson fluid parameter β is increased.It is also noted that stretching surface experiences more stresses in case of Casson fluid as compared to the stresses in case of Newtonian fluid(β→∞).Moreover,stresses at the surface of stretching sheet are decreased by increasing the intensity of magnetic field because flow is opposed due to opposing Lorentz force and due to retardation stresses at the surface increases.

    (vi)Nusselt number increases with an increase in the Casson fluid parameter β.Similar observations are noted when parameteris increased.Nusselt number of Newtonian fluid is less than that of the Casson fluid(non-Newtonian fluid).

    (vii)Sherwood number decreases when mass diffusion coefficient is increased.Alternatively,the rate of diffusion of solute particles in fluid decreases with an increase in the mass diffusion coefficient.Sherwood number increases in case of destructive chemical reaction.However,opposite trend is noted for the case of constructive chemical reaction.

    Acknowledgments

    Authors are thankful to the reviewers for their useful comments regarding earlier version of this manuscript.

    [1]Z.Iqbal,Z.Mehmood,and B.Ahmad,Commun.Theor.Phys.67(2017)561.

    [2]Z.Iqbal,E.N.Maraj,E.Azhar,and Z.Mehmood,J.Taiwan Inst.Chem.Eng.81(2017)150.

    [3]Z.Iqbal,R.Mehmood,E.Azhar,and Z.Mehmood,Eur.Phys.J.Plus 132(2017)175.

    [4]Z.Mehmood,R.Mehmood,and Z.Iqbal,Commun.Theor.Phys.67(2017)443.

    [5]Z.Iqbal,Z.Mehmood,E.Azhar,and E.N.Maraj,J.Molecular Liquids 234(2017)296.

    [6]Z.Iqbal,E.Azhar,Z.Mehmood,and E.N.Maraj,Results Phys.7(2017)3648.

    [7]Z.Iqbal,E.N.Maraj,E.Azhar,and Z.Mehmood,Adv.Powder Technol.28(2017)2332.

    [8]T.Hayat,M.Nawaz,S.Asghar,and S.Mesloub,Int.J.Heat Mass Transfer.54(2011)3031.

    [9]M.Nawaz and T.Hayat,Adv.Appl.Math.Mech.6(2014)220.

    [10]M.Nawaz,A.Alsaedi,T.Hayat,and M.S.Alhothauli,J.Mech.29(2013)27.

    [11]R.Tsai and J.S.Huang,Comp.Mat.Sci.47(2009)23.

    [12]O.A.B’eg,V.R.Prasad,B.Vasu,et al.,Int.J.Heat Mass Transfer.54(2011)9.

    [13]M.Awais,T.Hayat,M.Nawaz,and A.Alsaedi,Braz.J.Chem.Eng.32(2015)555.

    [14]S.Nadeem and S.Saleem,Int.J.Heat Mass Transfer.85(2015)1041.

    [15]C.H.Chen,Int.J.Eng.Sci.42(2004)699.

    [16]T.Salahuddin,M.Y.Malik,Arif Hussain,et al.,Inf.Sci.Lett.5(2016)11.

    [17]R.Bhuvanavijaya and B.Mallikarjuna,J.Navel Archi.Marine.Eng.11(2014)83.

    [18]S.Ahmed,J.Zueco,and Luis M.López-González,Int.J.Heat Mass Transfer.104(2017)409.

    [19]S.M.M.EL-Kabeir,E.R.EL-Zahar,and A.M.Rashad,J.Comp.Theoret.Nanoscience 13(2016)5218.

    [20]Muhaimin,R.Kandasamy,I.Hashim,and A.B.Khamis,Theoret.Appl.Mech.36(2009)101.

    [21]J.N.Reddy,An Introdaction to Finite Element Method,Mc Graw Hill,New York(1984).

    [22]J.N.Reddy,An Introdaction to Nonlinear finite Elemment Analysis,Oxford University Press,Press Inc.,New York(2005).

    [23]M.Nawaz and T.Zubair,Results Phys.7(2017)4111.

    [24]G.W.Sutton and A.Sherma,Engineering Magnetohydrodynamic,Mc Graw Hill,New York(1965).

    [25]N.T.M.Eldabe and M.G.E.Salwa,J.Phys.Soc.64(1995)41.

    [26]I.L.Animasaun,E.A.Adebile,and A.I.Fagbade,J.Nig.Math.Sc.35(2015)1.

    [27]S.Mukhopadhyay,P.Ranjan,K.Bahattacharyya,and G.C.Layek,Eng.Phys.Math.4(2013)933.

    [28]H.A.Attia,Tamkang J.Sci.Eng.10(2007)11.

    女人精品久久久久毛片| 最近最新中文字幕大全免费视频 | 久久99热这里只频精品6学生| 午夜福利网站1000一区二区三区| 狠狠精品人妻久久久久久综合| 国产女主播在线喷水免费视频网站| 久久97久久精品| 国产男女超爽视频在线观看| 国产精品一二三区在线看| 啦啦啦在线观看免费高清www| 亚洲视频免费观看视频| 亚洲精品在线美女| 成人影院久久| 国产av精品麻豆| 午夜精品国产一区二区电影| 国精品久久久久久国模美| 国产一区二区三区av在线| www.av在线官网国产| 亚洲图色成人| 色婷婷久久久亚洲欧美| 国产精品三级大全| 男的添女的下面高潮视频| 国产在线视频一区二区| 国产成人aa在线观看| 国产97色在线日韩免费| 亚洲精品美女久久av网站| 蜜桃国产av成人99| av在线播放精品| 亚洲综合色惰| 性高湖久久久久久久久免费观看| 一个人免费看片子| 亚洲四区av| www.精华液| 午夜福利一区二区在线看| 国产欧美日韩一区二区三区在线| 一区二区三区四区激情视频| 99香蕉大伊视频| 国产高清不卡午夜福利| 黑人巨大精品欧美一区二区蜜桃| 青春草亚洲视频在线观看| 欧美日韩一区二区视频在线观看视频在线| av在线老鸭窝| 欧美成人午夜精品| 久久综合国产亚洲精品| 街头女战士在线观看网站| 18禁国产床啪视频网站| 侵犯人妻中文字幕一二三四区| 中文字幕最新亚洲高清| freevideosex欧美| 搡老乐熟女国产| 国产xxxxx性猛交| 黄色视频在线播放观看不卡| 777米奇影视久久| 亚洲av欧美aⅴ国产| 欧美在线黄色| 性色avwww在线观看| 日韩伦理黄色片| 亚洲美女搞黄在线观看| 99久久精品国产国产毛片| 又粗又硬又长又爽又黄的视频| 人成视频在线观看免费观看| 青春草视频在线免费观看| 黄网站色视频无遮挡免费观看| 欧美精品av麻豆av| 精品福利永久在线观看| 在线观看人妻少妇| 黄网站色视频无遮挡免费观看| 91精品伊人久久大香线蕉| 日韩一卡2卡3卡4卡2021年| 国产高清不卡午夜福利| 国产野战对白在线观看| 一区二区三区乱码不卡18| 精品少妇一区二区三区视频日本电影 | 在现免费观看毛片| 国产精品人妻久久久影院| 免费观看av网站的网址| 精品一品国产午夜福利视频| 黄网站色视频无遮挡免费观看| 久久精品久久精品一区二区三区| 午夜av观看不卡| 在线看a的网站| 另类亚洲欧美激情| 三级国产精品片| 卡戴珊不雅视频在线播放| 男人操女人黄网站| 99re6热这里在线精品视频| 热re99久久精品国产66热6| 日韩欧美精品免费久久| 大码成人一级视频| 老鸭窝网址在线观看| 亚洲人成网站在线观看播放| 亚洲精品国产av蜜桃| 最近的中文字幕免费完整| 亚洲,一卡二卡三卡| 少妇被粗大猛烈的视频| 成人毛片a级毛片在线播放| 亚洲精品一二三| 女人被躁到高潮嗷嗷叫费观| 日本欧美国产在线视频| 日韩中文字幕视频在线看片| 国产精品秋霞免费鲁丝片| 成人亚洲精品一区在线观看| 精品视频人人做人人爽| 飞空精品影院首页| 色播在线永久视频| 欧美精品一区二区大全| 制服人妻中文乱码| 亚洲第一区二区三区不卡| 免费少妇av软件| 性色avwww在线观看| 七月丁香在线播放| 精品国产一区二区三区久久久樱花| 久久久久久人妻| 大片免费播放器 马上看| 中文精品一卡2卡3卡4更新| 制服诱惑二区| 欧美日韩一区二区视频在线观看视频在线| 国产av一区二区精品久久| 久热久热在线精品观看| 自拍欧美九色日韩亚洲蝌蚪91| 这个男人来自地球电影免费观看 | 天天躁夜夜躁狠狠久久av| videos熟女内射| 99久久综合免费| 性少妇av在线| 精品福利永久在线观看| 久久毛片免费看一区二区三区| 在线亚洲精品国产二区图片欧美| 亚洲成人手机| 一本色道久久久久久精品综合| 最黄视频免费看| 精品福利永久在线观看| 色网站视频免费| 免费在线观看完整版高清| 免费大片黄手机在线观看| a 毛片基地| 校园人妻丝袜中文字幕| 国产成人免费观看mmmm| 国产一区二区三区av在线| 欧美精品人与动牲交sv欧美| 久久久久国产网址| 欧美变态另类bdsm刘玥| 91成人精品电影| 少妇人妻精品综合一区二区| 中文字幕色久视频| 日本av免费视频播放| 免费高清在线观看日韩| 精品一区二区三卡| 精品国产超薄肉色丝袜足j| av国产久精品久网站免费入址| 在线观看国产h片| 日本vs欧美在线观看视频| 男人操女人黄网站| 亚洲av欧美aⅴ国产| www.av在线官网国产| 久久精品aⅴ一区二区三区四区 | 啦啦啦啦在线视频资源| 亚洲精品第二区| 亚洲精品中文字幕在线视频| 三级国产精品片| 少妇人妻精品综合一区二区| 亚洲欧美清纯卡通| 亚洲婷婷狠狠爱综合网| 美女福利国产在线| 亚洲情色 制服丝袜| 两个人看的免费小视频| xxxhd国产人妻xxx| 大片电影免费在线观看免费| 如日韩欧美国产精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 国产精品二区激情视频| 9191精品国产免费久久| 久久ye,这里只有精品| 一级片免费观看大全| 午夜av观看不卡| 国产成人午夜福利电影在线观看| 免费观看在线日韩| 久久午夜福利片| 亚洲国产av影院在线观看| 麻豆av在线久日| 国产精品 国内视频| 成年美女黄网站色视频大全免费| 国产精品不卡视频一区二区| 久久久国产欧美日韩av| 免费黄网站久久成人精品| 下体分泌物呈黄色| 亚洲国产最新在线播放| 国产1区2区3区精品| 免费观看性生交大片5| 成人国产av品久久久| 国产亚洲最大av| 精品午夜福利在线看| 成年女人毛片免费观看观看9 | 91久久精品国产一区二区三区| av片东京热男人的天堂| 91aial.com中文字幕在线观看| 老鸭窝网址在线观看| 肉色欧美久久久久久久蜜桃| 日本黄色日本黄色录像| 久久av网站| kizo精华| 国产精品香港三级国产av潘金莲 | 久久鲁丝午夜福利片| 免费黄频网站在线观看国产| 亚洲精品国产av蜜桃| www.自偷自拍.com| 麻豆精品久久久久久蜜桃| 少妇人妻精品综合一区二区| 最近的中文字幕免费完整| 观看美女的网站| 男女国产视频网站| 大片电影免费在线观看免费| 日日撸夜夜添| 2018国产大陆天天弄谢| 精品一区二区三区四区五区乱码 | 久久av网站| 人妻少妇偷人精品九色| 少妇熟女欧美另类| 亚洲精品国产av蜜桃| 亚洲五月色婷婷综合| 亚洲人成网站在线观看播放| 欧美97在线视频| 高清视频免费观看一区二区| 久久久久精品人妻al黑| 国产精品 国内视频| 日韩大片免费观看网站| 啦啦啦在线观看免费高清www| 欧美另类一区| 青青草视频在线视频观看| 卡戴珊不雅视频在线播放| 日韩欧美精品免费久久| 在线观看www视频免费| 精品人妻一区二区三区麻豆| 国产精品香港三级国产av潘金莲 | 一本色道久久久久久精品综合| 黑人欧美特级aaaaaa片| 婷婷色综合www| 天天躁夜夜躁狠狠躁躁| 亚洲,欧美,日韩| 精品福利永久在线观看| 少妇的丰满在线观看| 大片免费播放器 马上看| 亚洲精品在线美女| 亚洲精品久久成人aⅴ小说| 精品人妻熟女毛片av久久网站| 亚洲成人av在线免费| 男人操女人黄网站| 国产精品免费大片| av电影中文网址| 亚洲精品国产av蜜桃| 亚洲视频免费观看视频| 美女脱内裤让男人舔精品视频| av免费观看日本| 免费久久久久久久精品成人欧美视频| 9191精品国产免费久久| 蜜桃国产av成人99| 亚洲,欧美精品.| 国产女主播在线喷水免费视频网站| 免费观看a级毛片全部| 欧美精品国产亚洲| 精品久久久精品久久久| 欧美日韩亚洲高清精品| 久久久精品免费免费高清| 中文字幕另类日韩欧美亚洲嫩草| 美女主播在线视频| 欧美少妇被猛烈插入视频| 中文字幕精品免费在线观看视频| 国产欧美日韩一区二区三区在线| 宅男免费午夜| 男女边摸边吃奶| 性色avwww在线观看| 欧美亚洲日本最大视频资源| 精品人妻熟女毛片av久久网站| 一区在线观看完整版| 中文字幕av电影在线播放| 一个人免费看片子| 可以免费在线观看a视频的电影网站 | 久久国产精品大桥未久av| 日本午夜av视频| 人人妻人人添人人爽欧美一区卜| 啦啦啦中文免费视频观看日本| 国产黄色视频一区二区在线观看| 精品人妻熟女毛片av久久网站| 久久久久久久久久久久大奶| 9色porny在线观看| 黄色 视频免费看| 亚洲国产精品999| 成人国产麻豆网| 日韩 亚洲 欧美在线| 在线天堂最新版资源| 亚洲精品av麻豆狂野| 国产精品不卡视频一区二区| 久久ye,这里只有精品| 巨乳人妻的诱惑在线观看| 一区二区av电影网| 日韩一区二区三区影片| 天天躁夜夜躁狠狠久久av| 亚洲精品国产av成人精品| 成人免费观看视频高清| 国产1区2区3区精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 黄色 视频免费看| 亚洲av国产av综合av卡| 久久精品夜色国产| 91午夜精品亚洲一区二区三区| av电影中文网址| 女性生殖器流出的白浆| 亚洲精品av麻豆狂野| 欧美变态另类bdsm刘玥| 大片电影免费在线观看免费| 精品国产一区二区三区四区第35| 18禁裸乳无遮挡动漫免费视频| 纯流量卡能插随身wifi吗| 91国产中文字幕| 国产黄色视频一区二区在线观看| 日韩人妻精品一区2区三区| 又黄又粗又硬又大视频| 免费观看在线日韩| av不卡在线播放| 人体艺术视频欧美日本| 精品国产国语对白av| 国产在线免费精品| 啦啦啦中文免费视频观看日本| 欧美老熟妇乱子伦牲交| 国产人伦9x9x在线观看 | 久久精品久久精品一区二区三区| 久久精品国产亚洲av涩爱| 制服人妻中文乱码| 欧美激情 高清一区二区三区| 多毛熟女@视频| 国产淫语在线视频| 午夜久久久在线观看| 女的被弄到高潮叫床怎么办| 国产 一区精品| 久久久久国产精品人妻一区二区| 久久99一区二区三区| 春色校园在线视频观看| 欧美激情极品国产一区二区三区| 天美传媒精品一区二区| 不卡视频在线观看欧美| 啦啦啦在线免费观看视频4| 免费在线观看完整版高清| 国产亚洲最大av| 久久这里有精品视频免费| 午夜激情久久久久久久| 国产免费又黄又爽又色| 国产精品免费大片| 国产色婷婷99| 国产精品免费大片| 国产午夜精品一二区理论片| 黑人猛操日本美女一级片| 一区福利在线观看| 国产男女内射视频| 人妻 亚洲 视频| 色哟哟·www| 一区福利在线观看| 丰满乱子伦码专区| 亚洲欧美成人精品一区二区| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品中文字幕在线视频| 欧美人与性动交α欧美精品济南到 | 97在线人人人人妻| 最近最新中文字幕免费大全7| 十八禁高潮呻吟视频| 亚洲欧洲国产日韩| 自线自在国产av| 看非洲黑人一级黄片| 欧美日韩亚洲高清精品| 亚洲天堂av无毛| 97人妻天天添夜夜摸| 日韩熟女老妇一区二区性免费视频| 国产成人精品无人区| 18+在线观看网站| 视频区图区小说| 不卡av一区二区三区| 欧美日本中文国产一区发布| www.熟女人妻精品国产| 日本91视频免费播放| 成人毛片60女人毛片免费| 欧美少妇被猛烈插入视频| 久久久国产欧美日韩av| 哪个播放器可以免费观看大片| 亚洲综合精品二区| 一区二区日韩欧美中文字幕| 欧美bdsm另类| 一级毛片我不卡| 国产精品二区激情视频| 国产一区亚洲一区在线观看| 亚洲精品中文字幕在线视频| 成人毛片60女人毛片免费| 久久韩国三级中文字幕| 欧美黄色片欧美黄色片| 日日撸夜夜添| 韩国av在线不卡| 在线看a的网站| 一级毛片电影观看| 免费不卡的大黄色大毛片视频在线观看| 一边摸一边做爽爽视频免费| 日韩熟女老妇一区二区性免费视频| www.精华液| 妹子高潮喷水视频| 看十八女毛片水多多多| 亚洲国产欧美在线一区| 丝袜脚勾引网站| 精品国产一区二区三区久久久樱花| 午夜免费鲁丝| 一区二区日韩欧美中文字幕| 日本vs欧美在线观看视频| 婷婷色av中文字幕| 一级片免费观看大全| 亚洲精品国产av成人精品| 成年人免费黄色播放视频| www.精华液| 少妇精品久久久久久久| 亚洲熟女精品中文字幕| 97精品久久久久久久久久精品| 你懂的网址亚洲精品在线观看| 啦啦啦在线免费观看视频4| 另类亚洲欧美激情| 亚洲成国产人片在线观看| 狠狠精品人妻久久久久久综合| 国产精品国产三级专区第一集| av女优亚洲男人天堂| 夫妻性生交免费视频一级片| 日本欧美国产在线视频| 亚洲精品日韩在线中文字幕| 成人二区视频| 国产精品二区激情视频| 免费观看性生交大片5| 成人亚洲精品一区在线观看| 99久国产av精品国产电影| 伊人亚洲综合成人网| 国产乱来视频区| 中文欧美无线码| 中文字幕亚洲精品专区| 亚洲成国产人片在线观看| 精品一品国产午夜福利视频| 亚洲精品视频女| 美女国产高潮福利片在线看| 国产成人精品久久久久久| 亚洲欧美中文字幕日韩二区| 亚洲一区二区三区欧美精品| 欧美日韩亚洲高清精品| 成人国语在线视频| 一区二区日韩欧美中文字幕| 国产一区二区 视频在线| 欧美+日韩+精品| 美女福利国产在线| 久久精品国产亚洲av高清一级| 亚洲国产色片| 婷婷色麻豆天堂久久| 欧美亚洲日本最大视频资源| 精品国产一区二区久久| 在线观看一区二区三区激情| 制服人妻中文乱码| 国产免费现黄频在线看| 亚洲四区av| 国产黄色免费在线视频| 国产成人欧美| 一本色道久久久久久精品综合| 亚洲精品久久成人aⅴ小说| 久久久精品94久久精品| 国产欧美亚洲国产| 久久国内精品自在自线图片| 汤姆久久久久久久影院中文字幕| 男人舔女人的私密视频| 国产男人的电影天堂91| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 麻豆乱淫一区二区| 看非洲黑人一级黄片| 伊人久久国产一区二区| 夫妻午夜视频| 成年人免费黄色播放视频| av电影中文网址| 久久久亚洲精品成人影院| 成人二区视频| 中国三级夫妇交换| 亚洲视频免费观看视频| 啦啦啦在线免费观看视频4| 美女脱内裤让男人舔精品视频| 97人妻天天添夜夜摸| 成人黄色视频免费在线看| 日日啪夜夜爽| 国产男女内射视频| 国产探花极品一区二区| 99久久精品国产国产毛片| a级毛片在线看网站| 女的被弄到高潮叫床怎么办| 18禁裸乳无遮挡动漫免费视频| 久久毛片免费看一区二区三区| 亚洲精品av麻豆狂野| 午夜福利在线观看免费完整高清在| 亚洲欧美精品综合一区二区三区 | 侵犯人妻中文字幕一二三四区| 观看av在线不卡| 一级爰片在线观看| 国产成人av激情在线播放| 色94色欧美一区二区| av女优亚洲男人天堂| 国产 一区精品| 免费黄频网站在线观看国产| 国产一区二区 视频在线| 亚洲人成77777在线视频| 亚洲精品日本国产第一区| 香蕉国产在线看| 国产亚洲av片在线观看秒播厂| 有码 亚洲区| 看免费成人av毛片| 国产精品久久久久成人av| 18在线观看网站| 99久久人妻综合| 免费av中文字幕在线| 在线天堂中文资源库| 日本欧美国产在线视频| 亚洲熟女精品中文字幕| av在线老鸭窝| 人人妻人人添人人爽欧美一区卜| 欧美激情高清一区二区三区 | 国产精品不卡视频一区二区| 咕卡用的链子| 超色免费av| av在线app专区| 中文字幕最新亚洲高清| 久久国产精品大桥未久av| 少妇 在线观看| 国产精品秋霞免费鲁丝片| 80岁老熟妇乱子伦牲交| 免费观看无遮挡的男女| 欧美精品人与动牲交sv欧美| 成年av动漫网址| 亚洲欧洲日产国产| 黄色配什么色好看| a级毛片黄视频| 欧美日韩一级在线毛片| 国产xxxxx性猛交| 日本爱情动作片www.在线观看| 国产成人精品久久久久久| 婷婷成人精品国产| 精品午夜福利在线看| 久久精品国产亚洲av涩爱| 亚洲av免费高清在线观看| 欧美日韩视频精品一区| 欧美av亚洲av综合av国产av | 亚洲国产成人一精品久久久| 国产男女内射视频| 国产白丝娇喘喷水9色精品| 亚洲欧美一区二区三区国产| 亚洲国产av新网站| 亚洲欧美成人精品一区二区| 最近手机中文字幕大全| 国产 一区精品| 亚洲国产看品久久| 91精品国产国语对白视频| 久久免费观看电影| 亚洲伊人色综图| 在线观看国产h片| 欧美日韩一区二区视频在线观看视频在线| 另类精品久久| 欧美日韩亚洲国产一区二区在线观看 | 久久午夜福利片| 日韩一本色道免费dvd| 伊人久久国产一区二区| 9色porny在线观看| 久久精品国产亚洲av高清一级| 女人被躁到高潮嗷嗷叫费观| 又粗又硬又长又爽又黄的视频| 国产欧美亚洲国产| 国产成人aa在线观看| 亚洲伊人久久精品综合| 国产又色又爽无遮挡免| 精品久久久精品久久久| 如日韩欧美国产精品一区二区三区| 波多野结衣av一区二区av| xxxhd国产人妻xxx| 久久久久久久久久久久大奶| www.自偷自拍.com| 成人漫画全彩无遮挡| 欧美日韩一区二区视频在线观看视频在线| 999精品在线视频| 国产激情久久老熟女| 久久精品人人爽人人爽视色| 三级国产精品片| 免费不卡的大黄色大毛片视频在线观看| 十八禁网站网址无遮挡| 9热在线视频观看99| 久久久精品国产亚洲av高清涩受| 亚洲第一青青草原| 女性被躁到高潮视频| 亚洲美女视频黄频| 国产伦理片在线播放av一区| 五月天丁香电影| 久久久久精品久久久久真实原创| 1024香蕉在线观看| 一区二区三区乱码不卡18| 男人操女人黄网站| 在线观看免费视频网站a站| 9191精品国产免费久久| 如日韩欧美国产精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 亚洲婷婷狠狠爱综合网| 日本av免费视频播放| 一区二区日韩欧美中文字幕| 美国免费a级毛片| 婷婷色综合大香蕉| 久久毛片免费看一区二区三区| 中文字幕精品免费在线观看视频| 欧美bdsm另类| 亚洲第一青青草原| 亚洲国产色片| 桃花免费在线播放| 国产欧美亚洲国产| 少妇熟女欧美另类| 亚洲综合色网址| 成人亚洲欧美一区二区av| 亚洲国产欧美日韩在线播放|