• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Perturbative Treatment for Stationary State of Local Master Equation?

    2018-07-09 06:46:30JianYingDu杜建迎andFuLinZhang張福林
    Communications in Theoretical Physics 2018年7期
    關(guān)鍵詞:福林

    Jian-Ying Du(杜建迎)and Fu-Lin Zhang(張福林)

    Department of Physics,School of Science,Tianjin University,Tianjin 300072,China

    1 Introduction

    It is generally impossible to isolate a quantum system from its surroundings,which is referred to an open quantum system.Studying open quantum systems has both theoretical and practical significance,such as in quantum thermodynamics[1?2]and quantum information.[3]However,only few system-environment models can be solved exactly.For most cases,the effects of environment are treated by employing various effective models,e.g.,time dependent Hamiltonian,quantum Langevin and stochastic Schr?dinger equations,quantum state diffusion models or Hilbert-space averaging methods.[4?9]

    The most widely applied approach is the quantum master equation,[7?9]which can be derived from a quantum system-environment model by the partial trace over the environment under appropriate approximations.The most common approximations are the Born-Markov(factorization and memoryless)approximations and the rotating wave approximations,which lead to the Gorini-Kossakowski-Lindblad-Sudarshan(GKLS)quantum master equation.[10?11]

    The local approach is an approximation often invoked in building the quantum master equation of a composite open system with a weak internal coupling,whose subsystems coupled to local environments.The internal coupling is supposed to have no effect on the local dynamical generator,often in the GKLS form,of each individual component.And the master equation is constructed by simply adding the local dynamical generators.The other extreme is the global approach,in which the system with a strong internal coupling is considered as a whole,and the global dynamical generators are derived in the standard procedure to build the quantum master equation.Each of the two approaches has its own pros and cons.The local GKLS master equation is found to be thermodynamic inconsistent,which may lead to a heat current flowing against the temperature gradient.[12]But,in deriving the global one,the eigenvalue problem for the system Hamiltonian can be difficult.In addition,for a global GKLS master equation,the steady-state,which is a mixture of eigenstates of the whole system,is often far from direct product states of subsystems.This makes it to be hard to define the local temperature of a subsystem.[13]Currently,efforts are being made to study the local and global GKLS master equations and test their validity or divergence.[14?21]

    In this contribution,we are going to present a perturbative method to solve the stationary states of local master equations,with linear local dynamical generators.The steady-state is,in general,the most important solution of a master equation,e.g.it can be regarded as the quantum counterpart of classical thermodynamic cycle in the sense of self-contained quantum thermal machines.[18?19,21?30]

    On the one hand,the perturbative method further simplifies the task to derive the stationary state,which is represented by a series of the strength of weak internal interaction.And on the other hand,the recurrence relation of the steady-state clearly shows the competition between the internal interaction and the trend back to the local stationary state.Particularly,when the local dynamical generators are in the GKLS form,such competition becomes the one between incoherent operations and the unitary creating quantum coherence.[31?32]This pro-vides a possible perspective to relate the thermodynamic consistency with quantum coherence.As two examples,we study the two-qubit model analysed in Refs.[12,14–15]and the three-qubit absorption refrigerator[22,24]to demonstrate our perturbative method and discuss the relation between quantum coherence and thermodynamic consistency.

    2 Perturbative Method

    In the local approach,the master equation for an open system reads

    where H is the total Hamiltonian of the whole system,and Diis the local dynamical generator on i-th subsystem induced by the coupling with its environment.The Hamiltonian can be written as the sum of free Hamiltonian of subsystems and internal interaction as

    where we denote the interaction Hint=gX with g being a small dimensionless constant and X is a nonlocal operator specifying the couplings.

    We assume that the steady-state solution of master equation(1)exists and is unique,satisfying

    When internal interaction g=0,the solution is simply the direct product of local steady states

    Here the local state τiof a subsystem is determined by

    Similar with the perturbation theory described in every textbook on quantum mechanics,we represent the steady state by the series

    The zeroth-order term ρ(0)is given by Eq.(4),and the normalization condition requires Trρ(k)=0 for k>0.When the local dynamical generators Diare linear,one can insert the series into Eq.(3)and obtain the recurrence relation

    where H(0)=∑iHiis the free Hamiltonian and k=0,1,2,...The steady-state problem described by Eq.(5)is often trivial,e.g.τibeing a thermal state in the temperature of its bath in an equilibrium state.Then,the task becomes to derive ρ(k+1)from the commutator[X,ρ(k)]and the properties of H(0)and Di,starting with ρ(0).

    When Diare in the GKLS form,the local steady states τiare functions of free Hamiltonian Hiand thus are incoherent states with respect to the representation of Hi.And,both the two terms in the right hand of Eq.(7)correspond to the changes of ρ(k+1)under incoherent operations in an infinitesimal interval of time,in which the commutator originates from the unitary generated by H0and Difrom the transition and dephasing caused by baths.Whereas,the unitary deriving by the interaction Hintmay produce coherence,when it does not commute with the diagnalized states it acting on.In such case,the recurrence relation(7)shows the fact that,the coherence generated from ρ(k)by the internal interaction is counteracted by the decoherence of ρ(k+1).Hence,the steady-state solution is the result of competition between the internal interaction and incoherent operations.

    One can simply rewrap the density matrix ρsto a vector,and simultaneously Diand ?to matrices operating on it,as the treatments of stationary state in Ref.[18]and transient state in Ref.[29].In this way,the series ρ(k)can be derived by using the perturbation theory for algebraic eigenvalue problem.[33]In present work,we omit this standard method,but show a process for construction of the series of steady state by using two simple examples in the following parts.In these examples,the generating and destroying of coherence in Eq.(7)are shown visually.

    3 Two-Qubit Heat Transfer Network

    The first example is the simplest heat transfer network model composed of two qubits,1 and 2,each of which is coupled to a single heat bath with temperature T1andLet us denote the Pauli operators for qubit i asand=(±)/2.The free Hamiltonian is given by

    And the two subsystems are weakly coupled to each other with the bipartite operator

    The local steady state τiis a thermal state,

    where si=tanh(?βiEi/2)with βi=1/Ti.For simplify,we model the local dissipator for each bath on its corresponding qubit as[22]

    where piis the dissipation rate,depending on how well each qubit is relative to its bath.It is a modified version of the one derived from the Jaynes-Cummings(JC)model with the dephasing rate being doubled,[34]and can be rewritten explicitly in the GKLS form(pointed out in the supplementary material of Ref.[22]).

    Substituting the zero-order steady state ρ(0)= τ1? τ2and the interaction operator into Eq.(7),one can obtain

    where?s=(s1?s2)/2 and

    It is obvious that the infinitesimal interaction generates the coherence term Y. One can directly assume the first order ρ(1)consists of Y,which is suppressed by Di.In addition,the commutators[H(0),Y]∝ ?EX and[H(0),X]∝?EY,where?E=E1?E2.That is,the free Hamiltonian rotates the o ff-diagonal term in the space of{X,Y}when ?E0.Therefore,one can assume

    where m(1)and d(1)are the parameters to be determined.Inserting the form of ρ(1)into the right hand of Eq.(7),we obtain

    where q=

    Substituting the first-order term ρ(1)into the left hand of Eq.(7),the commutators[X,ρ(1)]∝?.It commutes with the free Hamiltonian H0.According with the effects of local dissipators on,we suppose

    withand b(2)to derive.It is easily to obtain

    by using the relation in Eq.(7).The left hand of Eq.(7)for k=2 is given by

    where x= ?2q2/[(q2+?E2)p1p2].The linearity of the right hand leads to

    and m(3)=xm(1),d(3)= xd(1),or in other words

    From the two steps to derive ρ(2)and ρ(3)and the linearity of the recurrence relation,one can find that the series of ρ(k)for k>0 is composed of two geometric series.That is,the steady state is given by

    where the parameters can be directly obtained by using the sum formulae of geometric series as

    4 Three-Qubit Absorption Refrigerator

    We take the three-qubit model of quantum absorption refrigerator as the second example.It is proposed in the study of the fundamental limitation on the size of thermal machines,[22]and has raised a subsequent stream of works about self-contained quantum thermal machines,[18?19,21,23?30]Similar with the two-qubit model studied above,the three qubits 1,2,and 3,interact with three baths,1,2,and 3,at temperatures T1

    which extracts heat from the target,and dissipates it into bath 2 through the spiral,qubit 2.The qubit 3 plays the role of the engine,which gains free energy from the hot bath 3,to drive the heat current from the target to spiral.

    The commutator of the tripartite interation and the zero-order term of steady state= τ1?τ2?τ3is proportional to the tripartite coherent term Yr=?.Such term is suppressed byby H0=H1+H2+H3to in the space of{Xr,Yr}.We derived the first order of steady state as

    Here?Er=E1+E3?E2,qr=q1+q2+q3and?sr=(s1?s2+s3?s1s2s3)/4.Denoting ri=(1+si)/2Using the similar steps as the case of two-qubit model,the steady state of the three-qubit absorption refrigerator can be represented by the sum of two geometric series.By using the sum formulae of infinite geometric series,one obtains

    When ?Er=0,the stateis consistent with the result in Ref.[24].

    5 Thermodynamic Consistency

    The steady-state solutions enable us to derive the heat currents and verify the consistency of the local master equation with thermodynamics.The first law of thermodynamics is a conservation law of energy,which can be expressed by the steady-state heat currents Qias[35]

    The second law for an isolated system is given by[36]

    stating that the rate of entropy production is nonnegative.

    The heat current Qiprovided by bath i is defined as

    which is the change of energy of an open system in state ρ under the influence of Di.It is easy to prove that the sum of all heat currents at steady state is zero,by calculating average energy of the right hand of Eq.(3).That is,the first law of thermodynamics in Eq.(28)is fulfilled.However,the second law may be violated in the cases of nonresonant,i.e. ?E0 for the two-qubit model and?Er0 for the refrigerator.

    The currents of the two-qubit steady state(20)are

    When the parameter pi= γi[1+exp(?βiEi)],this is formally consistent with the results in Ref.[12],and pi=Ji[1+exp(βiEi)]leads to the ones in Ref.[14].The minor difference between our results and the two mentioned references stems from different dephasing rate.Substituting the currents(31)into the rate of entropy production in(29),one obtains

    where ξ is a function of all the parameters of the twoqubit model,which is always positive.When?E=0,it is easy to find that,the two factors in the two square brackets of Eq.(32)are of the same sign,and consequently dS/dt≥ 0.However,when ?E0,the two factors may have opposite signs,and thus dS/dt<0.For instance,in the case of?E<0 and∑i(?1)iβiEi>0,the sum of the two may be less than zero.These analyses also apply to the three-qubit refrigerator in steady state(25),since its currents and entropy production are also in the forms as(31)and(32),with the replacing?E→?Er,q→qr,d → drand ξ→ ξr>0.These results demonstrate that,the local approach is valid only under the resonance between subsystems.

    Such inconsistency can be understood by comparing the heat currents(31)with the ones drawn by the internal interaction from subsystems. The later are defined as the influences of the interaction on local energies,=iTr{Hi[Hint,ρ]}.For the two-qubit model in steady state(20),it is easy to obtained that

    The results for the refrigerator have the same form,with the mentioned replacing d→dr.It is directly to check that,these currents fulfill the second law in Eq.(29)but break down the first law in Eq.(28).Their differences with the heat currents provided by the baths(31)are proportional to the amounts of detuning,and is caused by the energy allocated to global coherent terms of the steady state.Only when the differences vanish,the first and second laws of thermodynamics are fulfilled simultaneously.These analyses do not rely on the compact forms of steady states in Eqs.(20)and(25),as the conflict can be found by using only the first and second orders of the steady states.These results indicate an implicit assumption of the local master equation that,the global terms of a steady state are without influence upon the currents.That is,the local approach requires that no global coherence contributing to total energy is produced in the competition between the internal interaction and couplings with baths.This is similar to the well known fact that,the laws of thermodynamics are broken down when open systems are correlated with their environments.[37?38]Furthermore,we argue that,for a subsystem in the local approach,the rest of a composite open system plays the role of environments.And,the requirement of resonance is similar with the fact that,only the resonant frequencies of reservoirs are involved in the standard GKLS master equation.

    6 Summary

    We present a perturbative method to solve the stationary states of linear local master equations,with the internal interaction being weak enough.This method is demonstrated by the two-qubit heat transfer network and three-qubit absorption refrigerator,in which each qubit and its bath is modeled by a simple reset model as the treatment in Ref.[22].The recurrence relation shows that the stationary state is the result of competition between incoherent operations and the unitary creating quantum coherence.Our two examples indicate that,it is required that no global coherence contributing to total energy is produced in the competition,by the thermodynamic consistency of local master equations.

    In our investigation of the consistent of local master equations with thermodynamics,we did not compare the results with the open systems under other treatments as in the recent works,[14?21]but analyze consistency of the theory by studying the heat currents drawn by the interaction and the ones provided by the baths.Here,we argue that,the treatment in Ref.[15]is not reasonable to consider a local master equation as the limit of the global one,as they are two different extremes of the internal interactions.It would be interesting to extend our perturbative method to the case with strong system-environment couplings,where the higher-order and non-Markovian effects[39]must be taken into account.

    [1]G.Gemma,M.Michel,and G.Mahler,Quantum Thermodynamics,Springer,Berlin(2004).

    [2]J.Gemmer,M.Michel,and G.Mahler,Quantum Thermodynamics:Emergence of Thermodynamic Behavior Within Composite Quantum Systems,volume 784 of Lecture Notes in Physics,Springer Verlag,Heidelberg(2009).

    [3]M.A.Nielsen and I.L.Chuang,Quantum Computation and Quantum Information,Cambridge University Press,Cambridge(2000).

    [4]M.V.Berry,Proc.R.Soc.London,Ser.A 392(1984)45.

    [5]N.Gisin and I.C.Percival,J.Phys.A:Math.Gen.25(1992)5677.

    [6]J.Gemmer and M.Michel,Eur.Phys.J.B 53(2006)517.

    [7]H.P.Breuer and F.Petruccione,The Theory of Open Quantum Systems,Oxford University Press,Oxford(2002).

    [8]C.Gardiner and P.Zoller,Quantum Noise:A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics,Vol.56,Springer Science&Business Media(2004).

    [9]I.de Vega and D.Alonso,Rev.Mod.Phys.89(2017)015001.

    [10]G.Lindblad,Commun.Math.Phys.48(1976)119.

    [11]V.Gorini,A.Kossakowski,and E.C.G.Sudarshan,J.Math.Phys.17(1976)821.

    [12]A.Levy and R.Koslo ff,Europhys.Lett.107(2014)20004.

    [13]M.Kliesch,C.Gogolin,M.J.Kastoryano,et al.,Phys.Rev.X 4(2014)031019.

    [14]P.D.Manrique,F.Rodríguez,L.Quiroga,and N.F.Johnson,Adv.Cond.Matt.Phys.2015(2015)615727.

    [15]A.Trushechkin and I.Volovich,Europhys.Lett.113(2016)30005.

    [16]P.P.Hofer,M.Perarnau-Llobet,L.D.M.Miranda,et al.,New J.Phys.19(2017)123037.

    [17]J.O.González,L.A.Correa,G.Nocerino,et al.,Open Syst.Inf.Dyn.24(2017)1740010.

    [18]C.S.Yu and Q.Y.Zhu,Phys.Rev.E 90(2014)052142.

    [19]L.A.Correa,J.P.Palao,G.Adesso,and D.Alonso,Phys.Rev.E 87(2013)042131.

    [20]G.De?cordi and A.Vidiella-Barranco,Opt.Commun.387(2017)366.

    [21]Z.X.Man and Y.J.Xia,Phys.Rev.E 96(2017)012122.

    [22]N.Linden,S.Popescu,and P.Skrzypczyk,Phys.Rev.Lett.105(2010)130401.

    [23]A.Levy and R.Koslo ff,Phys.Rev.Lett.108(2012)070604.

    [24]P.Skrzypczyk,N.Brunner,N.Linden,and S.Popescu,J.Phys.A:Math.Theor.44(2011)492002.

    [25]N.Brunner,N.Linden,S.Popescu,and P.Skrzypczyk,Phys.Rev.E 85(2012)051117.

    [26]N.Brunner,M.Huber,N.Linden,et al.,Phys.Rev.E 89(2014)032115.

    [27]L.A.Correa,J.P.Palao,D.Alonso,and G.Adesso,Sci.Rep.4(2014)03949.

    [28]R.Kosloff and A.Levy,Annu.Rev.Phys.Chem.65(2014)365.

    [29]J.B.Brask and N.Brunner,Phys.Rev.E 92(2015)062101.

    [30]J.Goold,M.Huber,A.Riera,et al.,J.Phys.A:Math.Theor.49(2016)143001.

    [31]T.Baumgratz,M.Cramer,and M.Plenio,Phys.Rev.Lett.113(2014)140401.

    [32]M.L.Hu,X.Hu,Y.Peng,et al.,arXiv:quantph/1703.01852(2017).

    [33]J.H.Wilkinson,The Algebraic Eigenvalue Problem,Clarendon Press,Oxford(1965).

    [34]J.Y.Du and F.L.Zhang,New J.Phys.20(2018)063005.

    [35]R.Alicki,J.Phys.A:Math.Gen.12(1979)L103.

    [36]R.Koslo ff,Entropy 15(2013)2100.

    [37]D.Jennings and T.Rudolph,Phys.Rev.E 81(2010)061130.

    [38]M.N.Bera,A.Riera,M.Lewenstein,and A.Winter,Nat.Commun.8(2017)2180.

    [39]X.Zhao,J.Jing,B.Corn,and T.Yu,Phys.Rev.A 84(2011)032101.

    猜你喜歡
    福林
    銅失衡與阿爾茨海默病的研究進(jìn)展
    Probabilistic resumable quantum teleportation in high dimensions
    鷹王
    昆侖神龜
    寶藏(2019年6期)2019-07-04 12:26:36
    豬王
    一枚小銅鈿
    故事會(huì)(2017年2期)2017-01-20 19:08:08
    歡喜冤家
    回旋飛機(jī)
    鷹王
    鷹王
    欧美日本视频| 国产精品影院久久| 国产精品98久久久久久宅男小说| 白带黄色成豆腐渣| 日韩国内少妇激情av| 日韩国内少妇激情av| 精品国产亚洲在线| 婷婷色综合大香蕉| 亚洲18禁久久av| 免费av毛片视频| 亚洲片人在线观看| 久久精品夜夜夜夜夜久久蜜豆| 免费电影在线观看免费观看| 丰满乱子伦码专区| 免费观看人在逋| 欧美在线一区亚洲| 国产亚洲av嫩草精品影院| 男插女下体视频免费在线播放| 午夜福利视频1000在线观看| 一进一出抽搐动态| 久久久久久大精品| 色精品久久人妻99蜜桃| 日本一二三区视频观看| 亚洲av免费高清在线观看| 日韩高清综合在线| 中文字幕精品亚洲无线码一区| 一进一出抽搐动态| 婷婷丁香在线五月| 亚洲av成人精品一区久久| 看免费av毛片| 在线观看舔阴道视频| 亚洲专区国产一区二区| 亚洲成人久久性| 亚洲精品一区av在线观看| av中文乱码字幕在线| 久久这里只有精品中国| 欧美黑人欧美精品刺激| 国产精品三级大全| 丝袜美腿在线中文| 免费观看的影片在线观看| 51国产日韩欧美| 99热这里只有是精品在线观看 | 免费看日本二区| 十八禁国产超污无遮挡网站| 国产久久久一区二区三区| 中文字幕久久专区| 亚洲中文日韩欧美视频| 一本精品99久久精品77| 欧美潮喷喷水| 麻豆一二三区av精品| 国产亚洲精品av在线| 又紧又爽又黄一区二区| 麻豆成人av在线观看| 一级黄色大片毛片| 亚洲 欧美 日韩 在线 免费| 大型黄色视频在线免费观看| av在线观看视频网站免费| 亚洲国产精品999在线| 精品人妻1区二区| 精品国产三级普通话版| 精华霜和精华液先用哪个| 国产精品,欧美在线| 国产精品三级大全| 超碰av人人做人人爽久久| 俺也久久电影网| 99热6这里只有精品| 亚洲人成网站在线播| 人妻丰满熟妇av一区二区三区| 人人妻人人看人人澡| 99久久九九国产精品国产免费| 身体一侧抽搐| 亚洲美女黄片视频| 国产高清激情床上av| 国产欧美日韩精品亚洲av| 国产精品三级大全| 亚洲五月天丁香| 午夜激情福利司机影院| 99热这里只有是精品在线观看 | 搡女人真爽免费视频火全软件 | 一本精品99久久精品77| 国产伦一二天堂av在线观看| 在线观看免费视频日本深夜| 757午夜福利合集在线观看| 亚洲成人久久性| 亚洲美女黄片视频| 免费无遮挡裸体视频| 亚洲一区二区三区色噜噜| 神马国产精品三级电影在线观看| 搡老岳熟女国产| 久久久久久久久大av| 丰满乱子伦码专区| 日本a在线网址| 国产欧美日韩一区二区精品| 国产精品伦人一区二区| 国产av一区在线观看免费| 中文字幕久久专区| 国产免费男女视频| 亚洲经典国产精华液单 | 91在线精品国自产拍蜜月| 免费人成视频x8x8入口观看| 欧美成人一区二区免费高清观看| 性色avwww在线观看| 亚洲人成伊人成综合网2020| 亚洲avbb在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 丁香六月欧美| 亚洲一区二区三区不卡视频| 麻豆成人av在线观看| 波多野结衣高清无吗| 久久亚洲精品不卡| 国产一区二区在线av高清观看| 亚洲av熟女| 成人性生交大片免费视频hd| 麻豆av噜噜一区二区三区| 观看免费一级毛片| 人人妻人人看人人澡| 在线十欧美十亚洲十日本专区| 一级黄色大片毛片| 国产精品影院久久| 免费电影在线观看免费观看| 成人特级av手机在线观看| 99国产精品一区二区蜜桃av| 99在线视频只有这里精品首页| 国产精品亚洲av一区麻豆| 在线播放国产精品三级| 一个人看视频在线观看www免费| 欧美日韩综合久久久久久 | 亚洲精品乱码久久久v下载方式| 久久久精品大字幕| 黄色配什么色好看| 成人av一区二区三区在线看| 欧美bdsm另类| 久久精品综合一区二区三区| 丝袜美腿在线中文| 午夜福利在线观看吧| 夜夜夜夜夜久久久久| 99热这里只有是精品50| 国产伦一二天堂av在线观看| 成年女人看的毛片在线观看| 亚洲国产精品999在线| 国产一区二区亚洲精品在线观看| 午夜福利在线观看吧| 国产亚洲欧美98| 免费观看精品视频网站| 亚洲最大成人中文| 亚洲真实伦在线观看| 精品乱码久久久久久99久播| а√天堂www在线а√下载| 国产中年淑女户外野战色| 欧美国产日韩亚洲一区| 国产探花极品一区二区| 精品久久久久久久末码| 嫩草影院入口| 欧美丝袜亚洲另类 | 91在线观看av| 国产爱豆传媒在线观看| 国内揄拍国产精品人妻在线| 极品教师在线免费播放| 毛片一级片免费看久久久久 | 在线观看午夜福利视频| aaaaa片日本免费| 午夜精品一区二区三区免费看| 国产午夜精品论理片| ponron亚洲| 宅男免费午夜| 丝袜美腿在线中文| 午夜激情福利司机影院| 亚洲在线自拍视频| av福利片在线观看| 男女做爰动态图高潮gif福利片| 成人特级av手机在线观看| 欧美乱妇无乱码| 免费黄网站久久成人精品 | 99国产综合亚洲精品| 午夜免费激情av| 美女高潮的动态| 免费一级毛片在线播放高清视频| 欧美区成人在线视频| 草草在线视频免费看| 免费大片18禁| 日韩有码中文字幕| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲精品亚洲一区二区| 国产成人a区在线观看| 欧美日韩综合久久久久久 | 国产极品精品免费视频能看的| 国产真实伦视频高清在线观看 | 亚洲无线在线观看| 别揉我奶头~嗯~啊~动态视频| 久久精品国产99精品国产亚洲性色| 两人在一起打扑克的视频| 中国美女看黄片| 欧美bdsm另类| 日日摸夜夜添夜夜添小说| 国产精品久久视频播放| 国产精品国产高清国产av| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区四区激情视频 | 一级黄片播放器| 久久久精品大字幕| 999久久久精品免费观看国产| 国产成年人精品一区二区| 嫩草影院入口| 久久久久精品国产欧美久久久| 成人永久免费在线观看视频| 在线天堂最新版资源| 黄片小视频在线播放| 久久午夜福利片| 国产av一区在线观看免费| 麻豆成人av在线观看| 久久精品国产清高在天天线| 毛片一级片免费看久久久久 | 久久午夜亚洲精品久久| 一级av片app| 欧美日韩国产亚洲二区| 久久人人精品亚洲av| 免费大片18禁| 99久国产av精品| 搞女人的毛片| 精华霜和精华液先用哪个| 美女xxoo啪啪120秒动态图 | 成年版毛片免费区| 国产不卡一卡二| 日本 欧美在线| 内地一区二区视频在线| 亚洲色图av天堂| 大型黄色视频在线免费观看| 色哟哟·www| 三级毛片av免费| 午夜日韩欧美国产| av在线蜜桃| 97超视频在线观看视频| www.www免费av| 老女人水多毛片| 婷婷精品国产亚洲av| 国产高清激情床上av| 久久天躁狠狠躁夜夜2o2o| 精品人妻一区二区三区麻豆 | 免费大片18禁| 亚洲精品影视一区二区三区av| 亚洲欧美激情综合另类| 精品人妻一区二区三区麻豆 | 久久久精品欧美日韩精品| x7x7x7水蜜桃| 午夜免费男女啪啪视频观看 | av黄色大香蕉| 国产白丝娇喘喷水9色精品| 午夜a级毛片| 色哟哟·www| 国产视频内射| 韩国av一区二区三区四区| 久久热精品热| 成年女人永久免费观看视频| 成年人黄色毛片网站| 尤物成人国产欧美一区二区三区| 看十八女毛片水多多多| 黄色女人牲交| 狠狠狠狠99中文字幕| 99热这里只有是精品在线观看 | 免费看美女性在线毛片视频| 最新在线观看一区二区三区| 91狼人影院| 亚洲国产精品sss在线观看| 一夜夜www| 亚洲欧美激情综合另类| 久久久久久久久久成人| 久久这里只有精品中国| 国产成人影院久久av| 天堂网av新在线| 嫩草影视91久久| 少妇裸体淫交视频免费看高清| 如何舔出高潮| 女同久久另类99精品国产91| 亚洲av免费在线观看| 1024手机看黄色片| 看黄色毛片网站| 国产三级中文精品| 国产精品精品国产色婷婷| 99热这里只有是精品在线观看 | 两个人视频免费观看高清| 亚洲人成网站在线播| 精品国产亚洲在线| 99热只有精品国产| 久久久色成人| 天堂av国产一区二区熟女人妻| 亚洲精品亚洲一区二区| a级毛片a级免费在线| 午夜激情福利司机影院| 搞女人的毛片| 亚洲激情在线av| 国产麻豆成人av免费视频| 中文字幕高清在线视频| 亚洲成人精品中文字幕电影| 午夜福利免费观看在线| 99热这里只有是精品在线观看 | 亚洲七黄色美女视频| 精品人妻一区二区三区麻豆 | 欧美黑人巨大hd| 国产又黄又爽又无遮挡在线| 欧美区成人在线视频| 免费电影在线观看免费观看| 精品一区二区三区视频在线| 亚洲欧美日韩高清在线视频| 三级国产精品欧美在线观看| 国产三级黄色录像| 国产视频内射| 搞女人的毛片| 免费av毛片视频| 日韩亚洲欧美综合| 91在线观看av| 久久精品国产自在天天线| 久久久久国内视频| 乱码一卡2卡4卡精品| 成人av一区二区三区在线看| 国产一区二区亚洲精品在线观看| 熟女人妻精品中文字幕| 国产精品不卡视频一区二区 | 成人鲁丝片一二三区免费| 亚洲欧美日韩东京热| 日韩欧美三级三区| 国产美女午夜福利| 免费av观看视频| 亚洲自拍偷在线| 91久久精品国产一区二区成人| 国产色爽女视频免费观看| 亚洲国产精品合色在线| 丰满的人妻完整版| 成人av在线播放网站| 搡老熟女国产l中国老女人| 婷婷色综合大香蕉| 性插视频无遮挡在线免费观看| 亚洲欧美日韩高清在线视频| 国产乱人视频| 两个人视频免费观看高清| 黄色丝袜av网址大全| 日本五十路高清| 国产黄色小视频在线观看| 亚洲在线观看片| 国产爱豆传媒在线观看| 国产黄色小视频在线观看| 夜夜躁狠狠躁天天躁| 波多野结衣高清无吗| 欧美性猛交╳xxx乱大交人| 亚洲第一欧美日韩一区二区三区| 亚洲经典国产精华液单 | 亚洲在线自拍视频| 午夜免费成人在线视频| 免费搜索国产男女视频| 亚洲欧美精品综合久久99| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美日韩精品亚洲av| 亚洲欧美激情综合另类| 亚洲,欧美,日韩| 在线观看一区二区三区| 午夜福利视频1000在线观看| 丁香六月欧美| 国产不卡一卡二| 亚洲五月婷婷丁香| 在线观看舔阴道视频| 男女下面进入的视频免费午夜| 毛片女人毛片| 亚洲中文日韩欧美视频| 午夜a级毛片| 少妇人妻精品综合一区二区 | av福利片在线观看| 成年女人永久免费观看视频| 成年女人毛片免费观看观看9| 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区三| av在线天堂中文字幕| 成人亚洲精品av一区二区| 国产伦在线观看视频一区| 精品人妻视频免费看| 午夜免费激情av| 欧美激情国产日韩精品一区| 久久中文看片网| 一级黄片播放器| 国产亚洲精品久久久久久毛片| 欧美日韩中文字幕国产精品一区二区三区| 国产精品久久电影中文字幕| 国产男靠女视频免费网站| 18禁裸乳无遮挡免费网站照片| 免费av观看视频| 国产精品,欧美在线| 日本黄色片子视频| 国产老妇女一区| 制服丝袜大香蕉在线| 尤物成人国产欧美一区二区三区| 悠悠久久av| а√天堂www在线а√下载| 欧洲精品卡2卡3卡4卡5卡区| ponron亚洲| 性插视频无遮挡在线免费观看| 免费观看精品视频网站| 日韩中字成人| 久99久视频精品免费| 国产精品99久久久久久久久| 在线免费观看的www视频| 中出人妻视频一区二区| 欧美日韩黄片免| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美日韩高清在线视频| 色在线成人网| 美女cb高潮喷水在线观看| 欧美绝顶高潮抽搐喷水| 亚洲自偷自拍三级| 日本撒尿小便嘘嘘汇集6| 欧美三级亚洲精品| 在线观看美女被高潮喷水网站 | 一区二区三区高清视频在线| 69av精品久久久久久| 搡老熟女国产l中国老女人| 黄片小视频在线播放| 国产亚洲欧美98| 欧美日韩黄片免| 亚洲精品影视一区二区三区av| 色综合婷婷激情| 亚洲av免费在线观看| 亚洲男人的天堂狠狠| 久久欧美精品欧美久久欧美| 亚洲五月婷婷丁香| 精品不卡国产一区二区三区| 丰满的人妻完整版| 特大巨黑吊av在线直播| 每晚都被弄得嗷嗷叫到高潮| 成人无遮挡网站| 在线播放无遮挡| 国产精品三级大全| 国产在视频线在精品| 97碰自拍视频| 国产精华一区二区三区| 少妇高潮的动态图| 黄色视频,在线免费观看| av专区在线播放| 在线免费观看的www视频| 又爽又黄无遮挡网站| av在线观看视频网站免费| 免费观看的影片在线观看| 久久香蕉精品热| 国产精品久久久久久人妻精品电影| 一个人看视频在线观看www免费| 午夜福利免费观看在线| 精品一区二区三区av网在线观看| 久久这里只有精品中国| 如何舔出高潮| 国产真实伦视频高清在线观看 | 国产精品伦人一区二区| 成人国产一区最新在线观看| 禁无遮挡网站| 国产老妇女一区| 性插视频无遮挡在线免费观看| 特级一级黄色大片| 精品午夜福利在线看| 色尼玛亚洲综合影院| 日韩中字成人| 国产视频内射| 精品人妻偷拍中文字幕| www.www免费av| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看电影| 免费一级毛片在线播放高清视频| 亚洲精品色激情综合| 日本在线视频免费播放| 免费看日本二区| 国产成+人综合+亚洲专区| 免费高清视频大片| 天堂网av新在线| 国产精品,欧美在线| 欧美高清性xxxxhd video| 亚洲国产精品sss在线观看| 欧美黄色淫秽网站| 男人舔奶头视频| 久9热在线精品视频| 亚洲国产高清在线一区二区三| 69av精品久久久久久| 日本熟妇午夜| 久久久久久大精品| 国产av麻豆久久久久久久| 九色成人免费人妻av| 天堂网av新在线| 五月玫瑰六月丁香| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产一区二区亚洲精品在线观看| 夜夜躁狠狠躁天天躁| 亚洲av免费在线观看| 亚洲在线观看片| 亚洲av美国av| av黄色大香蕉| 日本 av在线| 精品久久久久久成人av| 男人舔女人下体高潮全视频| 亚洲国产色片| 色哟哟哟哟哟哟| 毛片女人毛片| 熟女电影av网| 99riav亚洲国产免费| 免费无遮挡裸体视频| 最近最新免费中文字幕在线| 熟妇人妻久久中文字幕3abv| av在线天堂中文字幕| 欧美乱色亚洲激情| 午夜福利免费观看在线| 窝窝影院91人妻| 十八禁网站免费在线| 国内精品久久久久精免费| 亚洲精品色激情综合| 午夜精品一区二区三区免费看| 亚州av有码| 人妻丰满熟妇av一区二区三区| 欧美精品国产亚洲| 免费在线观看成人毛片| 91午夜精品亚洲一区二区三区 | 亚洲欧美激情综合另类| 日韩免费av在线播放| av女优亚洲男人天堂| 日韩欧美 国产精品| av女优亚洲男人天堂| 精品人妻偷拍中文字幕| 国产麻豆成人av免费视频| 免费无遮挡裸体视频| 色综合站精品国产| 国产在视频线在精品| 欧美在线黄色| 国产精品美女特级片免费视频播放器| 免费在线观看影片大全网站| 99在线视频只有这里精品首页| 悠悠久久av| 亚洲人与动物交配视频| 男人舔奶头视频| 午夜激情福利司机影院| 国产三级中文精品| 美女高潮的动态| 搡老岳熟女国产| 亚洲avbb在线观看| 久久精品国产亚洲av香蕉五月| 丰满人妻熟妇乱又伦精品不卡| 亚洲激情在线av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲aⅴ乱码一区二区在线播放| 国产精品98久久久久久宅男小说| 最近最新免费中文字幕在线| 欧美最新免费一区二区三区 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费av不卡在线播放| 欧美xxxx黑人xx丫x性爽| 看十八女毛片水多多多| 18美女黄网站色大片免费观看| 久久香蕉精品热| 99在线视频只有这里精品首页| 国产精品综合久久久久久久免费| 日本 欧美在线| 在线天堂最新版资源| 久久午夜亚洲精品久久| 一区二区三区高清视频在线| 很黄的视频免费| 午夜福利18| 97超级碰碰碰精品色视频在线观看| 深夜a级毛片| 如何舔出高潮| 日本 av在线| 男女那种视频在线观看| 色哟哟·www| 成人永久免费在线观看视频| 女人十人毛片免费观看3o分钟| 国产黄片美女视频| 桃红色精品国产亚洲av| 国内精品美女久久久久久| 无人区码免费观看不卡| 国产野战对白在线观看| 午夜福利成人在线免费观看| 他把我摸到了高潮在线观看| 亚洲av成人精品一区久久| 久久久久久国产a免费观看| 国产精品不卡视频一区二区 | 亚洲,欧美,日韩| 免费搜索国产男女视频| 熟女电影av网| 国产美女午夜福利| 日韩欧美精品v在线| 亚洲欧美精品综合久久99| 日韩欧美一区二区三区在线观看| 国产在线精品亚洲第一网站| 精品久久国产蜜桃| 韩国av一区二区三区四区| 免费观看人在逋| av福利片在线观看| 亚洲最大成人手机在线| 色哟哟哟哟哟哟| 夜夜夜夜夜久久久久| 少妇丰满av| 乱码一卡2卡4卡精品| 琪琪午夜伦伦电影理论片6080| 久久久久久久久中文| av视频在线观看入口| 全区人妻精品视频| 日韩欧美精品免费久久 | 国产精品美女特级片免费视频播放器| 波多野结衣高清无吗| 91麻豆av在线| 免费电影在线观看免费观看| 日日摸夜夜添夜夜添小说| 搡老妇女老女人老熟妇| 757午夜福利合集在线观看| 俺也久久电影网| 成人国产一区最新在线观看| 婷婷丁香在线五月| 色综合亚洲欧美另类图片| 脱女人内裤的视频| 日本免费a在线| 在线观看免费视频日本深夜| 国模一区二区三区四区视频| 我的老师免费观看完整版| 很黄的视频免费| 男女做爰动态图高潮gif福利片| 99热精品在线国产|