• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Perturbative Treatment for Stationary State of Local Master Equation?

    2018-07-09 06:46:30JianYingDu杜建迎andFuLinZhang張福林
    Communications in Theoretical Physics 2018年7期
    關(guān)鍵詞:福林

    Jian-Ying Du(杜建迎)and Fu-Lin Zhang(張福林)

    Department of Physics,School of Science,Tianjin University,Tianjin 300072,China

    1 Introduction

    It is generally impossible to isolate a quantum system from its surroundings,which is referred to an open quantum system.Studying open quantum systems has both theoretical and practical significance,such as in quantum thermodynamics[1?2]and quantum information.[3]However,only few system-environment models can be solved exactly.For most cases,the effects of environment are treated by employing various effective models,e.g.,time dependent Hamiltonian,quantum Langevin and stochastic Schr?dinger equations,quantum state diffusion models or Hilbert-space averaging methods.[4?9]

    The most widely applied approach is the quantum master equation,[7?9]which can be derived from a quantum system-environment model by the partial trace over the environment under appropriate approximations.The most common approximations are the Born-Markov(factorization and memoryless)approximations and the rotating wave approximations,which lead to the Gorini-Kossakowski-Lindblad-Sudarshan(GKLS)quantum master equation.[10?11]

    The local approach is an approximation often invoked in building the quantum master equation of a composite open system with a weak internal coupling,whose subsystems coupled to local environments.The internal coupling is supposed to have no effect on the local dynamical generator,often in the GKLS form,of each individual component.And the master equation is constructed by simply adding the local dynamical generators.The other extreme is the global approach,in which the system with a strong internal coupling is considered as a whole,and the global dynamical generators are derived in the standard procedure to build the quantum master equation.Each of the two approaches has its own pros and cons.The local GKLS master equation is found to be thermodynamic inconsistent,which may lead to a heat current flowing against the temperature gradient.[12]But,in deriving the global one,the eigenvalue problem for the system Hamiltonian can be difficult.In addition,for a global GKLS master equation,the steady-state,which is a mixture of eigenstates of the whole system,is often far from direct product states of subsystems.This makes it to be hard to define the local temperature of a subsystem.[13]Currently,efforts are being made to study the local and global GKLS master equations and test their validity or divergence.[14?21]

    In this contribution,we are going to present a perturbative method to solve the stationary states of local master equations,with linear local dynamical generators.The steady-state is,in general,the most important solution of a master equation,e.g.it can be regarded as the quantum counterpart of classical thermodynamic cycle in the sense of self-contained quantum thermal machines.[18?19,21?30]

    On the one hand,the perturbative method further simplifies the task to derive the stationary state,which is represented by a series of the strength of weak internal interaction.And on the other hand,the recurrence relation of the steady-state clearly shows the competition between the internal interaction and the trend back to the local stationary state.Particularly,when the local dynamical generators are in the GKLS form,such competition becomes the one between incoherent operations and the unitary creating quantum coherence.[31?32]This pro-vides a possible perspective to relate the thermodynamic consistency with quantum coherence.As two examples,we study the two-qubit model analysed in Refs.[12,14–15]and the three-qubit absorption refrigerator[22,24]to demonstrate our perturbative method and discuss the relation between quantum coherence and thermodynamic consistency.

    2 Perturbative Method

    In the local approach,the master equation for an open system reads

    where H is the total Hamiltonian of the whole system,and Diis the local dynamical generator on i-th subsystem induced by the coupling with its environment.The Hamiltonian can be written as the sum of free Hamiltonian of subsystems and internal interaction as

    where we denote the interaction Hint=gX with g being a small dimensionless constant and X is a nonlocal operator specifying the couplings.

    We assume that the steady-state solution of master equation(1)exists and is unique,satisfying

    When internal interaction g=0,the solution is simply the direct product of local steady states

    Here the local state τiof a subsystem is determined by

    Similar with the perturbation theory described in every textbook on quantum mechanics,we represent the steady state by the series

    The zeroth-order term ρ(0)is given by Eq.(4),and the normalization condition requires Trρ(k)=0 for k>0.When the local dynamical generators Diare linear,one can insert the series into Eq.(3)and obtain the recurrence relation

    where H(0)=∑iHiis the free Hamiltonian and k=0,1,2,...The steady-state problem described by Eq.(5)is often trivial,e.g.τibeing a thermal state in the temperature of its bath in an equilibrium state.Then,the task becomes to derive ρ(k+1)from the commutator[X,ρ(k)]and the properties of H(0)and Di,starting with ρ(0).

    When Diare in the GKLS form,the local steady states τiare functions of free Hamiltonian Hiand thus are incoherent states with respect to the representation of Hi.And,both the two terms in the right hand of Eq.(7)correspond to the changes of ρ(k+1)under incoherent operations in an infinitesimal interval of time,in which the commutator originates from the unitary generated by H0and Difrom the transition and dephasing caused by baths.Whereas,the unitary deriving by the interaction Hintmay produce coherence,when it does not commute with the diagnalized states it acting on.In such case,the recurrence relation(7)shows the fact that,the coherence generated from ρ(k)by the internal interaction is counteracted by the decoherence of ρ(k+1).Hence,the steady-state solution is the result of competition between the internal interaction and incoherent operations.

    One can simply rewrap the density matrix ρsto a vector,and simultaneously Diand ?to matrices operating on it,as the treatments of stationary state in Ref.[18]and transient state in Ref.[29].In this way,the series ρ(k)can be derived by using the perturbation theory for algebraic eigenvalue problem.[33]In present work,we omit this standard method,but show a process for construction of the series of steady state by using two simple examples in the following parts.In these examples,the generating and destroying of coherence in Eq.(7)are shown visually.

    3 Two-Qubit Heat Transfer Network

    The first example is the simplest heat transfer network model composed of two qubits,1 and 2,each of which is coupled to a single heat bath with temperature T1andLet us denote the Pauli operators for qubit i asand=(±)/2.The free Hamiltonian is given by

    And the two subsystems are weakly coupled to each other with the bipartite operator

    The local steady state τiis a thermal state,

    where si=tanh(?βiEi/2)with βi=1/Ti.For simplify,we model the local dissipator for each bath on its corresponding qubit as[22]

    where piis the dissipation rate,depending on how well each qubit is relative to its bath.It is a modified version of the one derived from the Jaynes-Cummings(JC)model with the dephasing rate being doubled,[34]and can be rewritten explicitly in the GKLS form(pointed out in the supplementary material of Ref.[22]).

    Substituting the zero-order steady state ρ(0)= τ1? τ2and the interaction operator into Eq.(7),one can obtain

    where?s=(s1?s2)/2 and

    It is obvious that the infinitesimal interaction generates the coherence term Y. One can directly assume the first order ρ(1)consists of Y,which is suppressed by Di.In addition,the commutators[H(0),Y]∝ ?EX and[H(0),X]∝?EY,where?E=E1?E2.That is,the free Hamiltonian rotates the o ff-diagonal term in the space of{X,Y}when ?E0.Therefore,one can assume

    where m(1)and d(1)are the parameters to be determined.Inserting the form of ρ(1)into the right hand of Eq.(7),we obtain

    where q=

    Substituting the first-order term ρ(1)into the left hand of Eq.(7),the commutators[X,ρ(1)]∝?.It commutes with the free Hamiltonian H0.According with the effects of local dissipators on,we suppose

    withand b(2)to derive.It is easily to obtain

    by using the relation in Eq.(7).The left hand of Eq.(7)for k=2 is given by

    where x= ?2q2/[(q2+?E2)p1p2].The linearity of the right hand leads to

    and m(3)=xm(1),d(3)= xd(1),or in other words

    From the two steps to derive ρ(2)and ρ(3)and the linearity of the recurrence relation,one can find that the series of ρ(k)for k>0 is composed of two geometric series.That is,the steady state is given by

    where the parameters can be directly obtained by using the sum formulae of geometric series as

    4 Three-Qubit Absorption Refrigerator

    We take the three-qubit model of quantum absorption refrigerator as the second example.It is proposed in the study of the fundamental limitation on the size of thermal machines,[22]and has raised a subsequent stream of works about self-contained quantum thermal machines,[18?19,21,23?30]Similar with the two-qubit model studied above,the three qubits 1,2,and 3,interact with three baths,1,2,and 3,at temperatures T1

    which extracts heat from the target,and dissipates it into bath 2 through the spiral,qubit 2.The qubit 3 plays the role of the engine,which gains free energy from the hot bath 3,to drive the heat current from the target to spiral.

    The commutator of the tripartite interation and the zero-order term of steady state= τ1?τ2?τ3is proportional to the tripartite coherent term Yr=?.Such term is suppressed byby H0=H1+H2+H3to in the space of{Xr,Yr}.We derived the first order of steady state as

    Here?Er=E1+E3?E2,qr=q1+q2+q3and?sr=(s1?s2+s3?s1s2s3)/4.Denoting ri=(1+si)/2Using the similar steps as the case of two-qubit model,the steady state of the three-qubit absorption refrigerator can be represented by the sum of two geometric series.By using the sum formulae of infinite geometric series,one obtains

    When ?Er=0,the stateis consistent with the result in Ref.[24].

    5 Thermodynamic Consistency

    The steady-state solutions enable us to derive the heat currents and verify the consistency of the local master equation with thermodynamics.The first law of thermodynamics is a conservation law of energy,which can be expressed by the steady-state heat currents Qias[35]

    The second law for an isolated system is given by[36]

    stating that the rate of entropy production is nonnegative.

    The heat current Qiprovided by bath i is defined as

    which is the change of energy of an open system in state ρ under the influence of Di.It is easy to prove that the sum of all heat currents at steady state is zero,by calculating average energy of the right hand of Eq.(3).That is,the first law of thermodynamics in Eq.(28)is fulfilled.However,the second law may be violated in the cases of nonresonant,i.e. ?E0 for the two-qubit model and?Er0 for the refrigerator.

    The currents of the two-qubit steady state(20)are

    When the parameter pi= γi[1+exp(?βiEi)],this is formally consistent with the results in Ref.[12],and pi=Ji[1+exp(βiEi)]leads to the ones in Ref.[14].The minor difference between our results and the two mentioned references stems from different dephasing rate.Substituting the currents(31)into the rate of entropy production in(29),one obtains

    where ξ is a function of all the parameters of the twoqubit model,which is always positive.When?E=0,it is easy to find that,the two factors in the two square brackets of Eq.(32)are of the same sign,and consequently dS/dt≥ 0.However,when ?E0,the two factors may have opposite signs,and thus dS/dt<0.For instance,in the case of?E<0 and∑i(?1)iβiEi>0,the sum of the two may be less than zero.These analyses also apply to the three-qubit refrigerator in steady state(25),since its currents and entropy production are also in the forms as(31)and(32),with the replacing?E→?Er,q→qr,d → drand ξ→ ξr>0.These results demonstrate that,the local approach is valid only under the resonance between subsystems.

    Such inconsistency can be understood by comparing the heat currents(31)with the ones drawn by the internal interaction from subsystems. The later are defined as the influences of the interaction on local energies,=iTr{Hi[Hint,ρ]}.For the two-qubit model in steady state(20),it is easy to obtained that

    The results for the refrigerator have the same form,with the mentioned replacing d→dr.It is directly to check that,these currents fulfill the second law in Eq.(29)but break down the first law in Eq.(28).Their differences with the heat currents provided by the baths(31)are proportional to the amounts of detuning,and is caused by the energy allocated to global coherent terms of the steady state.Only when the differences vanish,the first and second laws of thermodynamics are fulfilled simultaneously.These analyses do not rely on the compact forms of steady states in Eqs.(20)and(25),as the conflict can be found by using only the first and second orders of the steady states.These results indicate an implicit assumption of the local master equation that,the global terms of a steady state are without influence upon the currents.That is,the local approach requires that no global coherence contributing to total energy is produced in the competition between the internal interaction and couplings with baths.This is similar to the well known fact that,the laws of thermodynamics are broken down when open systems are correlated with their environments.[37?38]Furthermore,we argue that,for a subsystem in the local approach,the rest of a composite open system plays the role of environments.And,the requirement of resonance is similar with the fact that,only the resonant frequencies of reservoirs are involved in the standard GKLS master equation.

    6 Summary

    We present a perturbative method to solve the stationary states of linear local master equations,with the internal interaction being weak enough.This method is demonstrated by the two-qubit heat transfer network and three-qubit absorption refrigerator,in which each qubit and its bath is modeled by a simple reset model as the treatment in Ref.[22].The recurrence relation shows that the stationary state is the result of competition between incoherent operations and the unitary creating quantum coherence.Our two examples indicate that,it is required that no global coherence contributing to total energy is produced in the competition,by the thermodynamic consistency of local master equations.

    In our investigation of the consistent of local master equations with thermodynamics,we did not compare the results with the open systems under other treatments as in the recent works,[14?21]but analyze consistency of the theory by studying the heat currents drawn by the interaction and the ones provided by the baths.Here,we argue that,the treatment in Ref.[15]is not reasonable to consider a local master equation as the limit of the global one,as they are two different extremes of the internal interactions.It would be interesting to extend our perturbative method to the case with strong system-environment couplings,where the higher-order and non-Markovian effects[39]must be taken into account.

    [1]G.Gemma,M.Michel,and G.Mahler,Quantum Thermodynamics,Springer,Berlin(2004).

    [2]J.Gemmer,M.Michel,and G.Mahler,Quantum Thermodynamics:Emergence of Thermodynamic Behavior Within Composite Quantum Systems,volume 784 of Lecture Notes in Physics,Springer Verlag,Heidelberg(2009).

    [3]M.A.Nielsen and I.L.Chuang,Quantum Computation and Quantum Information,Cambridge University Press,Cambridge(2000).

    [4]M.V.Berry,Proc.R.Soc.London,Ser.A 392(1984)45.

    [5]N.Gisin and I.C.Percival,J.Phys.A:Math.Gen.25(1992)5677.

    [6]J.Gemmer and M.Michel,Eur.Phys.J.B 53(2006)517.

    [7]H.P.Breuer and F.Petruccione,The Theory of Open Quantum Systems,Oxford University Press,Oxford(2002).

    [8]C.Gardiner and P.Zoller,Quantum Noise:A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics,Vol.56,Springer Science&Business Media(2004).

    [9]I.de Vega and D.Alonso,Rev.Mod.Phys.89(2017)015001.

    [10]G.Lindblad,Commun.Math.Phys.48(1976)119.

    [11]V.Gorini,A.Kossakowski,and E.C.G.Sudarshan,J.Math.Phys.17(1976)821.

    [12]A.Levy and R.Koslo ff,Europhys.Lett.107(2014)20004.

    [13]M.Kliesch,C.Gogolin,M.J.Kastoryano,et al.,Phys.Rev.X 4(2014)031019.

    [14]P.D.Manrique,F.Rodríguez,L.Quiroga,and N.F.Johnson,Adv.Cond.Matt.Phys.2015(2015)615727.

    [15]A.Trushechkin and I.Volovich,Europhys.Lett.113(2016)30005.

    [16]P.P.Hofer,M.Perarnau-Llobet,L.D.M.Miranda,et al.,New J.Phys.19(2017)123037.

    [17]J.O.González,L.A.Correa,G.Nocerino,et al.,Open Syst.Inf.Dyn.24(2017)1740010.

    [18]C.S.Yu and Q.Y.Zhu,Phys.Rev.E 90(2014)052142.

    [19]L.A.Correa,J.P.Palao,G.Adesso,and D.Alonso,Phys.Rev.E 87(2013)042131.

    [20]G.De?cordi and A.Vidiella-Barranco,Opt.Commun.387(2017)366.

    [21]Z.X.Man and Y.J.Xia,Phys.Rev.E 96(2017)012122.

    [22]N.Linden,S.Popescu,and P.Skrzypczyk,Phys.Rev.Lett.105(2010)130401.

    [23]A.Levy and R.Koslo ff,Phys.Rev.Lett.108(2012)070604.

    [24]P.Skrzypczyk,N.Brunner,N.Linden,and S.Popescu,J.Phys.A:Math.Theor.44(2011)492002.

    [25]N.Brunner,N.Linden,S.Popescu,and P.Skrzypczyk,Phys.Rev.E 85(2012)051117.

    [26]N.Brunner,M.Huber,N.Linden,et al.,Phys.Rev.E 89(2014)032115.

    [27]L.A.Correa,J.P.Palao,D.Alonso,and G.Adesso,Sci.Rep.4(2014)03949.

    [28]R.Kosloff and A.Levy,Annu.Rev.Phys.Chem.65(2014)365.

    [29]J.B.Brask and N.Brunner,Phys.Rev.E 92(2015)062101.

    [30]J.Goold,M.Huber,A.Riera,et al.,J.Phys.A:Math.Theor.49(2016)143001.

    [31]T.Baumgratz,M.Cramer,and M.Plenio,Phys.Rev.Lett.113(2014)140401.

    [32]M.L.Hu,X.Hu,Y.Peng,et al.,arXiv:quantph/1703.01852(2017).

    [33]J.H.Wilkinson,The Algebraic Eigenvalue Problem,Clarendon Press,Oxford(1965).

    [34]J.Y.Du and F.L.Zhang,New J.Phys.20(2018)063005.

    [35]R.Alicki,J.Phys.A:Math.Gen.12(1979)L103.

    [36]R.Koslo ff,Entropy 15(2013)2100.

    [37]D.Jennings and T.Rudolph,Phys.Rev.E 81(2010)061130.

    [38]M.N.Bera,A.Riera,M.Lewenstein,and A.Winter,Nat.Commun.8(2017)2180.

    [39]X.Zhao,J.Jing,B.Corn,and T.Yu,Phys.Rev.A 84(2011)032101.

    猜你喜歡
    福林
    銅失衡與阿爾茨海默病的研究進(jìn)展
    Probabilistic resumable quantum teleportation in high dimensions
    鷹王
    昆侖神龜
    寶藏(2019年6期)2019-07-04 12:26:36
    豬王
    一枚小銅鈿
    故事會(huì)(2017年2期)2017-01-20 19:08:08
    歡喜冤家
    回旋飛機(jī)
    鷹王
    鷹王
    日韩视频在线欧美| 丝袜喷水一区| tube8黄色片| a级一级毛片免费在线观看| 最近最新中文字幕大全电影3| 偷拍熟女少妇极品色| 亚洲丝袜综合中文字幕| 亚洲精品久久午夜乱码| 七月丁香在线播放| 亚洲国产av新网站| 国产精品国产三级国产av玫瑰| 一本色道久久久久久精品综合| 久久久成人免费电影| 国产精品成人在线| videos熟女内射| 国产中年淑女户外野战色| 亚洲欧美中文字幕日韩二区| 亚洲欧美中文字幕日韩二区| 中文字幕精品免费在线观看视频 | 黄色一级大片看看| 亚洲av中文字字幕乱码综合| av专区在线播放| 国产伦精品一区二区三区四那| 国产免费又黄又爽又色| 国产久久久一区二区三区| 国产在视频线精品| 久久99热这里只频精品6学生| 欧美日韩视频高清一区二区三区二| 国产一区二区三区av在线| 性色av一级| 春色校园在线视频观看| 国产男女内射视频| 国产国拍精品亚洲av在线观看| 777米奇影视久久| 少妇裸体淫交视频免费看高清| 插阴视频在线观看视频| 国产男女内射视频| 交换朋友夫妻互换小说| 夜夜骑夜夜射夜夜干| 日韩中文字幕视频在线看片 | 国产av精品麻豆| 免费大片18禁| 精品午夜福利在线看| 国产一区亚洲一区在线观看| 成人毛片60女人毛片免费| 大话2 男鬼变身卡| 国产免费福利视频在线观看| 我的老师免费观看完整版| 国产午夜精品久久久久久一区二区三区| 国产免费一级a男人的天堂| av.在线天堂| 亚洲精品视频女| 五月伊人婷婷丁香| 多毛熟女@视频| 成人特级av手机在线观看| 久久久久人妻精品一区果冻| 在线观看美女被高潮喷水网站| 国产成人免费无遮挡视频| 久久99热这里只频精品6学生| 久久影院123| 在线观看三级黄色| 久久精品国产自在天天线| 日韩人妻高清精品专区| 人妻夜夜爽99麻豆av| 夫妻性生交免费视频一级片| 欧美激情极品国产一区二区三区 | 丝袜喷水一区| 成年女人在线观看亚洲视频| 丝袜喷水一区| 国产精品麻豆人妻色哟哟久久| 亚洲美女搞黄在线观看| 亚洲成人一二三区av| 国产精品熟女久久久久浪| 丰满少妇做爰视频| 欧美xxxx黑人xx丫x性爽| 毛片一级片免费看久久久久| 嫩草影院入口| videossex国产| 天堂8中文在线网| 日本猛色少妇xxxxx猛交久久| 美女主播在线视频| 只有这里有精品99| 两个人的视频大全免费| 99精国产麻豆久久婷婷| 国产精品久久久久久久电影| 日产精品乱码卡一卡2卡三| 日本wwww免费看| 亚洲欧洲日产国产| 久久 成人 亚洲| 最近2019中文字幕mv第一页| 成年av动漫网址| 青春草视频在线免费观看| 久久久久国产网址| 日日啪夜夜撸| 亚洲av.av天堂| 天堂8中文在线网| 大香蕉97超碰在线| 亚洲精品456在线播放app| 免费少妇av软件| 欧美激情极品国产一区二区三区 | 久久久国产一区二区| 久久精品久久精品一区二区三区| 久久久久精品性色| 久久久欧美国产精品| 亚洲色图综合在线观看| 中文字幕亚洲精品专区| 亚洲电影在线观看av| 黑人高潮一二区| 国产淫片久久久久久久久| 日韩视频在线欧美| 免费人妻精品一区二区三区视频| 男男h啪啪无遮挡| 国产在线一区二区三区精| 高清午夜精品一区二区三区| 伦理电影免费视频| 蜜桃久久精品国产亚洲av| 大陆偷拍与自拍| 七月丁香在线播放| 少妇熟女欧美另类| 五月开心婷婷网| 亚洲欧美精品专区久久| 丰满人妻一区二区三区视频av| 精品视频人人做人人爽| 女的被弄到高潮叫床怎么办| 免费黄网站久久成人精品| av视频免费观看在线观看| h日本视频在线播放| 性高湖久久久久久久久免费观看| 啦啦啦在线观看免费高清www| 国国产精品蜜臀av免费| av又黄又爽大尺度在线免费看| 男人狂女人下面高潮的视频| 免费av中文字幕在线| 亚洲成人手机| 亚洲欧美中文字幕日韩二区| 黄色欧美视频在线观看| 国产黄片美女视频| 亚洲精品,欧美精品| 男女国产视频网站| 在线免费十八禁| 国产一区有黄有色的免费视频| 人妻 亚洲 视频| av视频免费观看在线观看| 国产欧美亚洲国产| 亚洲av中文av极速乱| 中国三级夫妇交换| 午夜老司机福利剧场| 乱码一卡2卡4卡精品| kizo精华| 边亲边吃奶的免费视频| 精品国产三级普通话版| 毛片一级片免费看久久久久| 色视频www国产| 成年女人在线观看亚洲视频| 成人亚洲精品一区在线观看 | 国产精品福利在线免费观看| 国产亚洲欧美精品永久| 久久国产亚洲av麻豆专区| 极品教师在线视频| 久久久欧美国产精品| 肉色欧美久久久久久久蜜桃| 日韩不卡一区二区三区视频在线| 久久综合国产亚洲精品| 久久99热6这里只有精品| 另类亚洲欧美激情| 女人久久www免费人成看片| freevideosex欧美| 亚洲av男天堂| 国产综合精华液| 亚洲精品日本国产第一区| 一级av片app| 久久婷婷青草| 性高湖久久久久久久久免费观看| 秋霞伦理黄片| 免费大片黄手机在线观看| 天天躁夜夜躁狠狠久久av| 黄片无遮挡物在线观看| 高清日韩中文字幕在线| 亚洲天堂av无毛| 国产精品国产三级国产av玫瑰| 国产亚洲最大av| 欧美成人a在线观看| 性色av一级| 国产午夜精品一二区理论片| 全区人妻精品视频| 国产伦精品一区二区三区视频9| 久久青草综合色| 妹子高潮喷水视频| 熟女av电影| 亚洲av国产av综合av卡| 麻豆国产97在线/欧美| 在线 av 中文字幕| 夜夜爽夜夜爽视频| 国产免费福利视频在线观看| 色吧在线观看| 能在线免费看毛片的网站| 国产欧美日韩一区二区三区在线 | 午夜福利视频精品| 国产精品国产三级国产专区5o| 看十八女毛片水多多多| 国产视频首页在线观看| 涩涩av久久男人的天堂| 亚洲美女黄色视频免费看| 欧美成人一区二区免费高清观看| 亚洲,欧美,日韩| 色婷婷av一区二区三区视频| 国产淫片久久久久久久久| 日韩一区二区视频免费看| 日韩,欧美,国产一区二区三区| 性色av一级| 亚洲国产精品专区欧美| 国产一区亚洲一区在线观看| 99九九线精品视频在线观看视频| 亚洲,一卡二卡三卡| 久久午夜福利片| 热99国产精品久久久久久7| 狂野欧美激情性bbbbbb| 美女视频免费永久观看网站| 九九爱精品视频在线观看| 日韩电影二区| 午夜福利在线在线| 国产成人精品婷婷| 亚洲av福利一区| 成人18禁高潮啪啪吃奶动态图 | 欧美zozozo另类| 国产美女午夜福利| 亚洲图色成人| 精品一品国产午夜福利视频| 99re6热这里在线精品视频| 国产伦理片在线播放av一区| av天堂中文字幕网| 天天躁夜夜躁狠狠久久av| av免费在线看不卡| 99九九线精品视频在线观看视频| 一区二区三区免费毛片| 亚洲欧美中文字幕日韩二区| 狠狠精品人妻久久久久久综合| 一级毛片aaaaaa免费看小| 国产精品99久久久久久久久| 欧美精品人与动牲交sv欧美| 高清日韩中文字幕在线| 国产精品精品国产色婷婷| 丰满少妇做爰视频| 国产精品一二三区在线看| 老熟女久久久| 少妇高潮的动态图| 日韩av不卡免费在线播放| 日韩不卡一区二区三区视频在线| 亚洲国产精品一区三区| 99久久精品国产国产毛片| 国产精品国产三级国产专区5o| 国产色婷婷99| 亚洲色图av天堂| 亚洲精品乱码久久久久久按摩| 日韩精品有码人妻一区| 免费久久久久久久精品成人欧美视频 | 亚洲av男天堂| 视频中文字幕在线观看| 亚洲成人手机| 日本欧美国产在线视频| 久久人人爽人人片av| 欧美高清性xxxxhd video| 黄色欧美视频在线观看| 免费看光身美女| 欧美精品人与动牲交sv欧美| 26uuu在线亚洲综合色| 一级毛片久久久久久久久女| 天堂俺去俺来也www色官网| 国产精品不卡视频一区二区| 亚洲真实伦在线观看| 黄色怎么调成土黄色| 在线亚洲精品国产二区图片欧美 | 夜夜骑夜夜射夜夜干| 精品久久久噜噜| 国产永久视频网站| 狂野欧美激情性xxxx在线观看| 成年免费大片在线观看| 人妻一区二区av| 在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 观看免费一级毛片| 成年美女黄网站色视频大全免费 | 国产伦在线观看视频一区| 在线观看一区二区三区| 99久久精品国产国产毛片| 欧美高清成人免费视频www| 国产午夜精品久久久久久一区二区三区| 日韩欧美精品免费久久| 女人久久www免费人成看片| 美女国产视频在线观看| 亚洲精品日本国产第一区| 久久久午夜欧美精品| 亚洲av福利一区| 美女内射精品一级片tv| 在线观看人妻少妇| 国产有黄有色有爽视频| 97在线视频观看| 超碰97精品在线观看| 老司机影院毛片| 免费久久久久久久精品成人欧美视频 | 97超视频在线观看视频| 麻豆成人午夜福利视频| 免费看光身美女| 国产精品人妻久久久影院| 美女cb高潮喷水在线观看| 欧美高清成人免费视频www| 亚洲欧洲国产日韩| 老司机影院成人| 欧美+日韩+精品| 我的女老师完整版在线观看| 久久久久国产精品人妻一区二区| 国产黄片美女视频| 黑人高潮一二区| 久久精品夜色国产| 欧美最新免费一区二区三区| 色哟哟·www| 中文字幕制服av| 三级国产精品欧美在线观看| 超碰av人人做人人爽久久| 老女人水多毛片| 日本黄大片高清| 舔av片在线| av线在线观看网站| 这个男人来自地球电影免费观看 | 国产黄片美女视频| 日韩三级伦理在线观看| 狂野欧美白嫩少妇大欣赏| 色综合色国产| 精品久久久久久久久av| 欧美 日韩 精品 国产| 日本免费在线观看一区| 激情 狠狠 欧美| 国产在线一区二区三区精| 亚洲精品久久午夜乱码| 一级av片app| 日本免费在线观看一区| 国产精品女同一区二区软件| 超碰97精品在线观看| 亚洲经典国产精华液单| 欧美另类一区| 涩涩av久久男人的天堂| 久久女婷五月综合色啪小说| 国产真实伦视频高清在线观看| 在线观看一区二区三区| 久久综合国产亚洲精品| 国产中年淑女户外野战色| 国产淫语在线视频| 全区人妻精品视频| 亚洲伊人久久精品综合| 久久精品久久精品一区二区三区| 99热全是精品| 午夜视频国产福利| 我的老师免费观看完整版| 国产精品一及| 97热精品久久久久久| 免费黄网站久久成人精品| 日韩,欧美,国产一区二区三区| 中文欧美无线码| 一本一本综合久久| 成人免费观看视频高清| 噜噜噜噜噜久久久久久91| 精品人妻一区二区三区麻豆| 中文字幕av成人在线电影| 久久精品久久精品一区二区三区| 久久久a久久爽久久v久久| 男人舔奶头视频| 国产综合精华液| 久久精品熟女亚洲av麻豆精品| 欧美bdsm另类| 国产精品久久久久久精品电影小说 | 日本黄色日本黄色录像| 国产欧美另类精品又又久久亚洲欧美| 国产人妻一区二区三区在| 亚洲av成人精品一区久久| 国产有黄有色有爽视频| 99热网站在线观看| 日本欧美国产在线视频| 国产亚洲av片在线观看秒播厂| 欧美精品人与动牲交sv欧美| 一级二级三级毛片免费看| 国产v大片淫在线免费观看| av天堂中文字幕网| 91久久精品国产一区二区三区| 亚洲精品乱码久久久v下载方式| 久久精品人妻少妇| 国产成人a∨麻豆精品| 一级毛片aaaaaa免费看小| 男女下面进入的视频免费午夜| 人妻少妇偷人精品九色| 精品酒店卫生间| 欧美另类一区| 精品亚洲乱码少妇综合久久| 午夜日本视频在线| 插阴视频在线观看视频| 色5月婷婷丁香| 五月玫瑰六月丁香| 如何舔出高潮| 午夜福利网站1000一区二区三区| 毛片一级片免费看久久久久| 国产午夜精品一二区理论片| 激情 狠狠 欧美| 中文资源天堂在线| 91在线精品国自产拍蜜月| 黄色配什么色好看| 97热精品久久久久久| 99精国产麻豆久久婷婷| 中文乱码字字幕精品一区二区三区| 成人毛片a级毛片在线播放| 亚洲国产色片| 汤姆久久久久久久影院中文字幕| 亚洲精品456在线播放app| 少妇被粗大猛烈的视频| av黄色大香蕉| 久久人人爽人人爽人人片va| 午夜免费男女啪啪视频观看| 青青草视频在线视频观看| 国产一区二区三区综合在线观看 | 女性生殖器流出的白浆| 亚洲va在线va天堂va国产| 亚洲欧美一区二区三区黑人 | 老熟女久久久| 亚洲精品色激情综合| 日韩电影二区| 国产精品精品国产色婷婷| 99国产精品免费福利视频| 久久97久久精品| 欧美最新免费一区二区三区| 日韩亚洲欧美综合| 高清黄色对白视频在线免费看 | 亚洲av中文字字幕乱码综合| 欧美一区二区亚洲| 性高湖久久久久久久久免费观看| 亚洲欧美清纯卡通| 亚洲激情五月婷婷啪啪| 91精品国产九色| 亚洲怡红院男人天堂| 极品少妇高潮喷水抽搐| 有码 亚洲区| 在线观看免费视频网站a站| 亚洲国产av新网站| 免费播放大片免费观看视频在线观看| 国产成人a∨麻豆精品| 中文字幕久久专区| 日韩伦理黄色片| 水蜜桃什么品种好| 国产成人精品福利久久| 一级毛片电影观看| 熟女av电影| 最近中文字幕高清免费大全6| 一个人看的www免费观看视频| 18禁裸乳无遮挡免费网站照片| 大话2 男鬼变身卡| 麻豆精品久久久久久蜜桃| 一区在线观看完整版| av线在线观看网站| 国产亚洲91精品色在线| 在线播放无遮挡| 综合色丁香网| 尾随美女入室| 国产男女内射视频| 又爽又黄a免费视频| 免费人妻精品一区二区三区视频| 成人无遮挡网站| 91狼人影院| 伦理电影免费视频| 美女中出高潮动态图| 久久久久久久久大av| 狠狠精品人妻久久久久久综合| 久久久久国产网址| 久久久久人妻精品一区果冻| 成人一区二区视频在线观看| 七月丁香在线播放| 亚洲不卡免费看| 婷婷色综合大香蕉| 一级黄片播放器| 国产免费福利视频在线观看| 毛片一级片免费看久久久久| 中文资源天堂在线| 亚洲欧洲日产国产| 久久精品夜色国产| 国产免费一级a男人的天堂| videossex国产| 性高湖久久久久久久久免费观看| 久久99热这里只频精品6学生| 中文资源天堂在线| 噜噜噜噜噜久久久久久91| 亚洲丝袜综合中文字幕| 18禁裸乳无遮挡动漫免费视频| 国产深夜福利视频在线观看| 在线观看一区二区三区| 一级av片app| av播播在线观看一区| 国产美女午夜福利| 成人毛片a级毛片在线播放| 日韩免费高清中文字幕av| 久久国产精品大桥未久av | 免费不卡的大黄色大毛片视频在线观看| 中文字幕亚洲精品专区| 久久99精品国语久久久| 女性被躁到高潮视频| 亚洲成人av在线免费| 天堂8中文在线网| 久热这里只有精品99| 五月玫瑰六月丁香| 国产色爽女视频免费观看| av免费在线看不卡| 国产日韩欧美亚洲二区| 国产成人免费观看mmmm| 国产 一区 欧美 日韩| 大码成人一级视频| 在线精品无人区一区二区三 | 免费观看av网站的网址| 毛片女人毛片| 永久网站在线| 日本一二三区视频观看| 九九在线视频观看精品| 久久午夜福利片| 国产熟女欧美一区二区| 成人漫画全彩无遮挡| 在线精品无人区一区二区三 | 国产黄片美女视频| 一区二区三区乱码不卡18| 你懂的网址亚洲精品在线观看| 午夜福利影视在线免费观看| 欧美区成人在线视频| 欧美成人a在线观看| 久久久久久久久久久免费av| 国精品久久久久久国模美| 色综合色国产| 欧美zozozo另类| 国产欧美亚洲国产| 久久97久久精品| 国产精品.久久久| 久久午夜福利片| 岛国毛片在线播放| 欧美zozozo另类| 五月开心婷婷网| 一区二区三区免费毛片| 国产av码专区亚洲av| 一级毛片久久久久久久久女| 亚洲欧美日韩东京热| 嫩草影院入口| 最近中文字幕2019免费版| 毛片一级片免费看久久久久| 精品酒店卫生间| av在线播放精品| 黄色一级大片看看| 久久6这里有精品| 少妇高潮的动态图| 午夜福利视频精品| 国产av精品麻豆| 2021少妇久久久久久久久久久| 午夜福利网站1000一区二区三区| 水蜜桃什么品种好| 国产极品天堂在线| 男人狂女人下面高潮的视频| 在线观看一区二区三区| 新久久久久国产一级毛片| 一本—道久久a久久精品蜜桃钙片| 国产一区有黄有色的免费视频| 国产男人的电影天堂91| 国产成人午夜福利电影在线观看| 我要看日韩黄色一级片| 91精品一卡2卡3卡4卡| 一级二级三级毛片免费看| 熟女av电影| 精品少妇久久久久久888优播| 国产欧美亚洲国产| 在线观看免费高清a一片| av福利片在线观看| 大香蕉97超碰在线| 91午夜精品亚洲一区二区三区| 久久99热6这里只有精品| 在线观看一区二区三区| 又爽又黄a免费视频| 亚洲av福利一区| 午夜免费男女啪啪视频观看| 久久人人爽av亚洲精品天堂 | 天美传媒精品一区二区| 国产成人精品福利久久| 国产黄色视频一区二区在线观看| 亚洲精品久久久久久婷婷小说| 国产亚洲一区二区精品| 亚洲熟女精品中文字幕| 国产v大片淫在线免费观看| 婷婷色综合大香蕉| 蜜桃久久精品国产亚洲av| 久久99热这里只有精品18| 乱码一卡2卡4卡精品| 一边亲一边摸免费视频| av视频免费观看在线观看| 视频中文字幕在线观看| 欧美最新免费一区二区三区| 色婷婷久久久亚洲欧美| 国产黄色免费在线视频| 香蕉精品网在线| 爱豆传媒免费全集在线观看| 伊人久久精品亚洲午夜| 亚洲人与动物交配视频| 丰满人妻一区二区三区视频av| 亚洲欧美日韩东京热| 97精品久久久久久久久久精品| 少妇被粗大猛烈的视频| 少妇精品久久久久久久| 九色成人免费人妻av| 在线播放无遮挡| 校园人妻丝袜中文字幕| 国产黄片美女视频| 亚洲综合精品二区| 我的老师免费观看完整版| 欧美精品亚洲一区二区| 黄片无遮挡物在线观看| 亚洲av在线观看美女高潮| 日韩av免费高清视频| 国产精品99久久久久久久久|