孫仁斌
(中南民族大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院,武漢 430074)
本文考慮如下帶奇異項(xiàng)的擬線性拋物方程組在第二邊界條件下的初邊值問題:
(1)
H1:μ(x,t),υ(x,t)為非負(fù)有界連續(xù)函數(shù),0≤μ(x,t)≤μ0,0≤υ(x,t)≤υ0.
H2:φ(s),ψ(s)為非負(fù)連續(xù)可微函數(shù),且φ(0)=ψ(0)=0;當(dāng)s>0時(shí),φ′(s)>0,ψ′(s)>0.
對(duì)于拋物型方程和方程組解的猝滅現(xiàn)象的研究,最早由Kawarada提出,早期的工作都是針對(duì)單個(gè)函數(shù)的半線性方程展開討論[1-6],隨著研究的深入,兩個(gè)函數(shù)的半線性拋物方程組也引起人們的關(guān)注[7-9];另一方面,討論的方程和方程組的復(fù)雜程度也在增加,由半線性方程轉(zhuǎn)向退縮的擬線性方程和方程組[10-15],大部分的結(jié)果都是針對(duì)第一邊界問題的,而對(duì)于第二邊界條件下的初邊值問題的討論卻很少見.本文討論的問題(1)中,由于有條件H2,方程出現(xiàn)退化,而且退縮項(xiàng)由更具一般性的函數(shù)φ(s),ψ(s)構(gòu)成,討論起來難度更大,邊界條件也與大部分已有文獻(xiàn)中的類型不同,屬于第二類.本文的主要結(jié)論是問題(1)的解在一定條件下會(huì)在有限時(shí)刻發(fā)生猝滅,得到此結(jié)論用到的主要是上下解方法,為此,先介紹與此類方程有關(guān)的上下解的定義、比較原理及解的存在性,再通過構(gòu)造問題(1)的一個(gè)下解來得到本文的結(jié)論.
(2)
利用與文[16]、[17]中類似的方法,可以得到下面的比較原理和解的存在性定理.
考慮常微分方程組:
(3)
按照上解的定義,定理3的證明是很容易完成的,在此省略. 因此,如果能找到問題(1)的一個(gè)下解,則由定理2,問題(1)的解一定存在,我們將在下段完成下解的構(gòu)造并得到本文的主要結(jié)論.
考慮邊值問題:
(4)
1≤ξ(x)≤K,x∈Ω.
(5)
為了得到問題(1)的下解,我們還需要另一個(gè)結(jié)論.
設(shè)常數(shù)b,p,q及區(qū)域Ω的測(cè)度之間滿足:
(6)
又令:
(7)
(8)
引理1 假設(shè)(6)式成立,則m1>0,m2>0.
取常數(shù)l1,l2滿足:
(9)
構(gòu)造函數(shù):
(10)
(11)
證明直接計(jì)算有:
綜合定理2~4的結(jié)論,可以得到本文的主要結(jié)果----定理5.
定理5 設(shè)μ0≤δ1,υ0≤δ2,則問題(1)的解必在有限時(shí)刻發(fā)生猝滅.
參 考 文 獻(xiàn)
[1] Chang C Y,Chen C S. A numerical method for semilinear singular parabolic quenching problems[J]. Quarterly of Applied Mathematics,1989, 47:45-57.
[2] Guo J S.On the quenching behavior of the solution of a semilinear parabolic equation[J]. Journal of Mathematical Analysis and Applications,1990, 151:58-79.
[3] Dai Q Y,Gu Y G.A short note on quenching phenomena for semilinear parabolic equations[J].Journal of Differential Equations, 1997, 137:240-250.
[4] Dai Q Y,Zeng X Z.The quenching phenomena for the Cauchy problem of semilinear parabolic equations[J]. Journal of Differential Equations,2001, 175:163-174.
[5] Salin T.On quenching with logarithmic singularity[J].Nonlinear Analysis,2003,52:261-289.
[6] Zhi Y H,Mu C L,Yuan D M.The quenching phenomenon of a nonlocal semilinear heat equation with a weak singularity[J].Applied Mathematics and Computation,2008,201:701-709.
[7] 戴求億.半線性拋物方程組的死滅現(xiàn)象II[J].應(yīng)用數(shù)學(xué)學(xué)報(bào),1997,20(1):11-23.
[8] Zheng S N, Wang W.Non-simultaneous versus simultaneous quenching in a coupled nonlinear parabolic system[J].Nonlinear Analysis, 2008,69:2274-2285.
[9] 孫仁斌.含有奇異項(xiàng)的退縮拋物方程解的整體存在性與有限時(shí)刻猝滅性[J].中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,32(1):102-105.
[10] Winkler M.Quenching phenomena in strongly degenerate diffusion equations with strong absorption[J]. Journal of Mathematical Analysis and Applications,2003,288:481-504.
[11] Giacomoni J,Sauvy P,Shmarev S.Complete quenching for a quasilinear parabolic equation[J].Journal of Mathematical Analysis and Applications, 2014,410:607-624.
[12] Zhou M J,Wang C P,Nie Y Y.Quenching of solutions to a class of semilinear parabolic equations with boundary degeneracy[J].Journal of Mathematical Analysis and Applications, 2015,421:59-74.
[13] Jong-shenq G,Yoshihisa M,Shoji Y. Self-similar solutions for a quenching problem with spatially dependent nonlinearity[J]. Journal Nonlinear Analysis, 2016,147:45-62.
[14] Dao N A,Diaz J I.A gradient estimate to a degenerate parabolic equation with a singular absorption term: The global quenching phenomena[J].Journal of Mathematical Analysis and Applications, 2016,437:445-473.
[15] Kavallaris N I, Lacey A A, Nikolopoulos C V.On the quenching of a nonlocal parabolic problem arising in electrostatic MEMS control[J].Nonlinear Analysis, 2016,138:189-206.
[16] Pao C V.Quasilinear parabolic and elliptic equations with nonlinear boundary conditions[J].Nonlinear Analysis, 2007,66:639-662.
[17] Pao C V.Quasilinear parabolic and elliptic systems with mixed quasimonotone functions[J]. Journal of Differential Equations,2013, 255:1515-1553.