• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Levy Constrained Search in Fock Space:An Alternative Approach to Noninteger Electron Number

    2018-07-03 09:57:40AYERSPaulLEVYMel
    物理化學(xué)學(xué)報 2018年6期

    AYERS Paul W. , LEVY Mel

    1 Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.

    2 Department of Physics, North Carolina A&T State University, Greensboro, NC 27411, USA.

    3 Department of Chemistry, Duke University, Durham, NC 27708, USA.

    4 Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.

    1 Motivation

    In the density functional theory of molecular electronic structure, the electron density replaces the many-electron wavefunction as the fundamental descriptor of an electronic system1–5. The variational principle for the N-electron wavefunction

    can be used to find the ground state and also all of the stationary excited states of the system. Here,

    anddenote the spatial position and spin of the N electrons.

    The corresponding variational principle for the electron density1,5,

    where

    and in this paper we will choose to consider the Levy constrained search functional5,6,

    The notation in Eq. (6) means that one minimizes the expectation value of the sum of the kinetic and electron-electron repulsion energies,

    with respect to all wavefunctions that give the target electron density,

    Eq. (4) can be used to find the ground-state of the system and, for systems with more than one electron, at most a few excited states of the system7. Note that by choosing a different functional form in Eq. (6) (e.g., a bifunctional), excited-states are accessible from the fundamental variational principle, Eq.(4)8–21,22.

    Eq. (4) presents a fundamental difficulty: an infinitesimal change in the electron density only at the point r will induce an infinitesimal change in the number of electrons, but the Levy constrained search functional, Eq. (6), is defined only for electron densities with integer electron number. In density functional theory, one is thus impelled to extend the domain of F[ρ] to include electron densities with noninteger electron number. This can be done in several ways: using the grand canonical ensemble23,24, making mathematical arguments based on size-consistency, etc.25,26. While the need to consider“nonphysical” systems with the noninteger electron number seems inconvenient at first, it turns out to be useful conceptually2,27–34, and is one reason that the discipline known as conceptual density functional theory has had such great success at describing electron-transfer processes in chemistry like acid/base reactions35–39.

    2 The Levy constrained search in Fock space

    The goal of this paper is to show that the Levy wavefunction constrained search can be extended to densities with noninteger electron number, and that the resulting functional is identical(for ground state densities) to the zero-temperature grand-canonical ensemble constrained search. This is a result that has been known to these authors for some time (since at least the late 1990s) but which seemingly has not been previously published.

    The approach is simple. Any wavefunction in Fock space40–45can be written as,

    where ψ(N)is an N-electron wavefunction (with integer N).The electron number operator is a symmetry of the system in the sense that it commutes with the Hamiltonian in Fock space;this means that wavefunctions with different electron number are orthogonal. For simplicity, henceforth we shall assume that the ψ(N)for each specific electron number are normalized to unity, so that:

    The expectation value for the energy, the number of electrons, and the electron density in Fock space are then,respectively, ψ

    As usual, the electron density is normalized to the number of electrons,

    The Levy constrained search in Fock space is defined as

    It is straightforward to see that this functional is exact. Using the variational principle in Fock space,

    The last line indicates that if a density other than the ground-state electron density is used, an upper bound to the true ground-state energy is obtained.

    For integer electron number, FFock[ρ] is a lower bound to the traditional fixed-N wavefunction constrained search. More generally, F Fock[ρ] ≤ F Levy[ρ]. This is clear from the fact that the variational space in Eq. (15) is larger than it is in Eq. (6). For example, a 10-electron density can be constructed as

    or as

    Only Eq. (17) is included in the traditional Levy constrained search, while both Eqs. (17) and (18) are included in its Fock-space generalization.

    For ground-state systems with noninteger electron number,FFock[ρ] gives the same energy as obtained using the zero-temperature grand canonical ensemble approach. To see this, we use the equivalence

    For convenience, we expandin terms of the N-electron eigenfunctions ofTherefore,

    A reader familiar with the zero-temperature grand canonical ensemble will recognize that Eq. (20) is equivalent to the expectation value for the electronic energy in that approach23,24,46–57. For completeness, however, we will simplify the expression in Eq. (20). First, note that mixing in contributions from N-electron excited states always increases the energy. Therefore,

    Next we assume that the energy is strictly convex with respect to the number of electrons. (Henceforth we will call this N-convexity.) That is, for systems with an integer number of electrons, N,

    Eq. (22) is believed to be true for all Coulomb systems, but it has never been proved. The minimum in Eq. (21) then occurs when

    where [N0] and [N0] denote the floor and ceiling functions,respectively. (e.g.,3 7 and3 8.) The energy expression is therefore

    This is the mathematical representation of the “straight-line interpolation” that is obtained when one rigorously describes the ground state of a system with noninteger electron number.Notice that by differentiating Eq. (24) with respect to the external potential, one finds that the electron density23,58and its response functions34are also linearly interpolated between their values at the integers. The same interpolation, in fact,occurs for most molecular properties26.

    When the energy is not N-convex, the N0-electron ground state energy of the system with external potential v(r),

    is still identical to the result from the grand canonical ensemble. When N-convexity is not true, there exists two nonnegative integers, k and l, such that

    This mixed-N-state is a pure state in Fock space, with the wavefunction,

    In general, a mixture of pure states from different electron numbers is a pure state in Fock space. While FFock[ρ] is identical to the zero-temperature grand canonical ensemble for electronic ground states, it does have advantages for the treatment of excited states. Like the fixed-N ensemble constrained search59, the grand canonical ensemble functional is a convex function of the electron density. (To avoid confusion with N-convexity, we call this ρ-convexity.) Like the conventional fixed-N Levy constrained search, FFock[ρ] is not convex. This means that FFock[ρ] can be used to study excited-state electron densities.

    Specifically, suppose that(r) is an eigendensity for an excited state of the Fock-space Hamiltonian H?vand that it is not a ground-state v-representable density. Suppose furthermore that when one performs the constrained search, that the wavefunction one finds is an eigenfunction,H?vΨk=EkΨk,

    Then

    This is true by the same argument Perdew and Levy made in Ref. 7. Intuitively, one can derive it using the chain rule.Restricting oneself to density variations that preserve electron number, one may write,

    but the first term in the integral is zero because the Fock-space Levy constrained search recovers an excited-state eigenfunction for the system, and so infinitesimal variations of that wavefunction fail to alter the energy.

    3 Summary

    We extended the Levy wavefunction constrained search to Fock space wavefunctions,

    defining

    This functional is exact and variational; it gives the same results as the zero-temperature grand-canonical ensemble constrained search functional for ground states of electronic systems with any number of electrons, including nonintegers.One potential advantage of this functional is that it can give exact results for certain excited states because it, like the fixed-N Levy constrained search (Eq. (6)) is not ρ-convex. In general, FFock[ρ] ≤ FLevy[ρ]. However, FFock[ρ] = FLevy[ρ] for pure-state v-representable densities whenever the electronic energy is a convex function of the number of electrons.

    Acknowledgment:PWA thanks Compute Canada,NSERC, and the Canada Research Chairs for research support.

    (1) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.doi: 10.1103/PhysRev.136.B864

    (2) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.

    (3) Kohn, W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100,12974. doi: 10.1021/jp960669l

    (4) Kohn, W. Rev. Mod. Phys. 1999, 71, 1253.doi: 10.1103/RevModPhys.71.1253

    (5) Levy, M. Proc. Natl. Acad. Sci. USA 1979, 76, 6062.doi: 10.1073/pnas.76.12.6062

    (6) Levy, M.; Perdew, J. P. The Constrained Search Formulation of Density Functional Theory. In Density Functional Methods in Physics, NATO ASI Series (Series B: Physics), Vol. 123; Dreizler, R.M., da Providência, J. Eds.; Springer: Boston, MA, USA.doi: 10.1007/978-1-4757-0818-9_2

    (7) Perdew, J. P.; Levy, M. Phys. Rev. B 1985, 31, 6264.doi: 10.1103/PhysRevB.31.6264

    (8) Gorling, A. Phys. Rev. A 1996, 54, 3912.doi: 10.1103/PhysRevA.54.3912

    (9) Gorling, A. Phys. Rev. A 1999, 59, 3359.doi: 10.1103/PhysRevA.59.3359

    (10) Levy, M. In On Time-Independent Density-Functional Theories for Excited States, Proceedings of the 1st International Workshop Electron Correlation and Material Properties, 1999;pp. 299–308.

    (11) Levy, M.; Nagy, A. Phys. Rev. Lett. 1999, 83, 4361.doi: 10.1103/PhysRevLett.83.4361

    (12) Levy, M.; Nagy, A. Phys. Rev. A 1999, 59, 1687.doi: 10.1103/PhysRevA.59.1687

    (13) Nagy, A.; Levy, M. Phys. Rev. A 2001, 63, 052502.doi: 10.1103/PhysRevA.63.052502

    (14) Nagy, A.; Levy, M.; Ayers, P. W. Time-Independent Theory for a Single Excited State. In Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2009; p. 121.

    (15) Ayers, P. W.; Levy, M. Phys. Rev. A 2009, 80, 012508.doi: 10.1103/PhysRevA.80.012508

    (16) Ayers, P. W.; Nagy, A.; Levy, M. Phys. Rev. A 2012, 85, 042518.doi: 10.1103/PhysRevA.85.042518

    (17) Ayers, P. W.; Levy, M.; Nagy, A. J. Chem. Phys. 2015, 143 (19), 4.doi: 10.1063/1.4934963

    (18) Evangelista, F. A.; Shushkov, P.; Tully, J. C. J. Phys. Chem. A 2013,117 (32), 7378. doi: 10.1021/jp401323d

    (19) Glushkov, V. N.; Assfeld, X. J. Chem. Phys. 2010, 132, 204106.doi: 10.1063/1.3443777

    (20) Glushkov, V. N.; Levy, M. J. Chem. Phys. 2007, 126, 174106.doi: 10.1063/1.2733657

    (21) Miranda-Quintana, R. A.; Gonzalez, M. M. Int. J. Quantum Chem.2013, 113 (22), 2478. doi: 10.1002/qua.24486

    (22) Ayers, P. W. Variational Principles for Understanding Chemical Reactions. Ph.D. Dissertation, University of North Carolina: Chapel Hill, NV, USA, 2001.

    (23) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett.1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691

    (24) Zhang, Y. K.; Yang, W. T. Theor. Chem. Acc. 2000, 103, 346.doi: 10.1007/s002149900021

    (25) Yang, W. T.; Zhang, Y. K.; Ayers, P. W. Phys. Rev. Lett. 2000, 84,5172. doi: 10.1103/PhysRevLett.84.5172

    (26) Ayers, P. W. J. Math. Chem. 2008, 43, 285.doi: 10.1007/s10910-006-9195-5

    (27) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590.doi: 10.3866/PKU.WHXB20090332

    (28) Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307

    (29) Johnson, P. A.; Bartolotti, L. J.; Ayers, P. W.; Fievez, T.; Geerlings,P. Charge Density and Chemical Reactivity: A Unified View from Conceptual DFT. In Modern Charge Density Analysis; Gatti, C.,Macchi, P. Eds.; Springer: New York, NY, USA, 2012; pp. 715–764.

    (30) De Proft, F.; Geerlings, P.; Ayers, P. W. The conceptual Density Functional Theory Perspective of Bonding. In The Chemical Bond:Fundamental Aspects of Chemical Bonding; Shaik, S., Frenking, G.,Eds.; Wiley: Darmstadt, Germany, 2014; Vol. 1, pp. 233–270.

    (31) Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    (32) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103,1793. doi: 10.1021/cr990029p

    (33) Heidar-Zadeh, F.; Miranda-Quintana, R. A.; Verstraelen, T.;Bultinck, P.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12 (12),5777. doi: 10.1021/acs.jctc.6b00494

    (34) Heidar-Zadeh, F.; Richer, M.; Fias, S.; Miranda-Quintana, R. A.;Chan, M.; Franco-Perez, M.; Gonzalez-Espinoza, C. E.; Kim, T. D.;Lanssens, C.; Patel, A. H. G.; et al. Chem. Phys. Lett. 2016, 660, 307.doi: 10.1016/j.cplett.2016.07.039

    (35) Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys. 2009, 131,164107. doi: 10.1063/1.3251124

    (36) Ayers, P. W.; Parr, R. G.; Pearson, R. G. J. Chem. Phys. 2006, 124,194107. doi: 10.1063/1.2196882

    (37) Chattaraj, P. K.; Ayers, P. W.; Melin, J. Phys. Chem. Chem. Phys.2007, 9, 3853. doi: 10.1039/b705742c

    (38) Ayers, P. W. Faraday Discuss. 2007, 135, 161.doi: 10.1039/b606877d

    (39) Chattaraj, P. K.; Ayers, P. W. J. Chem. Phys. 2005, 123, 086101.doi: 10.1063/1.2011395

    (40) Kutzelnigg, W. J. Chem. Phys. 1985, 82 (9), 4166.doi: 10.1063/1.448859

    (41) Kutzelnigg, W.; Koch, S. J. Chem. Phys. 1983, 79 (9), 4315.doi: 10.1063/1.446313

    (42) Kutzelnigg, W. J. Chem. Phys. 1982, 77 (6), 3081.doi: 10.1063/1.444231

    (43) Kutzelnigg, W. Quantum chemistry In Fock Space. In Aspects of Many-Body Effects in Molecules and Extended Systems; Mukherjee,D., Ed.; Springer-Verlag: Berlin, Germany,1989; pp. 35–68.

    (44) Kutzelnigg, W. J. Chem. Phys. 1984, 80 (2), 822.doi: 10.1063/1.446736

    (45) Stone, M. H. Linear Transformations in Hilbert Space; American Mathematical Society: New York, NY, USA, 1932; Vol. 15.

    (46) Eschrig, H. The Fundamentals of Density Functional Theory. Eagle:Leipzig, Germany, 2003.

    (47) Eschrig, H. Phys. Rev. B 2010, 82, 205120.doi: 10.1103/PhysRevB.82.205120

    (48) Malek, A. M.; Balawender, R. ar Xiv:1310.6918 2013.

    (49) Malek, A.; Balawender, R. J. Chem. Phys. 2015, 142. 054104.doi: 10.1063/1.4906555

    (50) Franco-Perez, M.; Ayers, P. W.; Gazquez, J. L. Theor. Chem. Acc.2016, 135 (8), 199. doi: 10.1007/s00214-016-1961-2

    (51) Franco-Perez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. J. Chem.Phys. 2015, 143 (24), 244117. doi: 10.1063/1.4938422

    (52) Franco-Perez, M.; Gazquez, J. L.; Ayers, P. W.; Vela, A. J. Chem.Phys. 2015, 143 (15), 154103. doi: 10.1063/1.4932539

    (53) Miranda-Quintana, R. A.; Ayers, P. W. J. Chem. Phys. 2016, 144(24), 244112. doi: 10.1063/1.4953557

    (54) Bochicchio, R. C.; Miranda-Quintana, R. A.; Rial, D. J. Chem. Phys.2013, 139 (19), 191101. doi: 10.1063/1.4832495

    (55) Franco-Perez, M.; Heidar-Zadeh, F.; Ayers, P. W.; Gazquez, J. L.;Vela, A. Phys. Chem. Chem. Phys. 2017, 19 (18), 11588.doi: 10.1039/c7cp00224f

    (56) Gyftopoulos, E. P.; Hatsopoulos, G. N. Proc. Natl. Acad. Sci. USA 1965, 60, 786.

    (57) Ayers, P. W.; Yang, W. Density Functional Theory. In Computational Medicinal Chemistry for Drug Discovery; Bultinck,P., de Winter, H., Langenaeker, W., Tollenaere, J. P. Eds.; Dekker:New York, NY, USA, 2003; pp. 571–616.

    (58) Ayers, P. W.; Levy, M. Theor. Chem. Acc. 2000, 103, 353.doi: 10.1007/s002149900093

    (59) Valone, S. M. J. Chem. Phys. 1980, 73, 4653. doi: 10.1063/1.440656

    成人亚洲精品av一区二区| 最近的中文字幕免费完整| 日韩不卡一区二区三区视频在线| 大香蕉久久网| 成人综合一区亚洲| 亚洲精品乱久久久久久| 成人一区二区视频在线观看| 国产 一区精品| 看十八女毛片水多多多| 国产一区有黄有色的免费视频| 一二三四中文在线观看免费高清| 亚洲内射少妇av| 午夜福利在线观看免费完整高清在| 国产爽快片一区二区三区| 两个人的视频大全免费| 九九在线视频观看精品| 大又大粗又爽又黄少妇毛片口| 国产精品秋霞免费鲁丝片| 国产永久视频网站| 又粗又硬又长又爽又黄的视频| 国产精品成人在线| 欧美激情在线99| 成人免费观看视频高清| 亚洲婷婷狠狠爱综合网| 色哟哟·www| 午夜视频国产福利| 中文字幕亚洲精品专区| 日韩av免费高清视频| 中文资源天堂在线| 韩国高清视频一区二区三区| 97在线视频观看| 日产精品乱码卡一卡2卡三| 亚洲精品中文字幕在线视频 | 亚洲国产av新网站| 欧美日韩一区二区视频在线观看视频在线 | 性色avwww在线观看| 在线观看三级黄色| 亚洲国产精品专区欧美| 国产免费视频播放在线视频| 精品一区二区免费观看| 极品少妇高潮喷水抽搐| 特大巨黑吊av在线直播| 欧美bdsm另类| 亚洲在久久综合| 两个人的视频大全免费| 午夜福利在线观看免费完整高清在| 男女那种视频在线观看| 亚洲美女搞黄在线观看| 免费黄色在线免费观看| 日产精品乱码卡一卡2卡三| 中文天堂在线官网| 青春草国产在线视频| 亚洲四区av| 久久亚洲国产成人精品v| 国产色婷婷99| 狂野欧美激情性bbbbbb| 热99国产精品久久久久久7| 国产精品女同一区二区软件| 久久精品国产自在天天线| 丝袜美腿在线中文| 少妇猛男粗大的猛烈进出视频 | 久久精品国产自在天天线| 人人妻人人爽人人添夜夜欢视频 | 欧美日韩一区二区视频在线观看视频在线 | 新久久久久国产一级毛片| 免费看光身美女| 97人妻精品一区二区三区麻豆| 欧美变态另类bdsm刘玥| 91精品国产九色| 日韩伦理黄色片| 嫩草影院入口| av.在线天堂| 国产黄色免费在线视频| 日韩av免费高清视频| 亚洲国产精品999| 神马国产精品三级电影在线观看| 极品教师在线视频| 亚洲怡红院男人天堂| 国内少妇人妻偷人精品xxx网站| xxx大片免费视频| 各种免费的搞黄视频| 久久精品国产a三级三级三级| 久久久亚洲精品成人影院| 亚洲,一卡二卡三卡| 欧美3d第一页| 国产亚洲一区二区精品| 能在线免费看毛片的网站| 熟女电影av网| 免费观看av网站的网址| 日韩,欧美,国产一区二区三区| 黄色配什么色好看| 久久久久久久国产电影| 国产永久视频网站| 精品一区二区三区视频在线| 国产精品偷伦视频观看了| 久久久久九九精品影院| 日韩,欧美,国产一区二区三区| 在线 av 中文字幕| 国产精品蜜桃在线观看| 亚洲av不卡在线观看| 最近手机中文字幕大全| 免费少妇av软件| 91精品一卡2卡3卡4卡| 国产男人的电影天堂91| 国产午夜精品一二区理论片| 51国产日韩欧美| 成人国产麻豆网| 男人和女人高潮做爰伦理| 内地一区二区视频在线| 好男人在线观看高清免费视频| 国产高清有码在线观看视频| 免费av毛片视频| 一级爰片在线观看| 国产成人精品福利久久| 哪个播放器可以免费观看大片| 91精品国产九色| 免费观看a级毛片全部| 欧美xxⅹ黑人| 免费观看在线日韩| 色5月婷婷丁香| 亚洲色图综合在线观看| 亚洲精品国产av成人精品| 内地一区二区视频在线| 欧美3d第一页| 男女国产视频网站| 久久久久久久国产电影| 欧美日本视频| 成人鲁丝片一二三区免费| 精品国产三级普通话版| 天天躁夜夜躁狠狠久久av| 免费看a级黄色片| 国产 一区精品| 亚洲av成人精品一二三区| 久久99热这里只有精品18| 亚洲av男天堂| 大码成人一级视频| a级毛片免费高清观看在线播放| 听说在线观看完整版免费高清| 18禁在线播放成人免费| 国产免费视频播放在线视频| av卡一久久| 国产亚洲精品久久久com| 国产淫片久久久久久久久| 王馨瑶露胸无遮挡在线观看| 久久韩国三级中文字幕| 亚洲av免费在线观看| 亚洲一级一片aⅴ在线观看| 中国三级夫妇交换| 亚洲内射少妇av| av在线天堂中文字幕| 精品午夜福利在线看| 九九久久精品国产亚洲av麻豆| av免费观看日本| 亚洲自拍偷在线| 欧美精品一区二区大全| 日本-黄色视频高清免费观看| 免费av不卡在线播放| 国产精品人妻久久久久久| a级一级毛片免费在线观看| av专区在线播放| 免费黄频网站在线观看国产| 精品99又大又爽又粗少妇毛片| 国产69精品久久久久777片| 色视频在线一区二区三区| 美女主播在线视频| 国产女主播在线喷水免费视频网站| 老司机影院毛片| 亚洲国产日韩一区二区| 久久久久久久久久成人| 国产亚洲av嫩草精品影院| 日韩人妻高清精品专区| 永久网站在线| 美女脱内裤让男人舔精品视频| 久久久欧美国产精品| 赤兔流量卡办理| 国产成人a区在线观看| 午夜爱爱视频在线播放| 啦啦啦中文免费视频观看日本| 欧美日韩精品成人综合77777| 日本一本二区三区精品| 男女那种视频在线观看| 涩涩av久久男人的天堂| 亚洲国产精品成人久久小说| 在现免费观看毛片| 天天躁日日操中文字幕| 啦啦啦在线观看免费高清www| 亚洲av成人精品一二三区| 免费播放大片免费观看视频在线观看| 2021天堂中文幕一二区在线观| 国产精品人妻久久久久久| 精品久久久噜噜| 亚洲av中文字字幕乱码综合| 春色校园在线视频观看| 深爱激情五月婷婷| 日本av手机在线免费观看| 你懂的网址亚洲精品在线观看| 国产av码专区亚洲av| 亚洲av中文字字幕乱码综合| 国产成人福利小说| 国产成人精品福利久久| 亚洲性久久影院| 国产亚洲av片在线观看秒播厂| 91精品伊人久久大香线蕉| 欧美日韩国产mv在线观看视频 | 成人国产av品久久久| 欧美精品一区二区大全| 欧美激情国产日韩精品一区| 国产精品久久久久久精品古装| 免费看日本二区| 99热网站在线观看| 777米奇影视久久| 久久久亚洲精品成人影院| 欧美最新免费一区二区三区| 国产成人a∨麻豆精品| 国产综合精华液| 亚洲,一卡二卡三卡| 日韩强制内射视频| 少妇猛男粗大的猛烈进出视频 | av一本久久久久| 欧美激情在线99| 两个人的视频大全免费| 老司机影院毛片| av黄色大香蕉| 少妇熟女欧美另类| 男女边吃奶边做爰视频| 在线观看av片永久免费下载| 插阴视频在线观看视频| 男人和女人高潮做爰伦理| 亚洲,一卡二卡三卡| 在线观看一区二区三区| 黑人高潮一二区| 永久免费av网站大全| 高清午夜精品一区二区三区| 成人欧美大片| 另类亚洲欧美激情| 国产黄片美女视频| 97人妻精品一区二区三区麻豆| 人妻夜夜爽99麻豆av| 成人国产麻豆网| 一区二区三区四区激情视频| 国产高清有码在线观看视频| 亚洲精品国产色婷婷电影| 国产高清有码在线观看视频| 亚洲欧美日韩无卡精品| 日韩一本色道免费dvd| 国产综合懂色| 亚洲无线观看免费| 免费黄频网站在线观看国产| 又粗又硬又长又爽又黄的视频| 国产男女超爽视频在线观看| 少妇的逼水好多| 超碰av人人做人人爽久久| 69av精品久久久久久| 久久久久久久久大av| 国产色爽女视频免费观看| 欧美97在线视频| 国产免费一区二区三区四区乱码| 亚洲国产欧美人成| av卡一久久| 日本黄大片高清| 日韩在线高清观看一区二区三区| 最后的刺客免费高清国语| 婷婷色综合大香蕉| 亚洲精品日韩av片在线观看| 亚洲精品久久久久久婷婷小说| 亚洲怡红院男人天堂| 一级片'在线观看视频| 久久久久久久久久久免费av| 成人毛片60女人毛片免费| 亚洲精品日韩av片在线观看| 一区二区av电影网| 欧美激情国产日韩精品一区| 国产精品人妻久久久久久| 卡戴珊不雅视频在线播放| 少妇裸体淫交视频免费看高清| 亚洲,一卡二卡三卡| 午夜福利视频精品| 亚洲欧美日韩另类电影网站 | 男插女下体视频免费在线播放| 性色av一级| 99久久中文字幕三级久久日本| www.色视频.com| 我的老师免费观看完整版| 亚洲精品日本国产第一区| 亚洲精品成人av观看孕妇| 午夜精品一区二区三区免费看| 高清毛片免费看| 亚洲,欧美,日韩| 亚洲av欧美aⅴ国产| 国产 一区精品| 日本与韩国留学比较| 免费看a级黄色片| 在线观看一区二区三区| 看黄色毛片网站| 插逼视频在线观看| 亚洲性久久影院| 国产av码专区亚洲av| 少妇人妻一区二区三区视频| 波野结衣二区三区在线| 国产伦理片在线播放av一区| 好男人在线观看高清免费视频| 国产在线一区二区三区精| 国产视频首页在线观看| 久久6这里有精品| 成人毛片a级毛片在线播放| 黄片wwwwww| 99久久九九国产精品国产免费| av专区在线播放| 联通29元200g的流量卡| av卡一久久| 六月丁香七月| 久久精品久久久久久噜噜老黄| 激情 狠狠 欧美| 汤姆久久久久久久影院中文字幕| 白带黄色成豆腐渣| 亚洲精品自拍成人| 欧美精品国产亚洲| 久久久久久伊人网av| av网站免费在线观看视频| 午夜福利网站1000一区二区三区| 交换朋友夫妻互换小说| 80岁老熟妇乱子伦牲交| 日本色播在线视频| 精品国产一区二区三区久久久樱花 | 男人舔奶头视频| 丰满乱子伦码专区| 国产男人的电影天堂91| 日韩大片免费观看网站| 婷婷色综合www| 国产成人a区在线观看| 美女被艹到高潮喷水动态| 男女边摸边吃奶| 2018国产大陆天天弄谢| 国产人妻一区二区三区在| 午夜视频国产福利| 少妇丰满av| 免费观看无遮挡的男女| 美女高潮的动态| 在线观看一区二区三区激情| 精品酒店卫生间| 七月丁香在线播放| 国产精品熟女久久久久浪| 欧美日本视频| 免费播放大片免费观看视频在线观看| 热99国产精品久久久久久7| 国产午夜精品一二区理论片| 少妇丰满av| 少妇猛男粗大的猛烈进出视频 | 欧美三级亚洲精品| 亚洲精品成人久久久久久| 亚洲国产欧美人成| 韩国av在线不卡| 国产成人午夜福利电影在线观看| 久久久亚洲精品成人影院| av国产精品久久久久影院| 日本黄色片子视频| 色5月婷婷丁香| 国产精品秋霞免费鲁丝片| 天天躁日日操中文字幕| 精品亚洲乱码少妇综合久久| 午夜福利在线观看免费完整高清在| 99久久精品热视频| 精品久久久久久久末码| 国产成人精品一,二区| 欧美变态另类bdsm刘玥| 永久免费av网站大全| 91aial.com中文字幕在线观看| 成人国产av品久久久| 视频中文字幕在线观看| 人妻系列 视频| 亚洲无线观看免费| 亚洲精品日韩av片在线观看| 亚洲精品国产av成人精品| 国产色婷婷99| 久久久亚洲精品成人影院| 91久久精品国产一区二区成人| 亚洲精品乱码久久久v下载方式| 女人久久www免费人成看片| 亚洲国产av新网站| 狂野欧美激情性bbbbbb| 免费av观看视频| 少妇被粗大猛烈的视频| 五月天丁香电影| 久久久精品免费免费高清| 久久人人爽人人爽人人片va| 国产乱来视频区| 在线播放无遮挡| 最近最新中文字幕免费大全7| 91久久精品国产一区二区成人| 可以在线观看毛片的网站| 亚洲欧美精品自产自拍| 2018国产大陆天天弄谢| 97热精品久久久久久| 91精品一卡2卡3卡4卡| 91久久精品电影网| 亚洲av福利一区| 下体分泌物呈黄色| 亚洲国产精品999| 亚洲精品日韩在线中文字幕| 一级片'在线观看视频| 国产亚洲精品久久久com| 免费少妇av软件| 男女边摸边吃奶| 欧美成人a在线观看| 日本一本二区三区精品| 老司机影院毛片| 五月玫瑰六月丁香| 国产精品一区www在线观看| 一级毛片aaaaaa免费看小| 在线观看一区二区三区| 亚洲国产色片| 99re6热这里在线精品视频| 啦啦啦在线观看免费高清www| 亚洲成人久久爱视频| 九草在线视频观看| 日日啪夜夜撸| 亚洲精品久久午夜乱码| 如何舔出高潮| 欧美人与善性xxx| 大片电影免费在线观看免费| 亚洲精品日本国产第一区| 国产淫语在线视频| 亚洲精品日韩在线中文字幕| 一二三四中文在线观看免费高清| 高清毛片免费看| 久久热精品热| 六月丁香七月| 久热这里只有精品99| 国产精品久久久久久精品电影| 国产美女午夜福利| 全区人妻精品视频| 精品一区在线观看国产| 韩国av在线不卡| 成人毛片60女人毛片免费| 校园人妻丝袜中文字幕| 精品人妻一区二区三区麻豆| 精品久久久久久久久亚洲| 国产 精品1| 亚洲欧美精品自产自拍| 一级毛片久久久久久久久女| 尤物成人国产欧美一区二区三区| 91aial.com中文字幕在线观看| 亚洲最大成人手机在线| 成人美女网站在线观看视频| 久久精品久久久久久噜噜老黄| 国产 精品1| 亚洲第一区二区三区不卡| 亚洲av一区综合| 久久精品国产鲁丝片午夜精品| 亚洲成人中文字幕在线播放| 成年人午夜在线观看视频| 在线天堂最新版资源| 久久久久久久午夜电影| 熟妇人妻不卡中文字幕| 国产精品成人在线| 女人十人毛片免费观看3o分钟| 国产探花在线观看一区二区| 日韩精品有码人妻一区| 欧美成人一区二区免费高清观看| 人妻 亚洲 视频| 中国三级夫妇交换| 精品一区二区三区视频在线| 尾随美女入室| 午夜激情久久久久久久| 成年免费大片在线观看| av福利片在线观看| 久久综合国产亚洲精品| 97人妻精品一区二区三区麻豆| 国产伦精品一区二区三区视频9| 99热这里只有是精品在线观看| 在线观看一区二区三区| 成年av动漫网址| 一本色道久久久久久精品综合| 久久久久久久久久久丰满| 国产成年人精品一区二区| 亚洲精品乱码久久久v下载方式| 成年女人看的毛片在线观看| 亚洲最大成人手机在线| 亚洲国产高清在线一区二区三| 丝袜脚勾引网站| 在线看a的网站| 免费在线观看成人毛片| 男人舔奶头视频| 中文字幕免费在线视频6| 国产一区二区在线观看日韩| 亚洲在线观看片| 亚洲国产欧美在线一区| 久久久久久久久久成人| 日本爱情动作片www.在线观看| 精品国产露脸久久av麻豆| 午夜老司机福利剧场| 成人毛片a级毛片在线播放| 丝袜脚勾引网站| 亚洲天堂av无毛| 极品教师在线视频| 亚洲国产欧美在线一区| 国产淫语在线视频| 最近中文字幕高清免费大全6| 亚洲欧美日韩东京热| 最近中文字幕高清免费大全6| 国产一区二区三区综合在线观看 | 26uuu在线亚洲综合色| 精品人妻一区二区三区麻豆| 一本色道久久久久久精品综合| 免费av观看视频| 听说在线观看完整版免费高清| 国产成人精品福利久久| 男男h啪啪无遮挡| 身体一侧抽搐| 水蜜桃什么品种好| 99热国产这里只有精品6| 九九爱精品视频在线观看| 日韩av免费高清视频| 99久久精品一区二区三区| 综合色丁香网| 大香蕉久久网| 精品人妻熟女av久视频| 午夜福利在线在线| av在线app专区| 七月丁香在线播放| 尾随美女入室| 久久精品久久精品一区二区三区| 高清午夜精品一区二区三区| 亚洲欧美清纯卡通| 亚洲自拍偷在线| 亚洲天堂国产精品一区在线| 国产黄a三级三级三级人| av在线亚洲专区| 最近中文字幕高清免费大全6| 天堂中文最新版在线下载 | h日本视频在线播放| 少妇猛男粗大的猛烈进出视频 | 在线免费十八禁| 黄片wwwwww| 高清毛片免费看| 久久久久久久午夜电影| 亚洲国产精品999| 免费观看a级毛片全部| 久久精品国产a三级三级三级| 九色成人免费人妻av| 国产成人精品福利久久| 最后的刺客免费高清国语| 午夜福利网站1000一区二区三区| 在线亚洲精品国产二区图片欧美 | 视频区图区小说| 日韩欧美一区视频在线观看 | 日本与韩国留学比较| 极品教师在线视频| 精品久久久久久久久av| 国产午夜精品一二区理论片| av国产久精品久网站免费入址| 日韩国内少妇激情av| 美女cb高潮喷水在线观看| 久久久午夜欧美精品| 亚洲精品456在线播放app| 亚洲av免费在线观看| 秋霞伦理黄片| 男男h啪啪无遮挡| 亚洲国产高清在线一区二区三| 天堂俺去俺来也www色官网| 婷婷色麻豆天堂久久| 蜜桃久久精品国产亚洲av| 亚洲av.av天堂| 麻豆成人av视频| 久久97久久精品| 精品熟女少妇av免费看| 欧美 日韩 精品 国产| 久久精品国产自在天天线| 80岁老熟妇乱子伦牲交| 综合色丁香网| 永久免费av网站大全| 亚洲欧美清纯卡通| 汤姆久久久久久久影院中文字幕| 精品人妻一区二区三区麻豆| 日韩大片免费观看网站| 日韩成人伦理影院| 少妇猛男粗大的猛烈进出视频 | 午夜老司机福利剧场| 一区二区三区精品91| 女的被弄到高潮叫床怎么办| 亚洲欧洲日产国产| 80岁老熟妇乱子伦牲交| 国产免费一区二区三区四区乱码| av播播在线观看一区| 亚洲精品国产av蜜桃| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| 六月丁香七月| 亚洲欧美一区二区三区黑人 | 91aial.com中文字幕在线观看| 一级爰片在线观看| 最近中文字幕高清免费大全6| 老司机影院毛片| 免费看av在线观看网站| 精品久久久久久久久亚洲| 日韩一区二区视频免费看| 亚洲精品影视一区二区三区av| 日本黄大片高清| 国产久久久一区二区三区| 精品午夜福利在线看| www.av在线官网国产| 久久久久精品性色| 亚洲成人中文字幕在线播放| 赤兔流量卡办理| 久久人人爽av亚洲精品天堂 | 男人舔奶头视频| 最近最新中文字幕大全电影3| 国产高清国产精品国产三级 | 男的添女的下面高潮视频| 成年人午夜在线观看视频| 日产精品乱码卡一卡2卡三| 又黄又爽又刺激的免费视频.| 日韩强制内射视频| .国产精品久久| 最近手机中文字幕大全|