牛鐵泉,董燕梅,劉海霞,張小軍,2,高燕,2,張鵬飛,2,梁長梅,溫鵬飛,2
?
葡萄果實MYBA1與UFGT、DFR的作用機制
牛鐵泉1,董燕梅1,劉海霞1,張小軍1,2,高燕1,2,張鵬飛1,2,梁長梅3,溫鵬飛1,2
(1山西農(nóng)業(yè)大學園藝學院,山西太谷 030801;2果樹種質(zhì)創(chuàng)制和利用山西省重點實驗室,太原 030031;3山西農(nóng)業(yè)大學信息科學與工程學院, 山西太谷 030801)
【目的】轉(zhuǎn)錄因子在花色苷生物合成中扮演著重要角色,通過對葡萄果實發(fā)育過程中的表達和花色苷的積累模式以及與作用機制的分析,闡明花色苷合成調(diào)控機制?!痉椒ā坷脤崟r熒光PCR檢測在葡萄果實發(fā)育過程中的表達模式;采用分光光度計測定葡萄中花色苷積累量的變化規(guī)律;用SAS8.0軟件分析不同時期表達量及花色苷積累量之間的相關(guān)性;通過酵母雜交系統(tǒng)檢測轉(zhuǎn)錄激活活性及其與間的作用?!窘Y(jié)果】實時熒光定量PCR結(jié)果顯示,在葡萄果實發(fā)育過程中呈現(xiàn)先上升后下降的趨勢,在轉(zhuǎn)色期(花后60—80 d)達到最大值。葡萄果實發(fā)育過程中花色苷積累量表現(xiàn)為先上升后趨于穩(wěn)定,轉(zhuǎn)色期(花后80 d)達到最大值。相關(guān)性分析結(jié)果表明,表達量與表達量呈顯著正相關(guān),花色苷積累量與表達量呈顯著正相關(guān)。酵母雜交系統(tǒng)檢測表明,具有轉(zhuǎn)錄激活功能,能夠特異結(jié)合啟動子,與編碼的蛋白不具有相互作用?!窘Y(jié)論】花色苷含量與表達量呈顯著正相關(guān),具有轉(zhuǎn)錄激活功能且能特異性結(jié)合的啟動子,表明通過激活的啟動子來調(diào)節(jié)其表達,從而調(diào)控花色苷的合成積累。
葡萄;;;;酵母雜交
【研究意義】葡萄果皮色澤是葡萄果實重要的外觀品質(zhì)性狀之一,也是決定葡萄酒質(zhì)量的關(guān)鍵因素[1],而果皮顏色主要由花色苷含量及組成成分決定[2]。花色苷的生物合成受結(jié)構(gòu)基因和調(diào)節(jié)基因的控制,是一個非常復雜的過程;而且不同種葡萄乃至同品種群不同品種的著色特性不同[1]。因此,研究花色苷的合成調(diào)控機制,對提高葡萄品質(zhì)以及葡萄酒質(zhì)量具有重要意義。【前人研究進展】花色苷具有抗氧化、抗腫瘤、抗紫外線和防治冠狀動脈心臟疾病等作用[3-5],而且因其具有色澤鮮亮、水溶性好、安全性高等特點,有取代人工色素的趨勢[6]。葡萄果實中花色苷的生物合成途徑已經(jīng)形成了比較清晰的輪廓[7-8]。二氫黃酮醇4-還原酶(dihydroflavonol-4-reductase,DFR,EC:1.1.1.219)是花青素合成下游階段的關(guān)鍵酶,催化二氫黃酮醇或轉(zhuǎn)變成橙色到磚紅色的天竺葵素糖苷,或紅色的矢車菊素糖苷,或藍色到紫色的飛燕草素糖苷[9],但是葡萄DFR的立體結(jié)構(gòu)特點,使其不能催化合成天葵色素花色苷[7-8]。因此,決定著花色苷的種類,從而影響果皮的顏色[10-12]。類黃酮葡萄糖基轉(zhuǎn)移酶(UDPG-flavonoid-3-O-glycosyltranferase,UFGT,EC:2.4.1.115)是花色苷(anthocyanins)合成前體酶,催化花色素糖基化過程,形成穩(wěn)定的花色素-3-單糖苷[13-14]。研究表明,UFGT的活性跟花色苷含量的積累有密切的關(guān)系[15-16],如在蘋果、紅色砂梨、葡萄果實中,UFGT活性與花色苷的含量模式基本一致[16-18]。Boss等[19]和Kobayashi[14,20]研究結(jié)果也證實UFGT是花色苷合成的關(guān)鍵酶。通過調(diào)節(jié)的組織特異性和時空特異性的表達從而參與花色苷生物合成的調(diào)控[21-22]。【本研究切入點】研究表明,與花色苷的合成密切相關(guān),但是對轉(zhuǎn)錄因子與這兩個結(jié)構(gòu)基因之間的結(jié)合方式以及結(jié)合位點尚不明確?!緮M解決的關(guān)鍵問題】本文采用Real time PCR、酵母雙雜交、酵母單雜交等技術(shù),闡明與花色苷合成的相關(guān)性以及編碼的蛋白與結(jié)合方式和結(jié)合位點,為明確葡萄果實花色苷生物合成提供理論依據(jù)。
試驗于2016—2017年在山西省園藝實驗教學示范中心進行。
選用2007年的‘赤霞珠’葡萄(L. cv. Cabernet Sauvignon)為試材?;ê?0 d開始,選取長勢一致的植株東西兩側(cè)的上、中、下三個部位各1穗果穗,3個重復,共30穗;每隔10 d取一次,共取10次樣。將采摘的果穗去除有機械傷害、病蟲害及發(fā)育異常果粒后,液氮速凍,-80℃保存?zhèn)溆谩?/p>
試驗相關(guān)的所有引物均由北京華大基因合成(表1),大腸桿菌.DH5α化學感受態(tài)、高保真酶購于北京全式金生物技術(shù)有限公司,酵母表達載體、菌株和酵母培養(yǎng)基購于Clontech公司,質(zhì)粒提取試劑盒、PCR膠回收試劑盒購于Omega公司,T4 DNA連接酶、克隆載體PMD-18T vector、反轉(zhuǎn)錄試劑等其他生物學試劑購于TaKaRa公司。
采用改良的CTAB法[23]提取葡萄總RNA,用1%的瓊脂糖檢測質(zhì)量及完整性后按照TaKaRa反轉(zhuǎn)錄合成試劑盒說明書,500 ng的RNA被用來反轉(zhuǎn)錄,再將反轉(zhuǎn)錄獲得的cDNA稀釋至100 ng?μL-1待用。以葡萄持家基因(,登錄號:BN000705)為內(nèi)參,使用premier5.0設(shè)計引物(表1),利用real-time PCR儀分析葡萄果實發(fā)育過程中(登錄號:AB097923.1)、(登錄號:X75964.1)和(登錄號:X75968.1)的表達模式。反應(yīng)體系為20 μL,其中含有SYBR Premix Ex Taq(2x)10 μL,cDNA 1 μL,上、下游引物各0.8 μL(0.4 μmol?L-1),ROX 0.4 μL,ddH2O 7 μL。反應(yīng)條件為預(yù)變性95℃3 min;94℃30 s,55℃ 30 s,72℃ 1 min,40個循環(huán)。設(shè)置在72℃1 min處收集熒光信號,試驗重復3次。
花色苷提取參照田莉[24]的方法,分析方法參照劉曉靜等[25]的方法,將在520和540 nm波長下吸光值的差作為花色苷含量,差值按每0.01為一個單位(U)設(shè)定。
表1 引物序列
下劃線部分為內(nèi)切酶序列
The underline part is the endonuclease sequence
根據(jù)和核苷酸序列和pGBKT7、pGADT7多克隆酶切位點設(shè)計引物(表1)。以實驗室前期獲得的含‘赤霞珠’葡萄CDS序列的克隆質(zhì)粒為模版進行PCR擴增,1%瓊脂糖凝膠電泳分析及測序驗證PCR產(chǎn)物。將獲得的陽性克隆擴繁提取質(zhì)粒,用相應(yīng)的內(nèi)切酶將獲得的陽性克隆載體和pGBKT7、pGADT7進行雙酶切并回收,用T4 DNA連接酶16℃條件下過夜連接,獲得重組質(zhì)粒pGBKT7-、pGBKT7-、pGBKT7-、pGADT7-,然后轉(zhuǎn)化Trans-5α化學感受態(tài)細胞。經(jīng)菌液PCR和雙酶切驗證正確的菌液送往華大科技公司測序。
從葡萄基因組數(shù)據(jù)庫(http://www.genoscope.cns. fr/externe/GenomeBrowser/Vitis/)中獲得、啟動子序列,用啟動子分析軟件PLANTCARE預(yù)測啟動子上的作用元件(http://bioinformatics.psb.ugent. be/webtools/plantcare/html/),獲得與MYB結(jié)合的MBS順式作用元件,將MBS順式作用元件串聯(lián)獲得誘餌元件序列,MBS順式作用元件突變?yōu)殛幮詫φ眨?MBS:TAGGGCAACATTGAGACAACTGC AGGTTAAGGTCTGTTTGATAACTGTTTTATAAAACAGTTATAGATGACAACCCCCATGCAGTTGCCACTCTCACAAC;-Mutant:TAGGGCAACATTG AGAACCATGCAGGTTAAGGTCTGTTTGAATTCCCTTTTATAAAAGGGAATTAGATGACAACCCCCATGCCGAACCCACTCTCACAAC;-MBS:GACC GTAGCTCACCGTGGCAACTGGCCGATGGTGGCTCGTGGGTTCAGTTGTCACTTTTGACACACCACCAACAGTTGCCCGTCTAAACG;-Mutant:GACCG TAGCTCACCGTGGACCATGGCCGATGGTGGCTCGTGGGTTCCGAACTCACTTTTGACACACCACCAACCGAACCCCGTCTAAACG),由上海生物工程有限公司合成重組誘餌載體pMBS()-AbAi、p[Mutant()]-AbAi(陰性對照)、pMBS()-AbAi、p[Mutant()]-AbAi(陰性對照)。
選取驗證正確的重組質(zhì)粒pGBKT7-、pGBKT7-、pGBKT7-,采用PEG/LiAC法將pGBKT7-、pGBKT7-、pGBKT7-質(zhì)粒分別轉(zhuǎn)入酵母感受態(tài)AH109細胞中,以轉(zhuǎn)入pGBKT7空質(zhì)粒為陰性對照,pGBKT7-P53為陽性對照,分別均勻涂于SD/-Trp單缺陷平板上,結(jié)合菌液PCR篩選轉(zhuǎn)化子,再涂于SD/-Trp/X-α-Gal顯色平板上,30℃倒置培養(yǎng)2—4 d,觀察顏色變化。
參照Clotech產(chǎn)品說明書,采用PEG/LiAC法將pGBKT7-pGADT7-、pGBKT7-pGADT7-、pGBKT7-T/pGBKT7-53、pGBKT7-pGADT7、pGBKT7-pGADT7質(zhì)粒分別共轉(zhuǎn)入酵母感受態(tài)AH109細胞中,1/2均勻涂于SD/-Trp-leu二缺性平板上,1/2均勻涂于SD/-Trp-leu- His-Ade四缺性平板上,30℃倒置培養(yǎng)2—4 d,待菌落長出后轉(zhuǎn)入含有X-α-Gal顯色四缺平板上作進一步驗證。
將用I酶線性化后的pMBS(試驗)-AbAi [pMBS()-AbAi、pMBS()–AbAi]、pMBS(陰)-AbAi{p[Mutant()]-AbAi、p[Mutant()]-AbAi}、p53-AbAi質(zhì)粒采用PEG/LiAC法轉(zhuǎn)入酵母菌株Y1H-gold感受態(tài)細胞中,在轉(zhuǎn)化了Y1H-gold [pMBS(試驗)-AbAi]的平板分別挑取一株狀態(tài)較好菌落于10 μL ddH2O中混勻,取1 μL菌液滴加在SD/-Ura、SD/-Ura/50 mmol?L-1Aba、SD/-Ura/100 mmol?L-1Aba、SD/-Ura/200 mmol?L-1Aba平板上,30℃倒置培養(yǎng)3—5 d,觀察生長狀態(tài)。觀察發(fā)現(xiàn)Y1H-gold [pMBS(試驗)-AbAi]在SD/-Ura/100 mmol?L-1Aba平板上不再生長,表明可在此條件下展開下步驗證試驗。
從上述平板上分別挑取Y1H-gold [pMBS(試驗)-AbAi]、Y1H-gold [pMBS(陰)-AbAi]、Y1H-gold[p53- AbAi]單菌落(直徑2—3 mm),分別于YPDA培養(yǎng)基中擴繁,并獲得其感受態(tài)細胞,再將pGADT7-、pGADT7-、pGAD-Rec-p53質(zhì)粒分別轉(zhuǎn)化到上述感受態(tài)細胞中。將轉(zhuǎn)化后菌液各取100 μL分別涂布SD/-Ura/-Leu/100mM Aba,30℃倒置培養(yǎng)3—5 d,觀察生長情況。
葡萄果實發(fā)育過程中,的轉(zhuǎn)錄表達規(guī)律如圖1所示。在整個果實發(fā)育過程中,的表達量整體呈現(xiàn)先上升后下降的趨勢,均在轉(zhuǎn)色期(花后60—80 d)表達量較高。
花色苷在赤霞珠葡萄果實發(fā)育過程中積累表現(xiàn)為幼果期無積累,轉(zhuǎn)色后快速積累,在花后80 d達到最大值,之后略微下降,但趨于平穩(wěn)(圖2)。
的表達水平與花色苷的積累量呈顯著正相關(guān),且的表達與的表達呈顯著正相關(guān)(表2)。表明‘赤霞珠’果實發(fā)育過程中,表達與表達密切相關(guān)。異位表達導致紅色素積累和表達上調(diào)[26],可能對、表達具有調(diào)控作用;而且花色苷的積累是在調(diào)控下完成。
表2 相關(guān)性分析
**:在0.01水平上顯著;*:在0.05水平上顯著
**: Significant correlation at 0.01 level; *: Significant correlation at 0.05 level
分別將pGBKT7-、pGBKT7-、pGBKT7-、pGBKT7-P53(陽性對照)、pGBKT7 (陰性對照)轉(zhuǎn)入酵母感受態(tài)細胞AH109中,將其分別涂于SD/-Trp單缺陷性平板上均能生長且長勢基本一致,說明所有質(zhì)粒成功轉(zhuǎn)入酵母菌株AH109中,且無毒性。將含有上述質(zhì)粒的轉(zhuǎn)化子涂于SD/-Trp/X-α-Gal顯色平板上進行顯色反應(yīng),結(jié)果表明,含陽性對照和pGBKT7-的轉(zhuǎn)化子均能顯現(xiàn)明顯的藍色,陰性對照和pGBKT7-、pGBKT7-的轉(zhuǎn)化子未顯藍色,表明編碼的蛋白具有轉(zhuǎn)錄激活功能,編碼的蛋白不具有轉(zhuǎn)錄激活功能(圖3)。
圖2 葡萄果實發(fā)育過程中花色苷含量的變化
以pGADT7-分別與pGBKT7-、pGBKT7-共轉(zhuǎn)化入酵母AH109感受態(tài)細胞中為試驗組,pGBKT7-T與pGBKT7-53共轉(zhuǎn)化入酵母中為陽性對照,pGADT7分別與pGBKT7-、pGBKT7-共轉(zhuǎn)化入酵母菌中為陰性對照,并將其涂于SD/-Trp-leu二缺性平板和SD/-Trp-leu- His-Ade四缺性平板上,在二缺平板上試驗組和對照組菌落長勢良好(圖4-A),說明質(zhì)粒均成功轉(zhuǎn)入酵母菌中;而在四缺培養(yǎng)基上,只有陽性對照才能生長,試驗組和陰性對照均不能生長,說明在酵母水平中,MYBA1蛋白與UFGT、DFR蛋白均不互作(圖4-B)。
將啟動子的MBS元件連接到pAbAi質(zhì)粒上為pMBS()-AbAi、pMBS()- AbAi重組質(zhì)粒,以pGADT7-分別與pMBS ()-AbAi、pMBS()-AbAi共轉(zhuǎn)化入酵母菌Y1Hgold細胞中作為試驗組;將pGADT7-分別與p[Mutant()]-AbAi、p[Mutant()]-AbAi共轉(zhuǎn)化入Y1Hgold酵母菌中為陰性對照;將p53-AbAi與pGAD-Rec-p53共轉(zhuǎn)化入酵母菌中為陽性對照。分別將試驗組、陽性對照和陰性對照涂于SD/-Ura/- Leu/100 mmol·L-1Aba固體平板上,結(jié)果顯示,試驗組與陽性對照均能在固體平板上生長,而陰性對照不能生長,說明編碼的蛋白能夠特異性結(jié)合啟動子序列(圖5)。
圖3 轉(zhuǎn)錄激活活性分析
1:陽性對照;2:pGADT7- MYBA1和pGBKT7-DFR共轉(zhuǎn)化的轉(zhuǎn)化子;3:pGADT7-MYBA1和pGBKT7-UFGT共轉(zhuǎn)化的轉(zhuǎn)化子;4:pGADT7和pGBKT7-DFR共轉(zhuǎn)化的轉(zhuǎn)化子;5:pGADT7和pGBKT7-UFGT共轉(zhuǎn)化的轉(zhuǎn)化子
花色苷生物合成相關(guān)的基因分為結(jié)構(gòu)基因和調(diào)節(jié)基因兩類。其中,結(jié)構(gòu)基因直接編碼花青素/苷生物合成過程中生物合成酶類(如等);調(diào)節(jié)基因則通過調(diào)控花青素/苷生物合成結(jié)構(gòu)基因的表達強度和模式,調(diào)控花青素/苷的時空積累(如等)[27]。Rinaldo等[28]的研究表明調(diào)節(jié)葡萄花青素酰基轉(zhuǎn)移酶的表達,使葡萄果皮中花青素酰基化水平提高。‘巨峰’葡萄的cDNA進入體細胞胚中,可以引發(fā)紅紫色斑點,表明在花青素生物合成中起關(guān)鍵作用[29-30]。通過對蘋果、葡萄等研究表明,表達強度以及酶活性與花色苷積累量有關(guān)[15-16,19,31-32]。不僅決定著花青素/苷的種類,而且還是花青素/苷合成的入口酶[7-8,10-12]。王海竹等[33]研究發(fā)現(xiàn),和在紫萼長茄果萼中表達明顯高于綠萼長茄,推測和參與花色苷的生物合成。Nakatsuka[34]、Takos等[35]指出,經(jīng)過上調(diào)的基因表達從而提高蘋果中花色素的含量,而可以同時調(diào)控和這兩類結(jié)構(gòu)基因。在葡萄中,也被發(fā)現(xiàn)可以誘導表達[29-30],且在白色葡萄中不表達,只在有色葡萄品種的果皮中表達[36]。本文通過實時熒光定量和相關(guān)性分析研究發(fā)現(xiàn),在‘赤霞珠’葡萄果實中,表達量與花色苷積累量呈正相關(guān),且轉(zhuǎn)錄因子與結(jié)構(gòu)基因表達強度之間呈正相關(guān),這一結(jié)果與前人研究結(jié)果基本一致[19,21-22,29-31]。
1:陰性對照;2:試驗組;3:陽性對照
在轉(zhuǎn)錄水平上,植物常通過轉(zhuǎn)錄因子來調(diào)控目的基因的表達,從而調(diào)控其次生代謝、應(yīng)答激素和環(huán)境脅迫等[37],且大多數(shù)轉(zhuǎn)錄因子具有轉(zhuǎn)錄激活功能[38]。酵母雜交試驗表明,轉(zhuǎn)有重組質(zhì)粒pGBKT7-的酵母轉(zhuǎn)化子可以在SD/-Trp/X-α- Gal顯色平板上呈現(xiàn)明顯的藍色,因此,具有明顯的轉(zhuǎn)錄激活功能。而在SD/-Trp/X-α-Gal顯色平板上不能夠呈現(xiàn)藍色,且長勢與對照基本一致,說明pGBKT7-、pGBKT7-無毒性且不能自激活,因此可以作為酵母雙雜交的誘餌載體。
植物中MYB家族轉(zhuǎn)錄因子與MYB順式作用元件的結(jié)合已有廣泛研究,如特異性結(jié)合MYB核心序列T/GAACTG/A[39],可以識別結(jié)合TAACTG[40],則特異性識別GGTAGGT[41]。前人研究結(jié)果可知,通過調(diào)節(jié)的時空表達[19,21-22,29-31],筆者前期研究結(jié)果同樣也證實了這一點(數(shù)據(jù)待發(fā)表),但與的結(jié)合位點,特別是其調(diào)控機理尚未明確。和啟動子分析結(jié)果顯示有多種與生物脅迫和非生物脅迫響應(yīng)相關(guān)的順式作用元件,其中MBS順式作用元件在啟動子中有兩處(+62,-796),且均為CAACTG;而啟動子中有4處MBS位點(+54,+443,-459,-1411),CAACTG和TAACTG順式元件各有兩處,將MBS順式作用元件串聯(lián)作為酵母單雜交的誘餌載體,CAACTG核心序列在誘餌載體中重復3次。通過酵母雙雜和酵母單雜試驗得出,編碼的蛋白與編碼的蛋白不具有相互作用,但能特異結(jié)合啟動子的CAACTG順式作用元件和啟動子的CAACTG或TAACTG順式作用元件。根據(jù)SD/-Ura/-Leu/100 mmol?L-1Aba固體平板上的長勢,可以得出編碼的蛋白與啟動子作用強度高于啟動子。因此,編碼的蛋白可能只識別結(jié)合CAACTG順式作用元件,而不能夠識別結(jié)合TAACTG順式作用元件。
、、表達模式為先上升后下降的趨勢,花色苷積累表現(xiàn)為轉(zhuǎn)色期(花后60 d)急聚增長,之后趨于平穩(wěn),且、表達量與花色苷積累量為顯著正相關(guān),、表達量與表達量為顯著正相關(guān)。具有轉(zhuǎn)錄激活功能,編碼的蛋白不能與VvUFGT、VvDFR蛋白相互作用,但能與、的啟動子結(jié)合,表明可能通過激活的啟動子來調(diào)控其表達,從而調(diào)控葡萄果實發(fā)育過程中花色苷的積累。
[1] 孫欣, 韓鍵, 房經(jīng)貴, 上官凌飛, 王西成, 宋長年, 李曉穎. 葡萄漿果著色分子機理的重要研究進展. 植物生理學報, 2012, 48(4): 333-342.
Sun X, Han J, Fang J G, Shangguan L F, Wang X C, Song C N, Li X Y. Important research progress of coloring molecular mechanisms in grape berry., 2012, 48(4): 333-342. (in Chinese)
[2] Mizuno H, Okamoto G, Hirano K. Effect of anthocyanin composition in grape skin on anthocyanic vacuolar inclusion development and skin coloration., 2006, 45(4): 173-177.
[3] LIU W, XU J, LIU Y, YU X, TANG X, WANG Z, LI X. Anthocyanins potentiate the activity of trastuzumab in human epidermal growth factor receptor 2?positive breast cancer cellsand., 2014, 10(4): 1921-1926.
[4] PEIFFER D S, WANG L S, ZIMMERMAN N P, RANSON B W, CARMELLA S G, KUO C T, CHEN J H, OSHIMA K, HUANG Y W, HECHT S S, STONER G D. Dietary consumption of black raspberries or their anthocyanin constituents alters innate immune cell trafficking in esophageal cancer., 2016, 4(1): 72-82.
[5] REIS J F, MONTEIRO V V S, GOMES R D S, CARNO, M M D, COSTA G V D, RIBERA P C. Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies., 2016, 14(1): 315.
[6] ZHAO Q, DUAN C Q, WANG J. Anthocyanins profile of grape berries of, its hybrids and their wines., 2010, 11(5): 2212-2228.
[7] CZEMMEL S, HEPPEL S C, BOGS J. R2R3 MYB transcription factors: key regulators of the flavonoid biosyntlietic patliway ingrapevine., 2012, 249: 109-118.
[8] AZUMA A, YAKUSHIJI H, KOSHITA Y, KOBAYASHI S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions., 2012, 236(4): 1067-1080.
[9] 張龍, 李衛(wèi)華, 姜淑梅, 朱根發(fā), 王碧青, 李洪清. 花色素苷生物合成與分子調(diào)控研究進展. 園藝學報, 2008, 35(6): 909-916.
ZHANG L, LI W H, JIANG S M, ZHU G F, WANG B Q, LI H Q. Progress of molecular basis of biosynthesis and transcriptional regulation of anthocyanins., 2008, 35(6): 909-916. (in Chinese)
[10] CHEN S M, LI C H, ZHU X R, SUN W, WANG L S, CHEN F D. The identification of flavonoids and the expression of genes of anthocyanin biosynthes is in the chrysanthemum flowers., 2012, 56(3): 458-464.
[11] Viljoen C D, Snyman M C, Spies J J. Identification and expression analysis of chalcone synthase, and dihydroflavonol 4-reductase, in., 2013, 87(1): 18-21.
[12] Yildiz M, Willis D K, Cavagnaro P F, Iorizzo M, Abak K, Simon P W. Expression and mapping of anthocyanin biosynthesis genes in carrot., 2013, 126(7): 1689-1702.
[13] 文習成, 姜衛(wèi)兵, 韓鍵, 翁忙玲, 房經(jīng)貴. 環(huán)境因子和外源化學物質(zhì)對果樹基因的影響. 植物生理學報, 2012, 48(2): 129-134.
Wen X C, Jiang W B, Han J, Weng M L, Fang J G. The effects of environmental factors and exogenous chemicals on the fruitgene., 2012, 48(2): 129-134. (in Chinese)
[14] Kobayashi S, Ishimaru M, Ding C K, Yakushiji H, Goto N. Comparison of UDP-glucose: flavonoid 3-O-glucosyltransferase () gene sequences between white grapes () and their sports with red skin., 2001, 160(3): 543.
[15] 馮立娟, 苑兆和, 尹燕雷, 招雪晴, 許鑫科, 徐榕, 李自峰. 槭屬2品種葉變色期花青苷含量與相關(guān)酶活性的變化. 林業(yè)科學, 2009, 45(8): 56-60.
Feng L J, Yuan Z H, Yin Y L, Zhao X Q, Xu X K, Xu R, Li Z F. Anthocyanin content and the relevant enzymes activities during leaf color changing of twospecies., 2009, 45(8): 56-60. (in Chinese)
[16] 劉金, 魏景立, 劉美艷, 宋楊, 馮守千, 王傳增, 陳學森. 早熟蘋果花青苷積累與其相關(guān)酶活性及乙烯生成之間的關(guān)系. 園藝學報, 2012, 39(7): 1235-1242.
Liu J, Wei J L, Liu M Y, Song Y, Feng S Q, Wang C Z, Chen X S. The relationships between the enzyme activityof anthocyanin., 2012, 39(7): 1235-1242. (in Chinese)
[17] 馮守千, 陳學森, 張春雨, 劉曉靜, 劉遵春, 王海波, 王延玲, 周朝華. 砂梨品種‘滿天紅’及其芽變品系‘奧冠’花青苷合成與相關(guān)酶活性研究. 中國農(nóng)業(yè)科學, 2008, 41(10): 3184-3190.
Feng S Q, Chen X S, Zhang C Y, Liu X J, Liu Z C, Wang H B, Wang Y L, Zhou C H. A study of the relationship between anthocyanin biosynthesis and related enzymes activity in‘mantianhong’ and its bud sports ‘a(chǎn)oguan’., 2008, 41(10): 3184-3190. (in Chinese)
[18] Ali M B, Howard S, Chen S,Wang Y, Yu O, Kovacs L G, Qiu W. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis., 2011, 11(1): 7.
[19] Boss P K, Davies C, Robinson S P. Expression of anthocyanin biosynthesis pathway genes in red and white grapes., 1996, 32(3): 565-569.
[20] Kobayashi S, Ishimaru M, Hiraoka K, Honda C. Myb-related genes of the Kyoho grape () regulate anthocyanin biosynthesis., 2002, 215(6): 924.
[21] 任國慧, 陶然, 王晨, 孫欣, 房經(jīng)貴. 葡萄漿果著色與和基因表達量的關(guān)系研究. 南京農(nóng)業(yè)大學學報, 2013, 36(4): 30-36.
Ren G H, Tao R, Wang C, Sun X, Fang J G. The research of the relationship between coloring andandgene expression level of the grape berry., 2013, 36(4): 30-36. (in Chinese)
[22] Kobayashi S, Goto-Yamamoto N, Hirochika H. Retrotransposon-induced mutations in grape skin color., 2004, 304(5673): 982-982.
[23] Vashisth T, Johnson L K, Malladi A. An efficient RNA isolation procedure and identification of reference genes for normalization of gene expression in blueberry., 2011, 30(12): 2167-2176.
[24] 田莉. 葡萄果實查耳酮合成酶研究—基因克隆、表達、純化、抗體的制備以及UV、糖對葡萄果實查耳酮合成酶的調(diào)節(jié)[D]. 北京: 中國農(nóng)業(yè)大學, 2007.
Tian L. Study on chalcone synthase of grape berry-cloning, expression, purification, antibody, preparation and regulation of chalcone synthase by UV and sugars in grape berry [D]. Beijing: China Agricultural University, 2007. (in Chinese)
[25] 劉曉靜, 馮寶春, 馮守千, 王海波, 石俊, 王娜, 陳為一, 陳學森. ‘國光’蘋果及其紅色芽變花青苷合成與相關(guān)酶活性的研究. 園藝學報, 2009, 36(09): 1249-1254.
Liu X J, Feng B C, Feng S Q, Wang H B, Shi J, Wang N, Chen W Y, Chen X S. Studies on anthocyanin biosynthesis and activities of related enzymes of ‘Ralls’ and its bud mutation., 2009, 36(9): 1249-1254. (in Chinese)
[26] Cutandaperez M C, Ageorges A, Gomez C, Vialet S, Terrier N, Romieu C, Torregrosa L. Ectopic expression of, 2009, 69(6): 633-648.
[27] 朱婷婷, 梁東, 夏惠. R2R3-MYB調(diào)控果實花色苷合成的研究進展. 基因組學與應(yīng)用生物學, 2016, 35(4): 985-991.
Zhu T T, Liang D, Xia H. Research progress of R2R3-MYB regulating fruit anthocyanin synthesis., 2016, 35(4): 985-991. (in Chinese)
[28] Rinaldo A, Cavallini E, Jia Y, Moss S M, McDavid D A, Hooper L C, Walker A R. A grapevine anthocyanin acyltransferase, transcriptionally regulated by, can produce most acylated anthocyanins present in grape skins., 2015, 169: 1897-1916.
[29] Kobayashi S, Ishimaru M, Hiraoka K, Honda C. Myb-related genes of the Kyoho grape () regulate anthocyanins biosynthesis., 2002, 215: 924-933.
[30] Holton T A, Cornish E C. Genetics and biochemistry of anthocyanins biosynthesis., 1997, 7: 1071-1083.
[31] Kim S H, Lee J R, Hong S T, Yoo Y K, An G, Kim S R. Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin., 2003, 165(2): 403-413.
[32] 劉金, 魏景立, 劉美艷, 宋楊, 馮守千, 王傳增, 陳學森.早熟蘋果花青苷積累與其相關(guān)酶活性及乙烯生成之間的關(guān)系. 園藝學報, 2012, 39(7): 1235-1242.
Liu J, Wei J L, Liu M.Y, Song Y, Feng S Q, Wang C Z, Chen X S. The relationships between the enzyme activity of anthocyan in biosynthesis,ethylene release and anthocyanin accumulation in fruits of precocious apple cultivars., 2012, 39(7): 1235-1242 . (in Chinese)
[33] 王海竹, 曲紅云, 周婷婷, 徐啟江. 茄萼花色苷合成相關(guān)基因和克隆及表達分析. 中國農(nóng)業(yè)科學, 2017, 50(14): 2781-2792.
Wang H z, Qu H Y, Zhou T T, Xu Q J. Cloning and expression analysis ofandgenes related to anthocyanin synthesis in eggplant., 2017, 50(14): 2781-2792. (in Chinese)
[34] Nakatsuka T, Haruta K S, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K, Shimada N, Yamamura S, Nishihara M. Identification and characterization of R2R3- MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers., 2008, 49(12): 1818.
[35] Takos A M, Jaff?? F W, Jacob S R, Boqs J, Robinson S P, Walker A R. Light-induced expression of agene regulates anthocyanin biosynthesis in red apples., 2006, 142(3): 1216-1232.
[36] 張傳義, 曹秋芬, 孟玉平, 周慧. 一個調(diào)控葡萄花和果實色素形成的基因家族—MYB相關(guān)基因家族. 分子植物育種, 2007, 5(S6): 85-88.
Zhang C Y, Cao Q f, Meng Y P, Zhou H. A gene family of genes related to the formation of vines and fruit pigments- MYB-related gene family., 2007, 5(S6): 85-88. (in Chinese)
[37] 許玲, 衛(wèi)培培, 張大勇, 徐照龍, 何曉蘭, 黃益洪, 馬鴻翔, 邵宏波. 大豆轉(zhuǎn)錄因子基因的克隆及功能分析. 中國農(nóng)業(yè)科學, 2015, 48(15): 3079-3089.
Xu L, WeI P P, Zhang D Y, Xu Z L, He X L, Huang Y H, Ma H X, Shao H B. Expression and function analysis of the transcription factor, 2015, 48(15): 3079-3089. (in Chinese)
[38] Kim C Y, Lee S H, Park H C, Bae C G, Cheong Y H, Chol Y J, Han C, Lee S Y, Lim C O, Cho M J. Identification of rice blast fungal elicitor-responsive genes by differential display analysis., 2000, 13(4): 470-474.
[39] Abe H K, Shinozaki Y,Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role ofMYC and MYB homologs in drought-and abscisic acid-regulated gene expression., 1997, 9: 1859.
[40] Villalobos M A, Bartels D, Iturriaga G. Stress tolerance and glucose insensitive phenotypes inover expressing thetranscriptional factor gene., 2004, 135: 309-324.
[41] Legay S, Lacombe E, Goicoechea M, Briere C, Seguin A, Mackay J. Molecular characterization of, a putative transcriptional repressor of the lignin biosynthetic pathway., 2007, 173: 542-549.
(責任編輯 趙伶俐)
The Regulations of thefrom the Grape Berries
NIU TieQuan1, DONG YanMei1, LIU HaiXia1, ZHANG XiaoJun1,2, GAO Yan1,2, ZHANG PengFei1,2, LIANG ChangMei3, WEN PengFei1,2
(1College of Horticulture,Shanxi Agricultural University, Taigu 030801, Shanxi;2Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan 030031;3College of Information Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi)
【Objective】transcription factor plays an important role in the biosynthesis of anthocyanins. To further explore the synergistic regulatory mechanism of anthocyanins, we analyzed the mutual mechanism and expression pattern of,,and content of anthocyanins during grape berry development.【Method】The real-time PCR, spectrophotometer and SAS8.0 were used to analyze the expression patterns of,,content of anthocyanins and correlation in different time periods, respectively. The transcriptional activity ofand the interactions between theandwere determined by yeast hybrid system. 【Result】The expression pattern analysis showed that the expression of,was increased until veraison (60-80 d after full bloom) and then declined. The content of anthocyanins was fist increased until veraison (80 d after full bloom) and then stabilization. Correlation analysis showed that the expression ofwith expression ofthe,had positive correlation, and the content of anthocyanins with the expression of,,had positive correlation. Yeast hybrid assay indicated thathad transcriptional activation functions which could specifically combine promoter ofand had no interaction withandencoded proteins.【Conclusion】The content of anthocyanins was significantly correlated with expression of,, andThehad transcriptional activation functions. All results indicated thatcould regulate the accumulation of anthocyanins in grape berry development by regulatingandexpression combined withandpromoter specifically.
grape;;;; yeast hybrid system
2017-10-17;
2018-04-01
國家自然科學基金(31372013)、山西省科技重點研發(fā)(指南)項目(201603D21105-8)、山西省重點研發(fā)計劃重點項目(201703D211001-04-02)、山西省科技成果轉(zhuǎn)化項目(201604D132034)
牛鐵泉,Tel:0354-9285900;E-mail:niutiequan@126.com。董燕梅,E-mail:15501877836@163.com。牛鐵泉和董燕梅為同等貢獻作者。
溫鵬飛,Tel:0354-6289332;E-mail:wenpengfei@126.com
10.3864/j.issn.0578-1752.2018.12.013