• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    石墨烯/聚酰亞胺復(fù)合膜熱導(dǎo)率的分子動力學(xué)模擬

    2018-06-28 01:48:12徐京城戴思暢李昊亮楊俊和
    新型炭材料 2018年3期
    關(guān)鍵詞:上海理工大學(xué)楊俊聚酰亞胺

    徐京城, 戴思暢, 李昊亮, 楊俊和

    (1. 上海理工大學(xué) 材料科學(xué)與工程學(xué)院, 上海200093;2. 上海材料創(chuàng)新研究院, 上海200444)

    1 Introduction

    Graphene has been considered as an ideal candidate material for the future electronic applications owing to its excellent electronic and thermal properties. Plenty of experimental and theoretical researches reported that graphene presents a very high thermal conductivity at room temperature among blocky graphite, carbon nanotubes, silver and copper. The thermal conductivity of a suspended single-layer graphene has been reported in the range of 1 800-5 300 W/(m·K), with the graphene sizes of 2-10 μm[1-7]. Graphene is an ideal material for dissipating heat in integrated electronic devices, but its micrometer and nanometer scale may be a limit for practical applications. Graphene/polyimide composite film maybe a good choice, which can take full advantage of excellent thermal property of graphene, and can be embedded into electronic devices with macroscopic scale.

    Improving the thermal conductivities of graphene-base products and finding an efficient and easy way to fabricate high-quality products are the continuous hotspots in the 2D-materials and electronic device fields. Nowadays, graphite films have achieved industrial production, such as Panasonic PGS graphite films. The graphite films usually are obtained after carbonization and graphitization of polyimide (PI) films[8], and present the thermal conductivity in the range of 700-1 950 W/(m·K), much higher than other materials. Theoretically, perfect graphene films possess better thermal properties than graphite films. So, graphene/polyimide composite films can be considered as a potential candidate of large-scale heat-conducting films.

    Molecular dynamics (MD) simulation is a powerful method for calculating the thermal conductivities of graphene-based systems, and can provide better treatments for systems with defects. The thermal conductivities of graphene calculated by MD simulation have been reported in the range of 50-3 200 W/(m·K), with the lengths of 0.002-15 μm[9-13]. Park et al[10]. used non-equilibrium MD to investigate the length-dependent lattice thermal conductivity of graphene, and reported that the lattice thermal conductivity of graphene keep increasing in a wide range of lengths, eventually converge to a certain value. The interfacial thermal resistance is one of the main factors that influence the thermal conductivities of composite materials. Luo[14]systematically studied thermal energy transport in graphene/graphite-polymer composite systems by MD simulations, where the polymer was host materials and graphene/graphite was filling materials.

    To take full use of excellent thermal property of graphene, here we propose to use graphene as host and polymer as jointing materials to construct graphene/polymer composite films (rGO/PI), expanding the micro-scale graphene to macro-scale thermal-transfer system. After the carbonization and graphitization, the polymers will form carbon-ring structures, which are treated as the bridges between graphene ribbons. We called it “molecular welding”. The welded length, width and distribution will affect the thermal transport from one graphene ribbon to another.

    Pei[15]found that the thermal conductivity of hydrogenated graphene depends greatly on the hydrogen distribution and coverage. The thermal conductivity decreases rapidly with the increase of hydrogen coverage. To get the maximum thermal conductivity, in this paper, we assumed the carbon-ring structures from graphitization of polymers were perfect six-member carbon-ring structures and the action of hydrogen is not taken into account. Using classical MD simulation, we investigated the shape factors of “bridges” on the thermal conductivity of graphene/polyimide composite films, and the results were helpful to design and produce large-scale heat-conducting films.

    2 Computational method and models

    All simulations were performed with the classical MD simulation code Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)[16]. The non-equilibrium molecular dynamics (NEMD)[17]method was adopted to calculate the thermal conductivity. The adaptive intermolecular reactive empirical bond order (AIREBO)[18]and the Tersoff[19]potential are usually used to describe the carbon-carbon interactions. Based on the Boltzmann transport equation, the original Tersoff potential and Brenner potential were reported that it would underestimate the thermal conductivity of graphene, because of the inaccurate handling of phonon dispersion[20]. According to our comparations as shown in Fig. 5, the optimized Tersoff (opt-Tersoff) potential can provide more reasonable description on thermal conductivity of graphene than AIREBO potential. So, in our subsequent simulations, we chose the opt-Tersoff potential to deal with the C—C interactions.

    Fig. 1 (a) shows the model for perfect graphene nanoribbons (GNRs). We set the length as the number (x) of unit cells along the heat conduction direction,and the width as the number (y) of unit cells along the armchair direction. The endmost unit cell at both ends are fixed to avoid the influence of surrounding graphene. The hot and cold region are 10 units next to the fixed ends. The thickness (h) of the graphene is typically assumed to be the graphite interlayer spacing of 0.335 nm, as same as the previous experiments and calculations, though some others chose 0.144 nm[13]. The shortest graphene ribbon in our simulations is shown in Fig. 1 (b), with x=100 and y=4. We increase the length gradually with the width remains the same, which correspond to 1.562 nm. The total number of atoms in our models changes from 1 600 to 256 000.

    In the graphene/polyimide composite films, when heated at 550-700 ℃, polyimide will decompose and lead to structural rearrangement[21-23]. When the temperature rise, polyimide will further decompose and then recombine. The existence of graphene will induce the graphitization of polyimide. Nitrogen and oxygen atoms will be gas products and escape from the film. So only carbon atoms remain, and are usually present as graphene-like strips[24]. The small strips will combine graphene nanoribbons, constituting long-scale ribbons, and the strips act as bridges between GNRs, called molecular welding. Here, we consider the graphene-like strips as six-member carbon rings, just like in graphene. Fig. 2 is the sketch map of the graphene/polyimide composite structure. The length of graphene region at both ends was 19.68 nm, and the width was 1.562 nm. The length of six-member carbon rings was in the range of 0.246-19.926 nm. The hot and cold regions were set to be the same as the GNR calculations.

    Fig.1 The models for thermal conductivity calculations. (a) A magnified sight over both the ends of the supercells. (b) The shortest model with x=100 and y=4.

    Fig. 2 Sketch map of graphene/polyimide composite film.

    The thermal transport consists of diffusive and ballistic phonon transport[25]. If the size of the model is much longer than phonon mean free path, thermal transport is mainly diffusive transport, otherwise, is ballistic transport. It has been experimentally and theoretically[10]reported the thermal conductivity in single crystalline graphene shows a logarithmic dependence on the length, even the length far greater than the mean free path of phonons[26]. The phonon mean free path of graphene is reported to be 775 nm[2]. In our simulations, the length of graphene was set from 24.6 to 7872 nm, so the heat transport style was from ballistic to the diffusive transport as a function of the length. There is a high concentration of edge defects for ballistic phonon transport. To remove the effect, periodic boundary condition is employed along both length and width directions, implying that the edge of the graphene structures is infinite. Here, we only calculated the thermal conductivity of graphene along the zigzag direction, and the electronic contributions were ignored.

    All MD simulations were performed at 300 K with the time step of 0.5 fs. The NEMD simulations are performed with the canonical ensembles and the micro-canonical ensemble, the temperature was controlled by Nosé-Hoover thermostats[27]. MD simulations were carried out to reach equilibrium state at least 2 ns. When the system was in the steady state, the velocities of the atoms in the regions were adjusted automatically to bring a constant heat flux into the simulation region between the hot and cold regions. The atoms whose velocity changed in the hot and cold regions were set to be the same element, so that the non-translational kinetic energy is added or subtracted with the same amount in the hot and cold regions at every step. The temperature gradient can be established along the heat flux direction, when the simulation time was enough. We used the Fourier law to calculate the thermal conductivity from the heat flux and the temperature gradient.

    (1)

    WhereJis the constant heat flux across the simulation region,Sis the cross section area, ▽T=?T/?xis the temperature gradient along the heat flex direction.

    3 Results and discussion

    3.1 Thermal conductivity of graphene

    Fig. 3 (a) shows the temperature distribution as a function of simulation time at different places in the graphene ribbon with x=16 000 (L=3.936 μm) and y=4. Fig. 3 (b) shows the temperature distribution as a function of the location of graphene ribbon with different simulation times. At first, the temperature was 300 K in all heat flux transport region. With the exchange of kinetic energy, the hot region tended to be hotter, and the cold region tended to be colder, the temperature gradient in transport region changed greatly. After about 6 ns MD simulations, the temperature profile came to convergence (shown as in Fig. 3(a)), and the temperature gradient didn’t change any more (shown as in Fig. 3(b)). We believed the system had reached the steady heat transfer state.

    Fig. 3 (a) Temperature distribution as a function of simulation time in the graphene with x=16 000 and y=4, the vertical axis represents different locations. (b) Temperature distribution as a function of the location with different simulation times. The black squares mean 0.05 ns, red dots mean 2 ns, blue triangles mean 4 ns, green inverted triangles mean 6 ns, and purple rhombuses mean 7 ns.

    Checking the temperature profile and gradient are important to ensure that we get convincing thermal conductivities. Fig. 4 shows the minimum simulation time which needed to reach a steady state as a function of the length of graphene ribbon. If the simulation time is not enough, the thermal conductivity will be overestimated.

    Fig.4 The times to reach the steady states as a function of the length of graphene.

    Fig. 5 (a) Thermal conductivities of graphene at 300 K as a function of the length by the opt-Tersoff and AIREBO potential. The black dashed line was obtained from the higher order heat transport equation[31]. (b) The inverse of the lattice thermal conductivity of graphene as a function of 1/L.

    Fig. 5 (a) presents the comparation of the length-dependent thermal conductivities of graphene at 300 K by the opt-Tersoff and AIREBO potential. When the length is shorter than about 800 nm, the thermal conductivities increases almost linearly, in good agreement with Ref.[28]. Because it is too short for the main phonons to collide by scattering. When the length increases, the thermal conductivities increase slowly like a power function. We found that the opt-Tersoff potential performs better than AIREBO potential and finally it converges to about 4 300 W/(m·K). The results imply that the thermal conductivity of GNRs remarkably depends on the length of graphene.

    Nika and coworkers proposed a model for the lattice thermal conductivity of graphene in the framework of Klemens approximation[29]. Lindsay et al. showed that flexural phonons provide the dominant contributions to the thermal conductivity of suspended graphene by using Boltzman transport equation (BTE)[30]. An effective thermal conductivity equation[31]based on Boltzman transport equation is as following:

    (2)

    WhereK0is the macroscopic limit ofKandlis the mean free path of phonon. We fitted the thermal conductivity with the equation (2), and plotted as the black dash line in Fig. 5 (a). The fittedK0was 4 400 W/(m·K) andlwas 655 nm, a little smaller than the reported value of 775 nm. We also plotted the reciprocal of the lattice thermal conductivity as a function of 1/L, shown as in Fig. 5 (b). We found that the line isn′t totally linear, so the linear extrapolation method[32]may underestimate the thermal conductivity.

    3.2 Thermal conductivity of graphene/polyimide composite films

    The simple graphene/polyimide system was divided into graphene part and polyimide part. Two graphene parts were connected together by parallel polyimide strips. First, we increased the length of polyimide part to explore the length effect with the length of graphene part kept unchanged. Fig. 6 shows the thermal conductivities of graphene/polyimide film as a function of the overall length at 300 K, the thermal conductivity of graphene part shown as black rhombus line and the polyimide part shown as red dot line. We found that the thermal conductivity of graphene part increased slightly as a function of the length of polyimide part. The thermal conductivity of polyimide part increased markedly when the overall length reached 42 nm and seemed to increase almost linearly when the overall length was more than 48 nm. However, the thermal conductivity of polyimide was far smaller than graphene, so the interface between graphene and polyimide was the main bottleneck for thermal transport in the graphene/polyimide composite film. We got the overall thermal conductivity by the length-dependent weighted average method, shown as blue triangle line in Fig. 6. The thermal conductivity of perfect graphene was also plotted as the reference, shown as the green square line. According to these results, we found that it could not improve the thermal performances only by improving the length of polyimide part.

    Fig. 6 The thermal conductivities of graphene/polyimide film as a function of the overall length.

    Yarifard et al[33]. used NEMD simulation to investigate the thermal resistances of graphene sheets with carbon units connecting with graphene sheets. Their results indicate that the thermal resistance exhibit a decreasing trend with the height of GNRs. Therefore, the height of GNRs is the key factor in increasing the thermal conductivity of the defective graphene. Wang et al[34]. investigated the thermal transport properties of carbon units with various doping concentration of nitrogen atoms connecting GNRs. The results show that the thermal conductivity of GNRs can be greatly improved by increasing the N doping concentration to 0.87%. These results show that the thermal conductivities of GNRs are greatly influenced by the size of carbon units.

    So, we also studied the influence of width and number of polyimide strips. The length and width of graphene part were fixed to 19.68 and 6.674 nm respectively. The length of polyimide strip was fixed to 13.038 nm. We designed two ways to improve the thermal conduction of graphene/polyimide film. By increasing the width of each polyimide strip, that is the width changed from 0.284 to 3.266 nm in our case. By increasing the number of polyimide strip, that iswe increased the number of polyimide strip from 2 to 8 here. Fig. 7 shows the thermal conductivities of the structure-modified graphene/polyimide film as a function of overall width of polyimide strips. We found that the thermal conductivity (black dot line) almost linearly enlarges as a function of the width of polyimide strip. When the width of each polyimide strip is close to 3.266 nm, the gap between two polyimide strips gradually shrinks to zero, then the thermal conductivity gets close to the one of graphene ribbon, presents as the highest point in Fig. 7. We set the multiple polyimide strips evenly distributed in the space of two graphene parts, as the sketch in Fig. 7. The red square line means multiple polyimide strips. The more polyimide strips are, the larger the thermal conductivity. On the other hand, increasing the number of polyimide strips is similar to increase the width, they both reduce the vacancy defects between the graphene ribbons, enhance the channels for heat conducting from one graphene ribbon to another. So, increasing the number or width of polyimide strips is an efficient way to improve the thermal conductivity of macro-scale graphene/polyimide composite film, and the impact of increasing the number is a little better than width.

    Fig. 7 The thermal conductivities of the structure-modified graphene /polyimide film as a function of total width of polyimide strips.

    The differences of thermal conductivities are attributed to the vacancy defects. The defects block the heat transport between GNRs and cause more phonon scattering and lead to the decrease of thermal conduc tivity[35]. Further explanations can be obtained by determination of the phonon density of states (PDOS),which shows the different excitable phonon frequencies. We calculated the PDOS by the Fourier transform of the velocity autocorrelation function, shown as in Fig. 8, and the polyimide atoms don't change the relative frequency and magnitude of the phonons. The phonon frequencies can be divided into three regions: the low-frequency (0-20 THz), the medium-frequency (20-50 THz) and the high-frequency (50-60 THz) region. Usually, the vibrations of high -frequency phonons transfer thermal energy. With our models, when increasing the length of polyimide strip, the intensity of peak at 50 THz decreased distinctly. We thought that because the phonon scattering happens at the interfaces of graphene and polyimide, and the boundaries of polyimide strips. Increasing the length of polyimide strip didn’t change the interfaces, but generated more boundaries, resulting in more phonon scattering, and then decreased the strength of high-frequency phonon vibrations and heat conductions.

    Fig. 8 Phonon density of states of graphene/polyimide films.

    Fig. 9 Thermal conductivity of rGO/PI: (a) experiment and (b) MD simulation.

    We propose a “molecular welding” technique to fabricate flexible and ultrathin reduced graphene/polyimide (rGO/PI) films with a considerable enhancement in in-plane thermal conductivity. As shown in Fig. 9(a), the in-plane thermal conductivity of rGO/PI-1% (1% is the weight percentage of PI) film is 802.3 ± 20.5 W/(m·K), which is 21.9% higher than that of the pristine rGO film. The thermal conductivities of rGO/PI decrease as a function of the concentration of PI. Compared with our simulation results as shown in Fig. 9(b), though the overall thermal conductivity is a little smaller than the experimental results (because of the small size of model), the overall trend is the same. The results show that molecular welding of polyimide can improve the thermal conductivity of rGO/PI with the concentration of PI from 1%-3%, the overall thermal conductivity decreases as a function of the concentration of PI.

    4 Conclusion

    The thermal conductivities of pristine graphene and graphene/polyimide composite films were calculated by the non-equilibrium molecular dynamics method. The thermal conductivity of graphene presents an increasing and converged trend, depending on the length of model. The graphitized polyimide strips can be used to connect graphene ribbons to form macro-scale composite films. Polyimide strip can improve the thermal conductivity of graphene film and can get the highest thermal conductivity at the concentration of PI from 1% to 3 %. Increasing the number or width of polyimide strip can obviously improve the heat transfer characteristics. It is helpful for understanding the effect of polyimide in the heat transfer, and for designing the macro-scale composite films with excellent thermal performances.

    Acknowledgments

    Computations were carried out using Hujiang HPC cluster at USST, Shanghai Supercomputer Center and National Supercomputing Center in Shenzhen in China.

    [1] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902.

    [2] Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters, 2008, 92(15): 151911.

    [3] Ghosh S, Bao W, Nika D L, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nature Materials, 2010, 9(7): 555-558.

    [4] Chen S, Moore A L, Cai W, et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments[J]. ACS Nano, 2011, 5(1): 321-328.

    [5] Cai W, Moore A L, Zhu Y, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition[J]. Nano Letters, 2010, 10(5): 1645-1651.

    [6] Lee J U, Yoon D, Kim H, et al. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy[J]. Physical Review B, 2011, 83(8): 081419.

    [7] Chen S, Wu Q, Mishra C, et al. Thermal conductivity of isotopically modified graphene[J]. Nature Materials, 2012, 11(3): 203-207.

    [8] Takeichi T, Eguchi Y, Kaburagi Y, et al. Carbonization and graphitization of Kapton-type polyimide films prepared from polyamide alkyl ester[J]. Carbon, 1998, 36(1): 117-122.

    [9] Pei Q X, Sha Z D, Zhang Y W. A theoretical analysis of the thermal conductivity of hydrogenated graphene[J]. Carbon, 2011, 49(14): 4752-4759.

    [10] Park M, Lee S C, Kim Y S. Length-dependent lattice thermal conductivity of graphene and its macroscopic limit[J]. Journal of Applied Physics, 2013, 114(5): 053506.

    [11] Liu Y, Yang H, Liao N, et al. Investigation on thermal conductivity of bilayer graphene nanoribbons[J]. RSC Advances, 2014, 4(97): 54474-54479.

    [12] Wei Z, Ni Z, Bi K, et al. In-plane lattice thermal conductivities of multilayer graphene films[J]. Carbon, 2011, 49(8): 2653-2658.

    [13] Guo Z, Zhang D, Gong X G. Thermal conductivity of graphene nanoribbons[J]. Applied Physics Letters, 2009, 95(16): 163103.

    [14] Luo T, Lloyd J R. Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study[J]. Advanced Functional Materials, 2012, 22(12): 2495-2502.

    [15] Pei Q X, Sha Z D, Zhang Y W. A theoretical analysis of the thermal conductivity of hydrogenated graphene[J]. Carbon, 2011, 49(14): 4752-4759.

    [16] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.

    [17] Alaghemandi M, Algaer E, B?hm M C, et al. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations[J]. Nanotechnology, 2009, 20(11): 115704.

    [18] Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions[J]. The Journal of Chemical Physics, 2000, 112(14): 6472-6486.

    [19] Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems[J]. Physical Review B, 1989, 39(8): 5566.

    [20] Lindsay L, Broido D A. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene[J]. Physical Review B, 2010, 81(20): 205441.

    [21] Hatori H, Yamada Y, Shiraishi M, et al. The mechanism of polyimide pyrolysis in the early stage[J]. Carbon, 1996, 34(2): 201-208.

    [22] Hishiyama Y, Igarashi K, Kanaoka I, et al. Graphitization behavior of Kapton-derived carbon film related to structure, microtexture and transport properties[J]. Carbon, 1997, 35(5): 657-668.

    [23] Konno H, Nakahashi T, Inagaki M. State analysis of nitrogen in carbon film derived from polyimide Kapton[J]. Carbon, 1997, 35(5): 669-674.

    [24] Shen B, Zhai W, Zheng W. Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials, 2014, 24(28): 4542-4548.

    [25] Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8): 569-581.

    [26] Majee A K. Extrinsic Effects on Heat and Electron Transport in Two-Dimension Van-Der Waals Materials-A Boltzmann Transport Study[M]. Masters Theses, University of Massachusetts, 2016.

    [27] Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695.

    [28] Mingo N, Broido D A. Carbon nanotube ballistic thermal conductance and its limits[J]. Physical Review Letters, 2005, 95(9): 096105.

    [29] Nika D L, Ghosh S, Pokatilov E P, et al. Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite[J]. Applied Physics Letters, 2009, 94(20): 203103.

    [30] Lindsay L, Broido D A, Mingo N. Flexural phonons and thermal transport in graphene[J]. Physical Review B, 2010, 82(11): 115427.

    [31] Alvarez F X, Jou D. Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes[J]. Applied Physics Letters, 2007, 90(8): 083109.

    [32] Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity[J]. Physical Review B, 2002, 65(14): 144306.

    [33] Yarifard M, Davoodi J, Rafii-Tabar H. Computation of the thermal resistance in graphene sheets with a rectangular hole[J]. Computational Materials Science, 2017, 126: 29-34.

    [34] Wang C, Yang H, Fan H, et al. Heat transfer regulation of hole defect graphene by nitrogen doping[J]. Applied Physics A, 2015, 121(2): 549-553.

    [35] Nika D L, Pokatilov E P, Askerov A S, et al. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering[J]. Physical Review B, 2009, 79(15): 155413.

    猜你喜歡
    上海理工大學(xué)楊俊聚酰亞胺
    Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice
    楊俊德:農(nóng)業(yè)豐收的“守護神”
    聚酰亞胺纖維研究進展及應(yīng)用
    《上海理工大學(xué)學(xué)報》征稿簡則
    上海理工大學(xué)
    DYNAMICS ANALYSIS OF A DELAYED HIV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND ANTIBODY IMMUNE RESPONSE?
    無色透明聚酰亞胺薄膜的研究進展
    納米材料改性聚酰亞胺研究進展
    中國塑料(2015年2期)2015-10-14 05:34:10
    無色透明聚酰亞胺薄膜研究進展
    中國塑料(2015年5期)2015-10-14 00:59:37
    Eあects of Correlation between Network Structure and Dynamics of Oscillators on Synchronization Transition in a Kuramoto Model on Scale-Free Networks?
    欧美色视频一区免费| 色在线成人网| 午夜老司机福利剧场| 久久久国产成人精品二区| 国产高清视频在线播放一区| 在线播放无遮挡| 波多野结衣高清作品| 日日摸夜夜添夜夜添av毛片 | 最近视频中文字幕2019在线8| 日本色播在线视频| 免费无遮挡裸体视频| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清作品| 国产男靠女视频免费网站| 久久草成人影院| 色吧在线观看| 久久久久国产精品人妻aⅴ院| 亚洲天堂国产精品一区在线| 桃色一区二区三区在线观看| 国产成年人精品一区二区| 欧美又色又爽又黄视频| 日本黄大片高清| 真人做人爱边吃奶动态| 精品久久久久久久久久久久久| a级毛片免费高清观看在线播放| 1000部很黄的大片| 亚洲av中文字字幕乱码综合| 欧美色欧美亚洲另类二区| 搡老妇女老女人老熟妇| 久久精品影院6| 亚洲中文日韩欧美视频| 精品乱码久久久久久99久播| 午夜免费成人在线视频| 亚洲av五月六月丁香网| 国产成人a区在线观看| 亚洲一区高清亚洲精品| 在线观看午夜福利视频| 91久久精品国产一区二区三区| 婷婷六月久久综合丁香| 久久久久久九九精品二区国产| 国产精品亚洲美女久久久| 国产aⅴ精品一区二区三区波| 麻豆成人午夜福利视频| 岛国在线免费视频观看| АⅤ资源中文在线天堂| 欧美日韩精品成人综合77777| 麻豆久久精品国产亚洲av| 一夜夜www| 俺也久久电影网| 少妇的逼好多水| 搡老岳熟女国产| 国产午夜福利久久久久久| 一个人看视频在线观看www免费| 国产在线精品亚洲第一网站| 桃色一区二区三区在线观看| 春色校园在线视频观看| 国产一区二区三区在线臀色熟女| 国产精品国产三级国产av玫瑰| 在线观看av片永久免费下载| 三级国产精品欧美在线观看| 亚洲中文字幕一区二区三区有码在线看| 在线播放无遮挡| 色尼玛亚洲综合影院| 美女高潮的动态| 欧美丝袜亚洲另类 | 日本一本二区三区精品| 国产69精品久久久久777片| 最后的刺客免费高清国语| 久久久久久久精品吃奶| 丰满乱子伦码专区| 三级男女做爰猛烈吃奶摸视频| 国内久久婷婷六月综合欲色啪| 人妻少妇偷人精品九色| 免费观看的影片在线观看| 丝袜美腿在线中文| 久久久久久久久大av| 亚洲乱码一区二区免费版| 在线观看免费视频日本深夜| 久久久精品大字幕| 非洲黑人性xxxx精品又粗又长| 男女边吃奶边做爰视频| 亚洲乱码一区二区免费版| 色综合亚洲欧美另类图片| 少妇高潮的动态图| 国产亚洲精品av在线| 久久久久久久久中文| 老女人水多毛片| 亚洲男人的天堂狠狠| 亚洲av不卡在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲四区av| 岛国在线免费视频观看| 亚洲黑人精品在线| 我的女老师完整版在线观看| 91久久精品电影网| 在线观看66精品国产| 日日夜夜操网爽| bbb黄色大片| 一区二区三区四区激情视频 | 天天躁日日操中文字幕| 亚洲熟妇中文字幕五十中出| 91av网一区二区| 亚洲专区中文字幕在线| 变态另类成人亚洲欧美熟女| 成人欧美大片| 日本在线视频免费播放| 非洲黑人性xxxx精品又粗又长| 日韩高清综合在线| 俄罗斯特黄特色一大片| 在线免费观看的www视频| 国产一区二区三区av在线 | 免费电影在线观看免费观看| 婷婷六月久久综合丁香| www日本黄色视频网| 国产精品1区2区在线观看.| 久久人妻av系列| aaaaa片日本免费| 国产淫片久久久久久久久| 国产精品嫩草影院av在线观看 | 日韩 亚洲 欧美在线| 国产成人aa在线观看| 可以在线观看的亚洲视频| 国产精品日韩av在线免费观看| 日日啪夜夜撸| 小说图片视频综合网站| 国产精品98久久久久久宅男小说| 亚洲av二区三区四区| 欧美绝顶高潮抽搐喷水| 午夜激情福利司机影院| 男插女下体视频免费在线播放| 国产亚洲精品久久久com| 制服丝袜大香蕉在线| 校园人妻丝袜中文字幕| 99国产精品一区二区蜜桃av| 精品久久国产蜜桃| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩综合久久久久久 | 婷婷精品国产亚洲av| 亚洲图色成人| 性欧美人与动物交配| 在线看三级毛片| 禁无遮挡网站| 桃红色精品国产亚洲av| 丝袜美腿在线中文| 少妇裸体淫交视频免费看高清| 乱人视频在线观看| 成年女人永久免费观看视频| 精品久久久久久久久av| 国产黄a三级三级三级人| 91av网一区二区| 精品久久久久久久久亚洲 | 岛国在线免费视频观看| 麻豆国产97在线/欧美| 亚洲av.av天堂| eeuss影院久久| 欧美日本亚洲视频在线播放| 日本黄色视频三级网站网址| 黄色一级大片看看| 国产免费男女视频| 亚洲成av人片在线播放无| 欧美最黄视频在线播放免费| 国产精品电影一区二区三区| 99热精品在线国产| 国产人妻一区二区三区在| 免费人成视频x8x8入口观看| 18禁在线播放成人免费| 男女边吃奶边做爰视频| 国产精品三级大全| 国产国拍精品亚洲av在线观看| 一夜夜www| 成年人黄色毛片网站| 欧美成人一区二区免费高清观看| 啪啪无遮挡十八禁网站| 99在线人妻在线中文字幕| 免费av毛片视频| 变态另类丝袜制服| 极品教师在线免费播放| 国产成人福利小说| 深夜精品福利| 天堂动漫精品| 久久精品综合一区二区三区| 日韩强制内射视频| 嫩草影院新地址| 亚洲,一卡二卡三卡| 18禁在线无遮挡免费观看视频| 大香蕉97超碰在线| 国产黄色视频一区二区在线观看| 下体分泌物呈黄色| 91精品伊人久久大香线蕉| 精品少妇久久久久久888优播| 嫩草影院新地址| 日本一二三区视频观看| 国产老妇伦熟女老妇高清| 91久久精品国产一区二区成人| 久久韩国三级中文字幕| 男男h啪啪无遮挡| 国产免费视频播放在线视频| 午夜福利视频精品| 99久久精品国产国产毛片| 国产片特级美女逼逼视频| 亚洲av免费高清在线观看| 日本欧美国产在线视频| 亚洲国产最新在线播放| 插阴视频在线观看视频| 日本一二三区视频观看| 久久久久国产精品人妻一区二区| 五月天丁香电影| 高清不卡的av网站| 亚洲精品久久午夜乱码| 男男h啪啪无遮挡| 五月天丁香电影| 免费观看的影片在线观看| 五月天丁香电影| 狂野欧美白嫩少妇大欣赏| 秋霞在线观看毛片| 久久精品久久久久久久性| 国产69精品久久久久777片| 51国产日韩欧美| 乱系列少妇在线播放| 色视频www国产| 亚洲精品中文字幕在线视频 | 在线观看免费日韩欧美大片 | 国语对白做爰xxxⅹ性视频网站| 亚洲va在线va天堂va国产| 美女cb高潮喷水在线观看| 中文乱码字字幕精品一区二区三区| 久久久色成人| 国产成人aa在线观看| 欧美3d第一页| 久久久久久人妻| h视频一区二区三区| 精品视频人人做人人爽| 欧美人与善性xxx| 高清午夜精品一区二区三区| 欧美日韩在线观看h| 日韩精品有码人妻一区| 亚洲国产av新网站| 国产精品一及| 国产精品欧美亚洲77777| 亚洲国产最新在线播放| 干丝袜人妻中文字幕| 观看免费一级毛片| 18+在线观看网站| 国产成人freesex在线| 身体一侧抽搐| 亚洲美女黄色视频免费看| 黄片wwwwww| 国产一区二区三区av在线| 久久精品人妻少妇| 国产真实伦视频高清在线观看| 爱豆传媒免费全集在线观看| 免费观看性生交大片5| 99久久中文字幕三级久久日本| 大片电影免费在线观看免费| 超碰av人人做人人爽久久| 毛片女人毛片| 亚洲欧美日韩另类电影网站 | 免费人成在线观看视频色| 久久久久久久久久成人| 亚洲欧美日韩东京热| 国产高清不卡午夜福利| 边亲边吃奶的免费视频| 亚洲精品乱码久久久v下载方式| 免费黄网站久久成人精品| 人妻 亚洲 视频| 欧美+日韩+精品| 久久久久久久久久久免费av| 亚洲av二区三区四区| 国产亚洲5aaaaa淫片| 九九久久精品国产亚洲av麻豆| 超碰av人人做人人爽久久| 久久久色成人| 最近的中文字幕免费完整| 91精品国产九色| 国产精品麻豆人妻色哟哟久久| 在线播放无遮挡| 夜夜看夜夜爽夜夜摸| 久久99蜜桃精品久久| av又黄又爽大尺度在线免费看| 一级二级三级毛片免费看| 在现免费观看毛片| 婷婷色av中文字幕| 欧美变态另类bdsm刘玥| 国产av精品麻豆| 男女边摸边吃奶| 亚洲综合色惰| 国产精品精品国产色婷婷| 插阴视频在线观看视频| 国产乱来视频区| 高清在线视频一区二区三区| 亚洲精华国产精华液的使用体验| 成人亚洲精品一区在线观看 | 国内揄拍国产精品人妻在线| 各种免费的搞黄视频| 亚洲,一卡二卡三卡| 久久99热6这里只有精品| 成人午夜精彩视频在线观看| 久久久久国产网址| 国产精品一区二区性色av| 亚洲精品久久久久久婷婷小说| av免费在线看不卡| 97热精品久久久久久| 亚洲精品乱码久久久v下载方式| 一个人看视频在线观看www免费| 国产成人精品久久久久久| 精品人妻视频免费看| av一本久久久久| 少妇人妻精品综合一区二区| 成人美女网站在线观看视频| 一个人看视频在线观看www免费| 中国美白少妇内射xxxbb| 久久亚洲国产成人精品v| 高清黄色对白视频在线免费看 | 黄片无遮挡物在线观看| 又粗又硬又长又爽又黄的视频| 男女边吃奶边做爰视频| 一级毛片我不卡| 国产爽快片一区二区三区| kizo精华| 高清黄色对白视频在线免费看 | 国产精品福利在线免费观看| 丰满乱子伦码专区| 在线 av 中文字幕| 蜜桃亚洲精品一区二区三区| 亚洲,欧美,日韩| 国内少妇人妻偷人精品xxx网站| 搡女人真爽免费视频火全软件| 偷拍熟女少妇极品色| 国产精品一二三区在线看| 午夜免费男女啪啪视频观看| 全区人妻精品视频| 汤姆久久久久久久影院中文字幕| 国产午夜精品久久久久久一区二区三区| 国产亚洲最大av| 最近的中文字幕免费完整| 久久久欧美国产精品| 亚洲电影在线观看av| 久久精品久久久久久噜噜老黄| 久久综合国产亚洲精品| 97精品久久久久久久久久精品| 国产淫语在线视频| 永久网站在线| 久久久久视频综合| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线播| 人人妻人人爽人人添夜夜欢视频 | 国产精品久久久久久精品古装| 日韩电影二区| 色网站视频免费| 又大又黄又爽视频免费| 观看美女的网站| 国产中年淑女户外野战色| 精品一区二区三卡| 最近中文字幕2019免费版| 日韩伦理黄色片| 日本av手机在线免费观看| 一级黄片播放器| h视频一区二区三区| 欧美三级亚洲精品| 国内揄拍国产精品人妻在线| 成人漫画全彩无遮挡| 丝袜脚勾引网站| 又黄又爽又刺激的免费视频.| 五月开心婷婷网| 亚洲欧美日韩无卡精品| 亚洲国产欧美人成| 热99国产精品久久久久久7| 中文字幕免费在线视频6| 国产又色又爽无遮挡免| 亚洲欧美精品自产自拍| 少妇人妻 视频| 国产高清有码在线观看视频| 久久久久性生活片| 在线观看一区二区三区激情| 伦理电影大哥的女人| 亚洲欧美精品专区久久| 亚洲欧美日韩东京热| 国产高清不卡午夜福利| 搡女人真爽免费视频火全软件| 午夜老司机福利剧场| 国产一区有黄有色的免费视频| 中文字幕av成人在线电影| 天堂8中文在线网| 蜜桃亚洲精品一区二区三区| 五月开心婷婷网| 18禁裸乳无遮挡动漫免费视频| 欧美成人a在线观看| 一级av片app| 亚洲欧美日韩东京热| 在线观看免费日韩欧美大片 | av在线app专区| 久久久久久久久久人人人人人人| 视频区图区小说| 我要看黄色一级片免费的| 久热这里只有精品99| av播播在线观看一区| 偷拍熟女少妇极品色| 99热这里只有精品一区| 久久久欧美国产精品| 日日啪夜夜撸| 成人漫画全彩无遮挡| 性色av一级| 国产欧美亚洲国产| 高清日韩中文字幕在线| 国产片特级美女逼逼视频| 国产成人午夜福利电影在线观看| 国产女主播在线喷水免费视频网站| 在线观看三级黄色| 亚洲人与动物交配视频| 国产伦理片在线播放av一区| 日本与韩国留学比较| 国产男女内射视频| 99热全是精品| 女人久久www免费人成看片| 97超视频在线观看视频| 亚洲精品日本国产第一区| 国产成人午夜福利电影在线观看| 日韩av在线免费看完整版不卡| 人人妻人人添人人爽欧美一区卜 | 国产日韩欧美在线精品| 亚洲精品aⅴ在线观看| 久久综合国产亚洲精品| 熟妇人妻不卡中文字幕| 人妻夜夜爽99麻豆av| 久久ye,这里只有精品| 国产无遮挡羞羞视频在线观看| a级一级毛片免费在线观看| 亚洲av中文av极速乱| 亚洲精品国产成人久久av| 欧美丝袜亚洲另类| 国产欧美亚洲国产| 欧美bdsm另类| 日日摸夜夜添夜夜爱| 久久精品国产鲁丝片午夜精品| 欧美日韩一区二区视频在线观看视频在线| 成人国产av品久久久| 韩国高清视频一区二区三区| 久久av网站| 最黄视频免费看| 在线观看免费高清a一片| 国产日韩欧美亚洲二区| 亚洲av二区三区四区| 99久久中文字幕三级久久日本| 亚洲欧美中文字幕日韩二区| 人妻一区二区av| 九九久久精品国产亚洲av麻豆| 女性被躁到高潮视频| 伦精品一区二区三区| www.色视频.com| 水蜜桃什么品种好| 日韩,欧美,国产一区二区三区| 欧美三级亚洲精品| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线播| 国产高潮美女av| 嫩草影院新地址| 又黄又爽又刺激的免费视频.| 亚洲精品乱码久久久久久按摩| 91久久精品国产一区二区成人| 联通29元200g的流量卡| 亚洲欧洲国产日韩| 在线免费观看不下载黄p国产| 国产av码专区亚洲av| 激情 狠狠 欧美| 国产亚洲av片在线观看秒播厂| av播播在线观看一区| 国内精品宾馆在线| 亚洲中文av在线| 国产亚洲最大av| 国产精品麻豆人妻色哟哟久久| av播播在线观看一区| 女性被躁到高潮视频| 国产精品不卡视频一区二区| 99热国产这里只有精品6| 亚洲av免费高清在线观看| 伊人久久精品亚洲午夜| 中国三级夫妇交换| 蜜桃亚洲精品一区二区三区| 国产av码专区亚洲av| 国产亚洲最大av| 一级黄片播放器| 国产69精品久久久久777片| 国产又色又爽无遮挡免| 亚洲美女视频黄频| 久久久亚洲精品成人影院| 六月丁香七月| 国产精品国产av在线观看| 高清黄色对白视频在线免费看 | 午夜免费男女啪啪视频观看| 久久精品人妻少妇| 91精品伊人久久大香线蕉| 国产亚洲一区二区精品| 熟女av电影| 少妇被粗大猛烈的视频| 国产国拍精品亚洲av在线观看| 最近的中文字幕免费完整| 国产成人午夜福利电影在线观看| 亚洲美女黄色视频免费看| 18禁在线无遮挡免费观看视频| 国产爽快片一区二区三区| 亚洲在久久综合| 国产午夜精品久久久久久一区二区三区| 色哟哟·www| 高清欧美精品videossex| 国产一区有黄有色的免费视频| 久久久欧美国产精品| 日日摸夜夜添夜夜添av毛片| 色网站视频免费| 多毛熟女@视频| 国产 精品1| 亚洲国产精品999| av国产免费在线观看| 久久久久久久精品精品| 国产 精品1| 久久精品熟女亚洲av麻豆精品| 国产永久视频网站| 国产精品免费大片| 久久国内精品自在自线图片| 精品视频人人做人人爽| 肉色欧美久久久久久久蜜桃| 男女下面进入的视频免费午夜| 校园人妻丝袜中文字幕| 国产精品一二三区在线看| 少妇的逼水好多| 日韩av在线免费看完整版不卡| 国产视频首页在线观看| 久久久久精品性色| 成人免费观看视频高清| 国产一区二区在线观看日韩| 久久97久久精品| 国产v大片淫在线免费观看| 国产色婷婷99| 又大又黄又爽视频免费| 免费观看性生交大片5| 99热全是精品| 亚洲精华国产精华液的使用体验| 精品人妻偷拍中文字幕| 男女边吃奶边做爰视频| 国产片特级美女逼逼视频| 日韩一区二区视频免费看| 永久网站在线| 国产国拍精品亚洲av在线观看| 国产中年淑女户外野战色| 不卡视频在线观看欧美| 国产男女内射视频| 乱系列少妇在线播放| 国产av一区二区精品久久 | 黄色日韩在线| 最新中文字幕久久久久| 日韩欧美精品免费久久| h视频一区二区三区| 亚洲中文av在线| 久久99热这里只有精品18| videossex国产| 在线观看一区二区三区激情| 免费播放大片免费观看视频在线观看| 久久久色成人| 一级毛片aaaaaa免费看小| 午夜福利网站1000一区二区三区| 色哟哟·www| 亚洲欧美日韩另类电影网站 | 亚洲av在线观看美女高潮| 黄色日韩在线| 日韩中文字幕视频在线看片 | 久久人人爽人人片av| 免费观看av网站的网址| av又黄又爽大尺度在线免费看| 日韩免费高清中文字幕av| 久久精品熟女亚洲av麻豆精品| 欧美日韩视频精品一区| 日韩 亚洲 欧美在线| 内射极品少妇av片p| av国产免费在线观看| 国产精品久久久久成人av| 久久久精品免费免费高清| 日韩中文字幕视频在线看片 | 夜夜爽夜夜爽视频| 国产精品一区二区性色av| 我要看日韩黄色一级片| 久久精品国产亚洲网站| 亚洲欧美精品自产自拍| 欧美日韩视频高清一区二区三区二| 一个人免费看片子| 午夜福利高清视频| 亚洲av福利一区| av在线播放精品| 中文字幕人妻熟人妻熟丝袜美| 最新中文字幕久久久久| 97热精品久久久久久| 久久久精品免费免费高清| 亚洲国产精品专区欧美| 国产91av在线免费观看| 高清黄色对白视频在线免费看 | 亚洲不卡免费看| 亚洲久久久国产精品| 精品人妻视频免费看| 一区二区三区免费毛片| 又爽又黄a免费视频| 在线观看av片永久免费下载| 免费久久久久久久精品成人欧美视频 | 男人添女人高潮全过程视频| 日产精品乱码卡一卡2卡三| 欧美日韩视频高清一区二区三区二| 中文字幕人妻熟人妻熟丝袜美| 久久久久精品久久久久真实原创| 日韩免费高清中文字幕av| 在线精品无人区一区二区三 | 成人无遮挡网站| 亚洲久久久国产精品| 在线观看三级黄色| 久久国产精品男人的天堂亚洲 | 亚洲成人一二三区av| 网址你懂的国产日韩在线| 91久久精品国产一区二区成人| 国产成人精品一,二区|