• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Algorithm for Determination of Projectile Attitude Angles in Projectile Trajectory Prediction

    2018-05-25 06:39:50,,

    , , ,

    Institute of Launch Dynamics,School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,P.R.China

    0 Introduction

    Artillery weapons have drawn great attention from many countries since they are praised as the″god of war″and plays a very important role in land battles[1].The trajectory prediction,which is tantamount to acquire the position of the origin or impact point of a trajectory using the radar data,is extremely significant for a artillery combat chain[2].The accurate prediction of the impact point can be beneficial to the power of artillery,and can improve the accuracy of shooting and its amending[3].To predict the impact point of ballistic projectiles is a very critical and relevant problem which has applications in area defense[4].

    One of the earliest studies of trajectory prediction and determination was conducted by Johann Heinrich Lambert(1728—1779).His meth-od was used for spacecraft trajectory prediction in order to solve an orbital boundary value problem.Although this research effort focused on the prediction of ballistic trajectories,Lambert′s theorem is helpful to calculate the elliptical parameters of the trajectory to generate an estimate.Utilizing this method,the transfer trajectory between two points can be calculated given a transfer time.The technique is based upon an iterative solution that converges on the semi-major axis of the transfer ellipse and is relevant to the problem considered in this study since it provides a methodology for estimating a trajectory as a solution to a two-point boundary value problem[5].

    Isaacson and Vaughan[6]described a method of estimating and predicting ballistic trajectories using a Kalman filter.A template was developed using missile range and altitude data by modeling the ballistic missile flight over a spherical,nonrotating Earth.The trajectory was used as a baseline from which perturbations of the actual trajectory were calculated.The missile trajectory was obsened using apair of geosynchronous satellites.The method was used to determine uncertainties in the missile launch point and missile position during flight.

    Danis[7]developed a method for estimating ballistic missile launch parameters using a single pair of angle measurements taken from two satellites,or utilizing both measurements taken from a single satellite.Using apriori information about the trajectory and launch time,the launch location and missile heading were calculated from the geometric relationship between the missile and satellite position.If sufficient measurements were taken during the missile flight,a Kalman filter was used to assess measurement errors and refine the launch parameter estimation.

    Eric et al.[8]used the three-degree-of-freedom trajectory equations for trajectory prediction.Khalil et al.[9,10]established the modified point mass model for projectile trajectory based on the discrete time transfer matrix method,and further reconstructed the repose angle at any measuring time instant.Wu et al.[11]used the ADS-B fusion algorithm for trajectory prediction.No matter what the method was,the purpose was to rapidly obtain an accurate impact point.It should be mentioned that different ballistic models have different calculation precisions.

    Further,the precision of the initial value has agreat influence on the calculation precision of all kinds of external ballistic equations[12].The common models used for the motion of a projectile include:Point mass trajectory model(the 3DOF model,herein,DOF is the degree-of-freedom),modified point mass trajectory model(the 4DOF model),and rigid body trajectory model (the 6DOF model).These models are different from each other in their preliminaries,physical assumptions,aerodynamic parameters involved,computational speeds and accuracies.Therefore,one should make a reasonable choice according to a specific situation.The 3DOF model is only concerned with three position coordinates of a projectile,and used to rapidly estimate the approximate impact point of a relatively poor precision.The 4DOF model further considers the repose angle of aprojectile[13],and is generally used when the firing angle is less than 50°,or when the ascent stage of the anti-aircraft gun and the navy gun are against air targets[14].The 6DOF model not only considers the projectile′s position using three coordinates,but also its orientation using three angular displacements.The 6DOF model has the best accuracy when the initial values of the integral variables are precisely known.The difficulty of applying 6DOF model lies in the acquisition of these initial values.A possible way is to utilize the trajectory radar which can measure position and velocity of a projectile.However,the information of orientation and angular velocity is not included.

    It is well known that the Kalman filter is widely used in parameter estimation for predictive target tracking[15-17].However,if there are position coordinates by the radar test,instead of angle measurements,the projectile attitude angles can not be estimated by the Kalman filter.

    In order to improve the precision of ballistic trajectory prediction,we propose an algorithm to estimate the projectile attitude angles based on the 6DOF trajectory model.Hereby,the algorithm utilizes the Davidon-Fletcher-Powell(DFP)method in solving nonlinear equations and radar trajectory test information containing only position coordinates of the projectile to reconstruct the angular displacements.

    The DFP formula finds the solution to the secant equation that is the closest to the current estimate and satisfies the curvature condition.It was the first quasi-Newton method to generalize the secant method to a multi-dimensional problem.This update maintains the symmetry and positive definiteness of the Hessian matrix[18].

    Due to the particularity of the artillery,and missile environment of high temperature and high pressure,high overload,high speed rotation,and space and the deficiency of the sensor is expensive,installed the sensor on the projectile is difficult.Fewer people are choosing to install sensors on ordinary projectiles.In this paper,an algorithm based on the six-degree-of-freedom (6DOF)trajectory equations is developed and presented to estimate the projectile attitude angles in every measuring time.The proposed method is proved by experiment and the experiment demonstrates that the algorithm has good prediction effect using the 6DOF trajectory model.

    The passive trajectory of other artillery or use other trajectory models such as 4DOF and 5DOF models can also be incorporated into the proposed algorithm.

    1 Mathematical Model of Exterior Ballistic

    Considering the dynamic unbalance,mass eccentric and gust of wind,the equations of motion of the ordinary projectile can be written as

    wherex,y,zare the coordinates of the projectile geometry center in the ground coordinate system;vx,vy,vzthe components of the velocity of the projectile geometry center in the ground coordinate system;mis the mass of the projectile,Athe equatorial rotational inertia of the projectile,Cthe polar moment of inertia of the projectile,gthe gravitational acceleration,vrthe relative atmospheric velocity,wxthe velocity of the longitudinal wind,wzthe the velocity of the cross wind,vrthe relative acceleration,Rxthe drag force,Rythe lift force,Rzthe Magnus force,ψrthe relative deflection angle,θrthe relative ballistic inclination angle,δrthe relative angle of attack,δr1the projection of the relative angle of attack on the vertical plane,δr2the projection of the relative angle of attack on the lateral plane,ψrthe relative declination angle velocity,θthe trajectory inclination angle velocity,αrthe relative aiming angle,kxDthe polar damping moment coefficient,kzDthe equator torque damping coefficient,Mzthe Magnus moment,andMzthe stable moment.βDηandβDζare the projections of dynamic unbalance angleβDin axisηandζof theo1ξηζ,respectively,LmηandLmζthe projections of mass eccentricityLmin axisηandζof theo1ξηζ,respectively.

    2 Determination Algorithm for Pro-jectile Attitude Angles

    When computing the 6DOF trajectory model,one needs to provide 12independent initial values including (x,y,z,vx,vy,vz,γ,φa,φ2).On one hand,however,only the first 6 quantities,namely (x,y,z,vx,vy,vz),can be obtained from radar test data;on the other hand,the initial value of the spin angleγmay not influence the motion of the projectile since it does not explicitly appear in the motion equations,Eqs.(7)—(12).Consequently,how to obtain the angular velocity of spinning,two angles of oscillation,and two angular velocities of oscillation(γ,will be studied in this paper.

    If the radar data at time instanttiandti+1are known,one can expand the positions of a projectile using a second-order Taylor series attias

    whereXiandXi+1are the position coordinates of the projectile attiandti+1,respectively;Viis the velocities of the projectile atti,Δt=ti+1-tithe difference betweentiandti+1,Aiis the accelerations of the projectile atti.

    Further,it can be deduced thatAi=Moreover,Aican also be expressed as,where the(x,y,z,vx,vy,vz)iattiand (x,y,z,vx,vy,vz)i+1atti+1can be obtained from radar measurement.On the right side of Eqs.(7)—(9),only the angular velocity of spinning and the two angles of oscillation (γ,φa,φ2)iare unknown and independent,therefore,can be considered as a nonlinear function with respect toatti,namelyViΔt).By solving,φa,φ2)i,the problem is transformed into solving a ternary nonlinear equations as follows

    Solving nonlinear equations have a wide range of applications.Typically,the nonlinear equation is numerically solved by iteration methods.Common methods include the fixed point iteration method,Newton iterative method and Quasi Newton iterative method.

    DPF method avoids obtaining inverse matrix in its iteration formula,thus increases the speed of calculation[19].

    Given a functionf(x),its gradient(f),and positive definite Hessian matrixB,the Taylor series is

    and the Taylor series of the gradient itself(secant equation)

    is used to updateB.The DFP formula finds a solution that is symmetric,positive definite and closest to the current approximate value ofBk

    where

    andBkis a symmetric and positive definite matrix.The corresponding update to the inverse Hessian approximationHk=B-1kis given by

    Bis assumed to be positive definite,and the vectorssTkandymust satisfy the curvature condition

    The schematic diagram for a cycle is shown in Fig.1.

    We solve,φa,φ2)ibased on the DFP method.

    In a similar way,known the radar data atti+1andti+2,one can calculate,φa,φ2)i+1.Hereby,theattican be approximately evaluated by

    Fig.1 Calculating diagram within a loop

    Specific steps are as follows:

    Step 1 Acquire the radar data from the measurement on the coordinates and velocities of the projectile attiti+1andti+2,namely (X,V)i,(X,V)i+1,(X,V)i+2;

    Step 2 Use(X,V)iand(X,V)i+1to calculate(γ,φa,φ2)iby DFP method;

    Step 3 Use(X,V)i+1and(X,V)i+2to calculate(γ,φa,φ2)i+1by DFP method;

    Step 4 Use(φa,φ2)iand(φa,φ2)i+1to calcu-late,)iby difference quotient.

    Up to now,has been ob-tained.Its basic idea is to use three consecutive test data of position and velocity of the projectile to solve the angles on the first point.Along with the position and velocity data by radar measure-ment,the initial valuesof exterior ballistic equations are all known.Further,the 6DOF trajectory model can be solved,and the impact point can be computed.The cycle stops whennis the last point of radar test data.

    The flow chart of the algorithm is shown in Fig.2.

    Fig.2 Flow chart of 6DOF trajectory prediction method

    3 Smulation and Experimental Verification

    3.1 Simulation verification of the projectile′s angles and angular velocities

    Since the radar test data does not contain angles information,a simulation method is adopted to verify the calculation precision of the angles.Hereby,a 155mm spin-stabilized projectile is studied for ballistic simulation.The mass of the projectile is 45.678kg;its equator moment of inertia is 1.785kg·m2,polar moment of inertia 0.164 3kg·m2, twist rate of rib rifling 0.141 260 16,length of rifling 6.41m.The atmospheric density,the variation of speed of sound,and aerodynamic coefficient can be referred to Ref.[1].

    The ballistic data can be generated by using the 6DOF trajectory model as″the simulated radar data″.

    First of all,the trajectory simulation is car-ried out based on three elevation angles including 35°,49°,65°(low,common,high),and direction angle 0°.Basic parameters are shown in the Table 1.

    Table 1 Simulation data of the ballistic

    Assume the simulated trajectory as a″simulated radar data″,and take the results of the simulation from 1to 2safter launch,the time step is set to be 0.01s.Thereby,total 100positions and velocity coordinates,as well as orientation angles and their time derivatives will be generated at the 100time instant.By substituting these 100″simulated radar data″of position and velocity coordinates into the proposed attitude angles determination algorithm,one can finally compare the calculated results with the″simulated radar data″of at-titude angles and their time derivatives.

    Figs.3—11show the comparison between the″simulated radar data″and estimated results by the algorithm in the case of 35°low elevation angle,49°common elevation angle and 65°high elevation angle,respectively.It can be seen that the estimated angles and their time derivatives using the algorithm 6DOF (6degree of freedom estimated)are in good agreement with the simulated radar data,which validates the algorithm in the case of the common,high and low elevation angles,respectively.

    Fig.3 The spin rate versus time for comparison in the case of 35°elevation angle

    Fig.4 The pitch angle versus time for comparison in the case of 35°elevation angle

    Fig.5 The yaw angle versus time for comparison in the case of 35°elevation angle

    Fig.6 The spin rate versus time for comparison in the case of 49°elevation angle

    Fig.7 The pitch angle versus time for comparison in the case of 49°elevation angle

    Fig.8 The yaw angle versus time for comparison in the case of 49°elevation angle

    Fig.9 The spin rate versus time for comparison in the case of 65°elevation angle

    Fig.10 The pitch angle versus time for comparison in the case of 65°elevation angle

    3.2 Results of ballistic test

    In order to further verify the algorithm in this article,some firing tests have been implemented with an elevation angle of 45°and a direction angle of 0°.

    Fig.11 The yaw angle versus time for comparison in the case of 65°elevation angle

    Table 2 Four impact points of projectiles in the firing test

    Hereby impact points of four projectiles are shown in Table 2.

    In the aforementioned table,the first 10th measuring filtered points from Doppler radar test for the first projectile are shown in Table 3.

    Table 3 The first 10th measuring filtered points of the first projectile from Doppler radar test

    3.3 Test verification on projectile′s position and

    velocity coordinates

    Substituting the Doppler radar test data in Table 3into the trajectory prediction algorithm and computing the impact point using the 6DOF trajectory model with the estimated initial values,one can compare the actual test data (Real radar data)with the simulation data (6DOF estimated),as shown in Figs.12—16.

    where ESTIMATED is the impact point of estimated by the proposed algorithm,and REAL the real radar date.

    3.4 Test verification on the prediction of projec-

    tile′s impact point

    The error of projectile′s impact point can be defined as

    Fig.12 Range versus time for comparison in the case of 45°elevation angle

    Fig.13 Altitude versus time for comparison in the case of 45°elevation angle

    Fig.14 Velocity xversus time for comparison in the case of 45°elevation angle

    Fig.15 Velocity yversus time for comparison in the case of 45°elevation angle

    Fig.16 Velocity z versus time for comparison in the case of 45°elevation angle

    Table 4shows the error analysis of the pre diction of the projectile′s impact point with an elevation angle of 45°.The error between the algorithm results and real data is small,with a slight deviation in theZdirection.From the meteorological conditions of the test,the high altitude wind speed,which can reach 62—77m/s in the vertex height,is very large.In such case,high altitude wind measurement error will be relatively large.However,the accuracy of the prediction is acceptable in engineering scale.This deviation may be caused due to two reasons:One is measuring error of meteorological conditions;the other is the poor state of the artillery used,resulting in a relatively large initial disturbance.

    The experiment validates that the algorithmhas good prediction effect using the 6DOF trajectory model.

    Table 4 Error analysis of the prediction impact point of 45°elevation angle

    4 Conclusions

    In this paper,a determination algorithm used DFP method to solve nonlinear equations is applied to estimate projectile′s attitude angles at the end phase of the radar data of the projectile trajectory test.We established the determination algorithm of the projectile′s attitude angles for trajectory prediction,and extrapolated the impact point.In order to verify the proposed method,the trajectory simulation was implemented based on three elevation angles,35°,49°,65°as the″simulated radar data″.By substituting 100″simulated radar data″of position and velocity coordinates into the proposed attitude angles determination algorithm,one can compare the estimated results with the″simulated radar data″of attitude angles and their time derivatives.Good agreement has been achieved in the result.The firing test is carried out and the real radar data are substituted into the algorithm for trajectory prediction.The prediction and the actual curves agree very well,and the error is acceptable within engineering scope.

    Not only the projectile but also the other artillery trajectory can be predicted by the algorithm.The proposed algorithm can also be extended to trajectory prediction using other trajectory models such as 4DOF and 5DOF models.This article provides a novel technical foundation for evaluating the dynamic performance and improving the accuracy of artillery trajectory prediction.

    Acknowledgements

    The research was supported by the Research Fund for the Doctoral Program of Higher Education of China (No.20133219110037);the Natural Science Foundation of China(No.11472135);and the Program for New Century Excellent Talents in University(No.NCET-10-0075).

    [1] RUI X T,LIU Y X,YU H L.Launch dynamics of tank and self-propelled artillery[M].Beijing:Science Press,2008.(in Chinese)

    [2] FRESCONI F,COOPER G,COSTELLO M.Practical assessment of real-time impact point estimators for smart weapons [J].Journal of Aerospace Engineering,2011,24(1):1-11.

    [3] SHAO X,WANG H,ZHU L.A potential efficiency assessment model for reconnaissance and spotting radar[J].Fire Control and Command Control,2008,7(33):40-43.(in Chinese)

    [4] KRAMER K A,STUBBERUD S C.Impact time and point predicted using a neural extended Kalman filter[C]//IEEE Intelligent Sensors,Sensor Networks and Information Processing Conference.Melbourne,Australia:IEEE,2008:199-204.

    [5] PRUSSING J E,CONWAY B A.Orbital mechanics[M].New York:Oxford University Press,1993.

    [6] ISAACSON J A,VAUGHAN D R.Estimation and prediction of ballistic missile trajectories[J].Journal of Clinical Psychology,1996,31(4):770-775.

    [7] DANIS N J.Space based tactical ballistic missile launch parameter estimation [J].IEEE Transactions on Aerospace and Electronic Systems,1993,29(2):412-424.

    [8] ERIC N,MEIR P,STANTON M.Projectile launch point estimation from radar measurement[C]∥ A-merican Control Conference.Portland,USA:[s.n.],2005:1275-1282.

    [9] KHALIL M,RUI X T,HENDY H.Discrete time transfer matrix method for projectile trajectory prediction[J].Journal of Aerospace Engineering,2015,28(2):04014057.

    [10]KHALIL M,RUI X T,ZHA Q C,et al.Projectile impact point prediction based on self-propelled artillery dynamics and Doppler radar measurements[J].Advances in Mechanical Engineering,2013(3):153913.

    [11]WU Z,WANG M,ZHANG R.A new algorithm to real-time optimal estimation of radar biases based on ADS-B [J].Journal of Southwest Jiaotong University,2013,48(1):1-6.

    [12]MCCOY R.Modern exterior ballistics:The launch and flightdynamics of symmetric projectiles [M].USA:Schiffer,2011:1-11.

    [13]LIESKE R,REITER M.Equations of motion for a modified point mass trajectory:U.S.Army Ballistic Research Laboratory Rep:R1314(AD 485869)[R].USA:U.S.Army,Aberdeen Proving Ground,1966.

    [14]PU F,RUI X T.Exterior ballistics[M].Beijing:National Defense Industry Press,1989.(in Chinese)

    [15]RAVINDRA V C,BAR-SHALOM Y,WILLETT P.Projectile identification and impact point prediction[J].IEEE Transactions on Aerospace and Electronic Systems,2007,46(4):2004-2021.

    [16]YANG L Q,XIAO Q G,NIU Y,et al.Design of localization system based on reducing Kalman filter[J].Journal of Nanjing University of Aeronautics and Astronautics,2012,44(1):134-138.

    [17]CAI J,ZHANG L,DONG P.Remaining useful life prediction for aero-engines combining sate space model and kf algorithm [J].Transactions of Nanjing University of Aeronautics and Astronautics,2017,34(3):265-271.

    [18]FLETCHER R,POWELL M J D.A rapidly convergent descent method for minimization[J].The Computer Journal,1963,6(2):163-168.

    [19]ZHAO S.Application of MATLAB programming and optimization design[M].Beijing:Electronics Industry Publishing House,2013.(in Chinese)

    中国国产av一级| 日韩 亚洲 欧美在线| 亚洲欧美一区二区三区国产| 欧美97在线视频| 白带黄色成豆腐渣| 免费播放大片免费观看视频在线观看 | 神马国产精品三级电影在线观看| 九色成人免费人妻av| 一个人观看的视频www高清免费观看| 熟女人妻精品中文字幕| 久久人妻av系列| 国产精品一区二区在线观看99 | 精品一区二区免费观看| 欧美xxxx黑人xx丫x性爽| 嘟嘟电影网在线观看| 亚洲成av人片在线播放无| 亚洲精品aⅴ在线观看| 亚洲伊人久久精品综合 | 免费av观看视频| 日本黄色视频三级网站网址| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产精品专区欧美| 免费搜索国产男女视频| 男人和女人高潮做爰伦理| 69av精品久久久久久| 亚洲最大成人av| 天美传媒精品一区二区| 最近手机中文字幕大全| 99久久精品国产国产毛片| 男人狂女人下面高潮的视频| 精品少妇黑人巨大在线播放 | 极品教师在线视频| 人妻制服诱惑在线中文字幕| 日韩精品有码人妻一区| 好男人视频免费观看在线| 欧美另类亚洲清纯唯美| 亚洲最大成人中文| 热99在线观看视频| 午夜福利在线观看吧| 亚洲精品乱码久久久v下载方式| 国产精品乱码一区二三区的特点| 欧美日韩精品成人综合77777| 国产精品女同一区二区软件| 女人被狂操c到高潮| 在线播放无遮挡| 亚洲精品自拍成人| 综合色av麻豆| 欧美丝袜亚洲另类| 免费看光身美女| 亚洲欧美精品专区久久| 亚洲av熟女| 国产v大片淫在线免费观看| 麻豆成人av视频| 亚洲精品,欧美精品| 国产视频首页在线观看| 女人被狂操c到高潮| 麻豆成人av视频| 深夜a级毛片| 亚洲av一区综合| 成年免费大片在线观看| 99久久九九国产精品国产免费| 哪个播放器可以免费观看大片| 观看美女的网站| 成人鲁丝片一二三区免费| 欧美变态另类bdsm刘玥| 亚洲成人精品中文字幕电影| 91在线精品国自产拍蜜月| 又爽又黄无遮挡网站| 国产伦在线观看视频一区| 亚洲精品,欧美精品| 久久综合国产亚洲精品| 亚洲精品乱码久久久v下载方式| h日本视频在线播放| 少妇丰满av| 亚洲婷婷狠狠爱综合网| 国产成人a区在线观看| 久久精品91蜜桃| 在线免费观看的www视频| 春色校园在线视频观看| 成人午夜精彩视频在线观看| 蜜臀久久99精品久久宅男| 亚洲av成人av| 校园人妻丝袜中文字幕| 蜜桃久久精品国产亚洲av| 亚洲成色77777| 99热网站在线观看| 国产人妻一区二区三区在| 99久久精品一区二区三区| 亚洲av日韩在线播放| 国产av不卡久久| 午夜亚洲福利在线播放| 美女高潮的动态| 一级毛片aaaaaa免费看小| 日韩国内少妇激情av| av免费观看日本| 日韩av在线大香蕉| 老师上课跳d突然被开到最大视频| 不卡视频在线观看欧美| 国产精品国产三级国产av玫瑰| 日本一二三区视频观看| 赤兔流量卡办理| 国产极品天堂在线| 观看美女的网站| 午夜精品国产一区二区电影 | 高清毛片免费看| 亚洲中文字幕日韩| 九九热线精品视视频播放| 久久精品国产亚洲网站| 国产精品一区二区在线观看99 | 成人漫画全彩无遮挡| 国产69精品久久久久777片| 内射极品少妇av片p| 日本色播在线视频| 禁无遮挡网站| 亚洲成av人片在线播放无| 国产真实伦视频高清在线观看| 日日摸夜夜添夜夜爱| 国产在线一区二区三区精 | 女人十人毛片免费观看3o分钟| 欧美极品一区二区三区四区| 全区人妻精品视频| 久久久精品欧美日韩精品| 干丝袜人妻中文字幕| 久久久久国产网址| 五月玫瑰六月丁香| 成年免费大片在线观看| 三级经典国产精品| 亚洲av成人av| 欧美成人免费av一区二区三区| 色综合色国产| 国产亚洲91精品色在线| 久久人人爽人人片av| 久久久久久久久久成人| 国产欧美另类精品又又久久亚洲欧美| 久久精品久久久久久久性| 看免费成人av毛片| 七月丁香在线播放| 三级国产精品片| 成人高潮视频无遮挡免费网站| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av二区三区四区| 最近最新中文字幕免费大全7| 好男人在线观看高清免费视频| 国产在线男女| 热99在线观看视频| 精品无人区乱码1区二区| 亚洲国产精品合色在线| 免费av毛片视频| 成人性生交大片免费视频hd| 日本熟妇午夜| 七月丁香在线播放| 国产69精品久久久久777片| 免费无遮挡裸体视频| 最近最新中文字幕免费大全7| 熟女人妻精品中文字幕| 女人久久www免费人成看片 | 熟妇人妻久久中文字幕3abv| 七月丁香在线播放| 成人鲁丝片一二三区免费| .国产精品久久| 国产高清视频在线观看网站| 蜜桃亚洲精品一区二区三区| 老司机影院毛片| www日本黄色视频网| 色综合亚洲欧美另类图片| 村上凉子中文字幕在线| 又粗又爽又猛毛片免费看| 亚洲成色77777| 久久热精品热| 变态另类丝袜制服| 亚洲va在线va天堂va国产| 亚洲人成网站在线播| 内射极品少妇av片p| 日本与韩国留学比较| 亚洲最大成人av| 三级毛片av免费| a级一级毛片免费在线观看| 亚洲电影在线观看av| 爱豆传媒免费全集在线观看| 美女内射精品一级片tv| 国产精品久久久久久久久免| 国产伦理片在线播放av一区| 神马国产精品三级电影在线观看| 日本av手机在线免费观看| 久久精品国产鲁丝片午夜精品| 寂寞人妻少妇视频99o| 噜噜噜噜噜久久久久久91| 中文字幕免费在线视频6| 国内精品美女久久久久久| 成人漫画全彩无遮挡| 在线播放国产精品三级| 国产 一区精品| 99久久精品国产国产毛片| 欧美日韩国产亚洲二区| 五月玫瑰六月丁香| 午夜精品国产一区二区电影 | 99热精品在线国产| 99热网站在线观看| 欧美成人免费av一区二区三区| 日本黄大片高清| 搡老妇女老女人老熟妇| 国产精品野战在线观看| 久久久成人免费电影| 人妻少妇偷人精品九色| 九草在线视频观看| 国产高清国产精品国产三级 | 亚洲国产欧洲综合997久久,| 女人被狂操c到高潮| 你懂的网址亚洲精品在线观看 | 一个人看的www免费观看视频| 亚洲av成人av| 亚洲精品乱码久久久v下载方式| 日韩人妻高清精品专区| 国语对白做爰xxxⅹ性视频网站| 91精品一卡2卡3卡4卡| 亚洲av男天堂| 老司机福利观看| 男的添女的下面高潮视频| 青青草视频在线视频观看| 国产 一区 欧美 日韩| 日本五十路高清| 亚洲国产最新在线播放| 大香蕉久久网| 免费看美女性在线毛片视频| 老女人水多毛片| 国产av在哪里看| 国语对白做爰xxxⅹ性视频网站| 中文资源天堂在线| 国产av不卡久久| 精品久久久久久成人av| 久久99精品国语久久久| 一级毛片我不卡| 欧美一级a爱片免费观看看| 伦精品一区二区三区| 国产精品久久视频播放| 亚洲丝袜综合中文字幕| 国产一区二区三区av在线| 亚洲精品影视一区二区三区av| 日本一本二区三区精品| 高清午夜精品一区二区三区| 国内揄拍国产精品人妻在线| 乱人视频在线观看| 国产精品日韩av在线免费观看| 麻豆av噜噜一区二区三区| 亚洲欧美成人精品一区二区| 哪个播放器可以免费观看大片| 日日摸夜夜添夜夜爱| 中文字幕制服av| 国产伦理片在线播放av一区| 免费观看a级毛片全部| av视频在线观看入口| 中文字幕免费在线视频6| 成人亚洲欧美一区二区av| av又黄又爽大尺度在线免费看 | 亚洲精品亚洲一区二区| 一边摸一边抽搐一进一小说| 高清视频免费观看一区二区 | 精品久久久久久久末码| 亚洲不卡免费看| 最近中文字幕2019免费版| 国产一区有黄有色的免费视频 | 免费看日本二区| 三级男女做爰猛烈吃奶摸视频| 亚洲内射少妇av| 国产人妻一区二区三区在| 人妻制服诱惑在线中文字幕| 日本猛色少妇xxxxx猛交久久| 99久国产av精品| 一级黄色大片毛片| 亚洲av福利一区| 人妻系列 视频| 国产精品一区二区在线观看99 | 日本wwww免费看| 成人av在线播放网站| 岛国毛片在线播放| 九色成人免费人妻av| 晚上一个人看的免费电影| 美女脱内裤让男人舔精品视频| 综合色av麻豆| 久久人妻av系列| 亚洲激情五月婷婷啪啪| 免费观看人在逋| 日本三级黄在线观看| 亚洲av二区三区四区| 黑人高潮一二区| 三级毛片av免费| 黄色日韩在线| 综合色丁香网| 国产伦在线观看视频一区| 亚洲国产欧美人成| 又黄又爽又刺激的免费视频.| 在线观看一区二区三区| 91精品国产九色| 波多野结衣高清无吗| 日韩亚洲欧美综合| 99视频精品全部免费 在线| 两个人视频免费观看高清| 日日摸夜夜添夜夜添av毛片| 久久久久久大精品| 看黄色毛片网站| 五月玫瑰六月丁香| 天堂网av新在线| 七月丁香在线播放| 老师上课跳d突然被开到最大视频| 男人舔女人下体高潮全视频| 老司机福利观看| 村上凉子中文字幕在线| 麻豆av噜噜一区二区三区| 又粗又爽又猛毛片免费看| 精品欧美国产一区二区三| 熟女电影av网| 国产精华一区二区三区| 插逼视频在线观看| 春色校园在线视频观看| 亚洲第一区二区三区不卡| 国模一区二区三区四区视频| 人人妻人人澡人人爽人人夜夜 | 最近手机中文字幕大全| 日本免费在线观看一区| 99久久精品国产国产毛片| 小说图片视频综合网站| 性插视频无遮挡在线免费观看| 麻豆成人av视频| 色综合站精品国产| 欧美高清成人免费视频www| 国产黄a三级三级三级人| 最近最新中文字幕大全电影3| 在线观看一区二区三区| 亚洲精品乱码久久久v下载方式| av国产免费在线观看| 久久久国产成人精品二区| 国产免费一级a男人的天堂| 噜噜噜噜噜久久久久久91| 国产av码专区亚洲av| 久久久成人免费电影| 大香蕉97超碰在线| 欧美成人午夜免费资源| 人人妻人人澡人人爽人人夜夜 | 欧美+日韩+精品| 国产精品1区2区在线观看.| 亚洲av电影在线观看一区二区三区 | 又粗又爽又猛毛片免费看| 女人十人毛片免费观看3o分钟| 亚洲av成人精品一区久久| 久久久午夜欧美精品| 日本爱情动作片www.在线观看| 国产一区有黄有色的免费视频 | 亚洲中文字幕一区二区三区有码在线看| 我要看日韩黄色一级片| 成人二区视频| 男的添女的下面高潮视频| 少妇猛男粗大的猛烈进出视频 | 午夜爱爱视频在线播放| 91午夜精品亚洲一区二区三区| 久99久视频精品免费| 国产精品一区二区性色av| 午夜福利视频1000在线观看| 免费观看在线日韩| 免费观看的影片在线观看| 网址你懂的国产日韩在线| 国产精品女同一区二区软件| 久久久久久久久久成人| 成人漫画全彩无遮挡| 国产伦理片在线播放av一区| 搡老妇女老女人老熟妇| 免费无遮挡裸体视频| 卡戴珊不雅视频在线播放| 免费无遮挡裸体视频| 一个人观看的视频www高清免费观看| 99久久九九国产精品国产免费| 日日摸夜夜添夜夜爱| 精品酒店卫生间| 日日摸夜夜添夜夜爱| 国产白丝娇喘喷水9色精品| 日日摸夜夜添夜夜爱| 99久久九九国产精品国产免费| 国产免费视频播放在线视频 | 久久精品久久久久久噜噜老黄 | 国产成人精品婷婷| 成人一区二区视频在线观看| 日韩强制内射视频| 欧美日韩国产亚洲二区| 欧美zozozo另类| 国产精品一区二区三区四区免费观看| 男女视频在线观看网站免费| 女人久久www免费人成看片 | 日韩欧美 国产精品| 好男人在线观看高清免费视频| 午夜福利网站1000一区二区三区| 少妇人妻精品综合一区二区| 亚洲欧美日韩无卡精品| 中文字幕免费在线视频6| 国产伦精品一区二区三区视频9| 99热这里只有精品一区| 国产精品久久久久久精品电影| 国产又黄又爽又无遮挡在线| 少妇的逼好多水| 赤兔流量卡办理| 国产精品精品国产色婷婷| 搞女人的毛片| 美女内射精品一级片tv| 在线天堂最新版资源| av国产久精品久网站免费入址| 国产高清国产精品国产三级 | 最近最新中文字幕免费大全7| 精品人妻一区二区三区麻豆| 国产一区亚洲一区在线观看| 国产色爽女视频免费观看| 国产精品av视频在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 最新中文字幕久久久久| 丝袜喷水一区| 国产黄a三级三级三级人| 国产又色又爽无遮挡免| 我要搜黄色片| 国产精品一区二区在线观看99 | 日韩一区二区三区影片| 3wmmmm亚洲av在线观看| 国产大屁股一区二区在线视频| 国产高清视频在线观看网站| 国产精品人妻久久久久久| 亚洲av一区综合| 少妇高潮的动态图| 国产亚洲精品久久久com| ponron亚洲| 久久人人爽人人片av| 少妇人妻一区二区三区视频| 直男gayav资源| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 嫩草影院新地址| 国产精品一区二区在线观看99 | 欧美丝袜亚洲另类| 久久精品久久久久久噜噜老黄 | 日韩强制内射视频| 黄色一级大片看看| 亚洲四区av| 久久精品人妻少妇| 如何舔出高潮| 日日撸夜夜添| a级一级毛片免费在线观看| 欧美一区二区亚洲| 夫妻性生交免费视频一级片| 久久久国产成人免费| 日日啪夜夜撸| 亚洲av不卡在线观看| 亚洲怡红院男人天堂| 日本一本二区三区精品| 欧美性猛交黑人性爽| 欧美高清成人免费视频www| 69人妻影院| 夫妻性生交免费视频一级片| 麻豆成人午夜福利视频| 国产一区二区三区av在线| 亚洲国产精品久久男人天堂| 久久精品影院6| 秋霞伦理黄片| 久久久久久久久久久免费av| 亚洲国产欧洲综合997久久,| 日日摸夜夜添夜夜添av毛片| 嫩草影院入口| 人妻夜夜爽99麻豆av| 国产视频内射| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久久久av| 亚洲欧美日韩东京热| 一区二区三区乱码不卡18| 永久网站在线| 啦啦啦啦在线视频资源| 亚洲av男天堂| 久久人妻av系列| 亚洲精品国产成人久久av| 精品少妇黑人巨大在线播放 | ponron亚洲| 又爽又黄无遮挡网站| 精品一区二区免费观看| 亚洲av中文字字幕乱码综合| 久久6这里有精品| 天堂中文最新版在线下载 | 中国国产av一级| 三级经典国产精品| 国产精品久久久久久精品电影小说 | av卡一久久| 国产精品一区二区性色av| 成年免费大片在线观看| 高清日韩中文字幕在线| 国产在线男女| 日本免费a在线| 国产精品.久久久| 男女视频在线观看网站免费| 网址你懂的国产日韩在线| 天天躁日日操中文字幕| 国内少妇人妻偷人精品xxx网站| 99热6这里只有精品| 久久欧美精品欧美久久欧美| 在线免费观看不下载黄p国产| 欧美bdsm另类| 成人一区二区视频在线观看| 青春草亚洲视频在线观看| 国产精品一区二区三区四区久久| 中文资源天堂在线| 成人无遮挡网站| 久久久久久九九精品二区国产| 欧美丝袜亚洲另类| 亚洲综合色惰| 亚洲人成网站在线观看播放| 国产免费视频播放在线视频 | 国产一区二区在线av高清观看| 特级一级黄色大片| 99久国产av精品国产电影| 日产精品乱码卡一卡2卡三| 国产精品永久免费网站| 欧美性猛交黑人性爽| 久久久久久久久久久免费av| 日韩 亚洲 欧美在线| 最新中文字幕久久久久| 亚洲丝袜综合中文字幕| 国产免费视频播放在线视频 | 91久久精品国产一区二区三区| 免费无遮挡裸体视频| 国产真实乱freesex| 91av网一区二区| 十八禁国产超污无遮挡网站| 免费观看人在逋| 欧美三级亚洲精品| 日本黄色片子视频| 爱豆传媒免费全集在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲精品国产av成人精品| 久久久午夜欧美精品| 又爽又黄a免费视频| a级毛片免费高清观看在线播放| av在线观看视频网站免费| 又爽又黄无遮挡网站| 国产欧美另类精品又又久久亚洲欧美| 搞女人的毛片| 亚洲欧美日韩高清专用| 国内少妇人妻偷人精品xxx网站| 亚洲人成网站在线播| 久久久久久国产a免费观看| 国产黄片美女视频| 一级黄片播放器| 亚洲伊人久久精品综合 | 国产国拍精品亚洲av在线观看| 亚洲欧美日韩东京热| 久久久国产成人免费| 26uuu在线亚洲综合色| 联通29元200g的流量卡| 成人午夜高清在线视频| 久久热精品热| 在线播放国产精品三级| 一级二级三级毛片免费看| 日本免费在线观看一区| 亚洲一区高清亚洲精品| 免费av毛片视频| 天堂av国产一区二区熟女人妻| 一二三四中文在线观看免费高清| 91久久精品电影网| 亚洲人成网站在线播| 欧美性猛交黑人性爽| 精品国产一区二区三区久久久樱花 | 亚洲人成网站在线观看播放| 亚洲婷婷狠狠爱综合网| 人妻夜夜爽99麻豆av| 国产91av在线免费观看| 长腿黑丝高跟| 大香蕉久久网| 非洲黑人性xxxx精品又粗又长| 我的女老师完整版在线观看| 精品少妇黑人巨大在线播放 | 欧美日韩精品成人综合77777| 亚洲丝袜综合中文字幕| 午夜福利在线观看吧| 亚洲乱码一区二区免费版| 国产色爽女视频免费观看| 久久精品久久精品一区二区三区| 国产爱豆传媒在线观看| 别揉我奶头 嗯啊视频| 听说在线观看完整版免费高清| 亚洲第一区二区三区不卡| 亚洲av不卡在线观看| 床上黄色一级片| 成年版毛片免费区| 51国产日韩欧美| 国产精品av视频在线免费观看| 欧美日本视频| 亚洲四区av| 精品国产三级普通话版| 国产精品人妻久久久久久| 2021少妇久久久久久久久久久| 欧美bdsm另类| 亚洲欧美成人精品一区二区| 午夜精品在线福利| 欧美bdsm另类| 亚洲欧美成人精品一区二区| 一本一本综合久久| 日本wwww免费看| 国产精品99久久久久久久久| 欧美色视频一区免费| 日韩制服骚丝袜av| 熟妇人妻久久中文字幕3abv| 精品人妻熟女av久视频| 99久久中文字幕三级久久日本| 成人高潮视频无遮挡免费网站| 免费黄色在线免费观看| 五月伊人婷婷丁香| 小蜜桃在线观看免费完整版高清| 丰满少妇做爰视频| 欧美日本亚洲视频在线播放| 黄色欧美视频在线观看| 久久午夜福利片| 国产一区二区三区av在线| 亚洲av中文字字幕乱码综合| 国产亚洲av嫩草精品影院|