• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aircraft Engine Gas Path Fault Diagnosis Based on Hybrid PSO-TWSVM

    2018-05-25 06:39:46,,,

    , , ,

    Jiangsu Province Key Laboratory of Aerospace Power Systems,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    0 Introduction

    The aircraft engine is an important equipment of an aircraft,and it is the power source of the aircraft.Modern aircraft engines work in a very harsh environment with high temperature,high pressure,strong vibration,and variable load,etc.,so it is very easy to damage aircraft engine components.Therefore,it is imperative for fault diagnosis of aircraft engines.According to the statistical data,most of faults occur in gas paths[1]and gas path faults are often potential and difficult to judge[2],so researching on fault diagnosis of gas paths is important.

    Classical support vector machine(SVM)algorithm has been introduced to complete aircraft engine gas path fault diagnosis,and a lot of papers[3-5]have reported it.Classical SVM has a-chieved good classification accuracy in fault diagnosis of aircraft engines.In this paper,a new SVM,i.e.,twin support vector machine(TWSVM)[6]is introduced,and it is a new development of SVM theory.It is a novel SVM based on nonparallel support hyper-plane and its performance is mature.Compared with the traditional SVM,the size of TWSVM quadratic programming problem is quarter of that of SVM[6-7],so the operation velocity of TWSVM is accelerated.In addition,TWSVM also shows higher ability in dealing with imbalanced problems.

    This paper introduces TWSVM algorithm to complete aircraft engine gas path fault diagnosis,uses a new optimization algorithm termed as hybrid particle swarm optimization (HPSO)[8]to optimize parameters of TWSVM and adopts a mixed kernel function to improve performance of TWSVM.

    1 Aircraft Engine Gas Path Fault Diagnosis

    The modern aircraft turbofan engine is generally composed of air inlet,fan,high pressure compressor,main combustion chamber,high pressure turbines,low pressure turbines,afterburner,nozzle,etc.Their faults are known as aircraft engine gas path faults,and if any of them occurs,the performance of the whole machine will decline.

    In the working process of aircraft engine,there are various faults,such as oxygen corrosion,damage collided by foreign objects on surface of engine parts and blade fracture because of collision,and so on.These faults will cause damage to the gas path components of aircraft engine,and structure damage can lead to the saltation of engine performance parameters,such as pressure,temperature of high and low compressor import and export,efficiency of high and low compressors,speed of high and low pressure rotor and fuel flow rate.The principle of aircraft engine gas path fault diagnosis is to deduce backwards and find out engine component states,and finally find locations of engine faults based on the changes of engine part performance parameters.The usual method of aircraft engine gas path fault diagnosis is that according to multiple state variables of gas path components,comprehensively analyze these variables and make an evaluation so as to deduce the performance of this engine.

    Aircraft engine faults mainly include three aspects:

    (1)Engine structure component damage.

    (2)The engine system or some components have lost their original function.

    (3)Performance degradation exceeds the design requirements of an engine.

    At present,methods of performance status monitoring and fault diagnosis for aircraft engines are divided into the following classes:(1)The status monitoring technique based on the small deviation linearization fault equation;(2)Fault diagnosis methods based on the artificial intelli-gence algorithms;(3)Fault diagnosis methods based on knowledge learning rules.The SVM algorithm for aircraft engine fault diagnosis belongs to machine learning that is a part of artificial intelligence algorithms.

    In this paper,the TWSVM algorithm is introduced to carry out the fault diagnosis of aircraft engine.Because directly obtaining test data and fault data of engines is difficult,this paper uses gas turbine simulation program(GSP)software for modeling and simulation of the PW4056 engine developed by Pratt & Amp Group[9].Then according to the thermodynamic parameters of each section in different working conditions,the influence matrix of fault diagnosis is generated by establishing an influence matrix equation.

    Fig.1shows the principle of using HPSOTWSVM to carry out fault diagnosis,in which training data are used to train TWSVM classification model and HPSO is used to optimize parameters of TWSVM.Then,the test accuracy of this classifier is obtained.

    Fig.1 Simple flow chart of HPSO-TWSVM fault diagnosis

    2 Basic Principle of TWSVM

    TWSVM was proposed by Jayadeva et al.based on the generalized eigenvalue SVM(GESVM)in 2007[6].Both of TWSVM and GESVM change the model structure from two parallel support hyper planes to a pair of nonparallel hyper planes,which extends SVM to a wider and more complex field.So TWSVM can process some data distribution styles that the SVM is difficult to deal with.Especially,the size of convex quadratic programming optimization problems of TWSVM is only one fourth of that of SVM′s,and it improves training speed in theory.

    TWSVM,like SVM,was originally designed for a binary classification,and its basic principles are as follows.

    Assuming that the training sample set is

    In this paper,the nonlinear TWSVM is used,so its brief introduction is given here.Since the linear TWSVM could not be extended to the nonlinear case directly like standard SVM,we need kernel functions for the nonlinear case.The kernel-generated plane is

    Two primal problems of nonlinear TWSVM are

    and

    whereC= [A;B]∈ Rl×n.

    After solving their corresponding dual problems

    and

    where

    The solutions of Eq.(2,3)are obtained by

    Thus a new test point is predicted to its own class by

    The classical SVM algorithm is based on the principle of the distance maximum between two kinds of sample points to find all support vector points,and then find a classification hyper plane in middle of the two classes.The innovation of TWSVM is to find a relatively independent support hyper plane for either class.Thus,TWSVM has a new model structure and some new abilities.But a good TWSVM classifier is heavily relies on parameter optimization,so a fine parameter optimization algorithm is important.In this situation,the HPSO is introduced.

    3 TWSVM Based on HPSO

    3.1 Characteristics and principles of HPSO

    The particle swarm optimization(PSO)is proposed by an American electrical engineer Eberhart and a social psychologist Kenndy in 1995[10].This algorithm is one of common methods for parameter optimization of SVM.The key of this method is how to ensure that particles land at the optimal solution.In order to achieve this goal,the PSO algorithm cleverly simulates bird foraging behaviors,and forms a model about social and individual nature.By regulating two weight coefficients of personality and society,particles land in objective[10-11].

    The mathematical description of the PSO algorithm is as follows:assume an-dimensional search space,mparticles compose of a particle swarmwherexi=xi,1,xi,2,…,xi,n()Tis a position of particlei,and its velocity isThe individual optimal position of particleiispbestiand it can be described aspbesti=pbesti,1,pbesti,2,…,pbesti,n

    ()T.The global op

    timal position of this swarm isgbest=gbest1,gbest2,…,gbestn

    ()T. After particle swarm finds the two optimal positions in the current iteration,they will update their own velocity and position according to the following equations

    wherec1,c2are acceleration constants;rand()generates a random number in (0,1);andare the velocity and position of particleiat dimensiondand iterationk;pbesis the individual optimal position of particleiat dimensiondand iterationk;gbestis the global optimal position of particle swarm at dimensiondand iterationk,andωis the inertia weight.

    From the above particle evolution equations,it can be find thatc1andc2adjust the step size of aparticle to flight forward its own best position and the global best position,respectively.For the PSO algorithm,exploration is that particles leave the original optimized track by a larger extent.Then exploitation is that particles search more detail on the original track.Ref.[11]pointed out thatωwas a proportional parameter for exploration and exploitation of the PSO and the influence ofωon algorithm performance was researched.From experimental results,it can be find that a largerωis good for the algorithm to jump out of the local optimum,and a smallerωis good for the local deep optimization,in other words,the converging speed of the algorithm is accelerated.

    However,the performance of the classical PSO algorithm needs to be improved to deal with the optimization problems with high complexity.Recently,evolutionary algorithms,traditional optimization algorithms or other techniques are used to improve the PSO.Among the improved methods,HPSO is one of the most effective algorithms.The improvement principle is that algorithms enhance global exploring ability by enriching the diversity of particles or enhance the convergent speed and accuracy by improving the PSO local exploitation ability.There are two general mixed strategies:(1)Use other optimization techniques to self-adaptively adjust shrinkage factor/inertia weight/acceleration constant,etc.(2)Combine PSO with other evolutionary algorithms or other techniques.HPSO belongs to the first kind.The hybrid concept is from the genetic algorithm(GA).In each time of iteration,according to the hybridization rate,the algorithm puts a part of particles into the hybrid pool,particles in this pool arise randomly pairwise hybridization to produce progeny particles with the same number compared with their father particles,and then progeny particles replace parent particles.The position of the progeny is obtained by the crossover of the parent positions

    wherexnis the position of progeny,xmthe position of father particles,andithe random number in (0,1).

    Velocity of progeny can be computed by

    wherevmis the velocity of father particles,andvnthe velocity of progeny.

    Fig.2is the 3-D graph of one of universal standard functions named Rastrigin.The minimum of Rastrigin is 0.

    Fig.2 3-D graph of Rastrigin function

    In the paper,Rastrigin is used to test the performance of PSO and HPSO briefly.From this simple test,we could find that HPSO algorithm can find the global optimal value in almost the same time.Through many experiments,we find that HPSO has better ability on finding global optimal value than PSO (Fig.3),though they are stochastic algorithms.HPSO needs more time to compute,but when the dimension of a problem is big enough,this disadvantage can be ignored.

    Fig.3 Performance comparison of PSO and HPSO

    3.2 Selection of kernel function

    The essence of improving performance of TWSVM algorithm is to improve its learning ability and generalization ability.Eenhancing the performance of its kernel function is an important way to improve the performance of TWSVM algorithm.We often use the Gauss kernel function as the kernel function,which has a strong learning ability but relatively weak generalization ability.So the mixed kernel(MK)function[12]which can balance the generalization ability and learning ability well is introduced.

    In this section,a simple polynomial kernel function and a Gaussian radial basis function are used to construct the mixed kernel function

    whereγandθare the proportions of the Gaussian radial basis function and the polynomial kernel function,respectively.In order to ensure that the mixed kernel function does not change the rationality of the original mapping space,generally make 0≤γ,θ≤1andγ+θ=1.At the same time,makethereby the mixed kernel function is

    The basic information of data sets used in the paper is shown in Table 1.

    Table 1 Data sets

    In these experiments,c1=c2=0.01are fixed and then the grid search method is used to find optimal parameters.Variable parameters of MKTWSVM areγ,sand that of TWSVM iss.The first two groups of comparative experiments use 5-fold cross validation to estimate accuracy,and the last group about Vehicle data uses a single accuracy rate to estimate accuracy for reducing the amount of calculation.In addition,the second contrast group uses the 1vrest[13]multi-class classification algorithm,and the accuracy is not high for the third group after using this method,so the 1v 1multi-class classification algorithm is used.

    Results of these experiments are shown in Table 2.Through the experimental verification,we can see that the mixed kernel function plays a significant role in performance improvement.

    Table 2 Comparison results of MK-TWSVM and TWSVM

    3.3 Training algorithm of TWSVM

    This paper introduces a fast calculation method named successive over relaxation (SOR)[14]as follow

    Aiming at a quadratic programming problem above,SOR is written as

    whereQis the quadratic matrix of convex quadratic programming (Eq.(15)),andLandEare composed of elements ofQ.Lis the strict lower triangular matrix,and elements located in lower left of the main diagonal correspond to the elements of same positions inQ.Eis the diagonal matrix,and diagonal elements are in one-to-one correspondence to the diagonal elements ofQ.t∈(0 ,2).This algorithm starts with anyα0∈ Rn,and through Eq.(16)unknown variables can be solved by iteration methods.The corresponding numerical solutions of convex quadratic program-ming problems of TWSVM are obtained until‖αi+1-αi‖is enough small.

    In addition,()#is an operator

    In particular,Eq.(16)is not the final iteration equation and there must be noαi+1in right of the equation.Only in this way,it can be running on computers.

    4 Gas Path Fault Diagnosis Based on HPSO-TWSVM

    After obtaining the corresponding classification rules and the fault data,aircraft engine fault diagnosis becomes a pattern recognition problem.In this paper,the corresponding classification rules are introduced[9]and the method of resample is used to enrich data sets.After then,TWSVM with a mixed kernel function is used to carry out this pattern recognition problem.In this process,TWSVM classification model is a fitness function for HPSO.Through choosing suitable parameters for HPSO algorithm,an optimal classification model of HPSO-TWSVM is built.

    Procedures of gas path fault diagnosis based on HPSO-TWSVM are as follows:

    Step 1 Obtain the corresponding classification rules of gas path fault diagnosis and divide the fault data set into a training set and a test set according to a certain proportion.

    Step 2 Use the training set to train MKTWSVM classification model.

    Step 3 Use HPSO to find the optimal parameters of MK-TWSVM.Set the position and velocity of each particle randomly.

    Step 4 Calculate the fitness value of each particle.If the fitness function value is better,update the best individual position of the particle,i.e.pbest.Compare allpbestand find the global optimal positiongbest.

    Step 5 Choose a certain number of particles according to hybrid probability,and put them into the hybrid pool.The particles in the pool are randomly paired to produce offspring with the same amount of their father generation particles.The position and velocity of the offspring are computed by Eqs.(11,12)and updated by Eqs.(9,10).

    Step 6 When this algorithm meets stop conditions,stop the search and give the output.Or return to Step 5to continue.

    Step 7 After obtaining the optimal classification model,use the test data set to get test accuracy and running time.

    Fig.4gives the flow chart of HPSO-TWSVM algorithm.

    5 Experiments

    According to the procedure of obtaining the aircraft fault analysis rules in Section 2and the procedure of gas path fault diagnosis based on HPSO-TWSVM in Section 4,experiments are carried out.In this paper,the decision rules for fault diagnosis in Ref.[9]are adopted.In Ref.[9],the decision rules for fault diagnosis are obtained in conditions:flight heightH=10 700m,atmospheric pressurep0=0.237 23bar,atmospheric temperatureT0=218.6K,atmospheric densityρ0=0.378 06kg/m3,Mach numberMa=0.39,thrustFN=47.01kN.All programs in this paper are edited on MATLAB 2014aand computer configurations are Intel Core i5-4200MCPU with dominant frequency 2.5GHz,RAM 8GB,a 64 bit operate system of Windows 10.

    We choose all kinds of fault data in Ref.[9]and generate randomly samples obeying the normal distribution by using the variance and the mean of every original sample according to correlation methods of resampling[15].Its formula is

    wherexiis any sample,L=0.1is a constant,σfaultis the standard deviation ofxi,and randngenerates random number obeying the normal distribution.According to this method,we generate 200 samples,100of which are used as the training samples,and the other 100as test samples.The 5-fold cross validation is used in training,the average of which is adopted as the training accura-cy,and the time of the whole training process is defined as the running time.

    Fig.4 Flow chart of HPSO-TWSVM algorithm

    Fig.5shows the parameter convergence of different algorithms in a simple experiment,and these two algorithms can find the best values within two steps.These experiments give us a guide and then we can use this result to complete the following research.

    Fig.5 Parameter convergence

    The following experiments are all carried out under the condition of mixed kernel function as Eq.(14).The first and second experiments are carried out in two different multiple classification methods.In last two experiments,we use PSO and HPSO respectively to optimize parameters of MK-TWSVM.In order to reduce the amount of computation,we set two penalty factors are equal,i.e.,c1=c2,and fix the mixed kernel function parameterγ=0.5.Accordingly,we need to optimize only two parameters.In order to better contrast the two optimization methods,the common parameters of the two algorithms are set as follows:the number of population is 10,two acceleration constants are all 2.05[11,16],initial inertia weight is 0.8,the maximum times of iteration is 2,and the dimension of any particle position is 2.

    The experimental results are shown in Table 3.In dealing with the multi-class classification problem,1v1method has a higher accuracy.Because every two classes of samples need a binary classifier and all of the samples requireis the total number of categories)binary classifiers,and it needs to design more complex voting algorithm,the computation needs more time.In the case of adequate computing power,we usually choose the 1v1multiple classification algorithm in 2—4groups.However,parameter optimization methods used in 2—4 groups are different.They are respectively grid search,PSO and HPSO.Experimental results show that HPSO can find the global optimum,and PSO can find a group of local best parameters.In addition,grid search algorithm also finds the best parameters,but it excessively relies on experience.

    The experiment that has four parameters to optimize is carried out,and results are shown in Table 4.From the results we can see that HPSO uses much less time in the case that there are more parameters need to be optimized,because it can intelligently find out the best parameters.

    Table 3 Comparison of experimental results of different algorithms

    Table 4 Comparison results of TWSVM and HPSO-TWSVM

    6 Conclusions

    (1)The feasibility and effectiveness of TWSVM in aircraft engine fault diagnosis are verified through the experiments.This is a new exploration for SVM technology in aircraft engine fault diagnosis.

    (2)It is proved that HPSO has better optimization performance than PSO though it needs slightly more time.HPSO is easier than PSO to find the global optimum.

    (3)A mixed kernel function can improve the performance of a kernel function so as to ensure that the TWSVM algorithm can better balance the generalization ability and the learning ability.

    (4)The 1v1multiple classification algorithm[17]of TWSVM has better training accuracy.

    Acknowledgement

    This work is supported by the Fundamental Research Funds for the Central Universities(No.NS2016027).

    [1] WANG Xiuyan,LI Cuifang,GAO Mingyang,et al.Aircraft engines gas path fault diagnosis based on SVM and SNN [J].Journal of Aerospace Power,2014,29(10):2493-2498.(in Chinese)

    [2] LI Yibo,ZHANG Guangming,JIANG Liying.Research status of aero engine gas path fault diagnosis technology[J].Gas Turbine Technology,2009,22(3):10-15.(in Chinese)

    [3] ZHAO Yongping,SUN Jianguo.Fast online approximation for hard support vector regression and its application to analytical redundancy for aeroengines[J].Chinese Journal of Aeronautics,2010,23(2):145-152.

    [4] SHI Hong,WANG Jing.Fault diagnosis of aeroengine sensor based on support vector machine[C]//2011International Conference on Measuring Technology and Mechatronics Automation (ICMTMA).Shanghai:IEEE Computer Society,2011:186-189.

    [5] CAI Kailong,XIE Shousheng,YANG Wei,et al.Fault diagnosis and adaptive reconfiguration control for sensors in aeroengine based on improved least squares support vector machine[J].Journal of Aerospace Power,2008,23(6):1118-1126.(in Chinese)

    [6] KHEMCHANDANI R J,CHANDRA S.Twin support vector machines for pattern classification [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(5):905-910.

    [7] NIE Panpan,ZANG Lei,LIU Leilei.Based on the multiple class classification algorithm of support vector machine application in intrusion detection [J].Journal of Computer Applications,2013,33(2):426-429.(in Chinese)

    [8] WEN Zheng.Master MATLAB intelligent algorithms[M].Beijing:Tsinghua University Press,2015:129-132.(in Chinese)

    [9] PEHG Shuhong.Research on aero engine gas path fault diagnosis technology [D].Shanghai:Shanghai Jiao Tong University,2012.(in Chinese)

    [10]KENNEDY J,EBERHART R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.Perth:IEEE,1995:1942-1948.

    [11]TIAN Yubo.Particle swarm optimization algorithm and electromagnetic applications [M].Beijing:Science Press,2014:21-27.(in Chinese)

    [12]WU Fulin.Research on model selection of twin support vector machines[D].Xuzhou:China University of Mining and Technology,2015.(in Chinese)

    [13]SHAO Yuanhai,ZHANG Chunhua,WANG Xiaobo,et al.Improvements on twin support vector machines[J].IEEE Trans Neural Nets,2011,22(6):962-968.

    [14]WANG Zhen,CHEN Jin,QIN Ming.Non-parallel planes support vector machine for multi-class classification[J].Logistics Systems and Intelligent Management,2010,1(3):581-585.

    [15]BI Hua,LIANG Hongli,WANG Yu.Resampling methods and machine learning[J].Chinese Journal of Computers,2009,32(5):862-877.(in Chinese)

    [16]ZHANG Yuchen,DU Zhonghua,DAI Wei.Design of ballistic consistency based on least squares support vector machine and particle swarm optimization [J].Transactions of Nanjing University of Aeronautics and Astronautics,2015,32(5):549-554.

    [17]YE Fei,GONG Jian,YANG Wang.Webshell black box test based on support vector machine[J].Journal of Nanjing University of Aeronautics and Astronautics,2015,47(6):924-930.(in Chinese)

    亚洲在久久综合| 欧美三级亚洲精品| 一区福利在线观看| 乱人视频在线观看| 乱系列少妇在线播放| 国产91av在线免费观看| 国产伦理片在线播放av一区 | 欧美zozozo另类| 日韩亚洲欧美综合| 亚洲av电影不卡..在线观看| 久久久欧美国产精品| 人体艺术视频欧美日本| 精品国产三级普通话版| 69人妻影院| 一进一出抽搐动态| 国产在线精品亚洲第一网站| 美女脱内裤让男人舔精品视频 | 一进一出抽搐动态| 亚洲人成网站高清观看| 九九在线视频观看精品| 美女国产视频在线观看| 欧美成人a在线观看| 国产精品一二三区在线看| 国产大屁股一区二区在线视频| 久久精品国产亚洲av涩爱 | 特大巨黑吊av在线直播| 伦精品一区二区三区| 91久久精品电影网| 长腿黑丝高跟| 久久久色成人| 日本一本二区三区精品| 九九在线视频观看精品| 国产精品,欧美在线| 一区二区三区四区激情视频 | 亚洲欧美成人综合另类久久久 | 国产单亲对白刺激| 午夜视频国产福利| 日韩一本色道免费dvd| 丰满人妻一区二区三区视频av| 免费大片18禁| 色视频www国产| 国产av麻豆久久久久久久| 99视频精品全部免费 在线| 黄片wwwwww| 18禁在线播放成人免费| 婷婷色av中文字幕| 国产午夜精品论理片| 午夜福利高清视频| 国产精品三级大全| 狂野欧美白嫩少妇大欣赏| 大又大粗又爽又黄少妇毛片口| 夫妻性生交免费视频一级片| 久久久久久久久大av| 综合色丁香网| 欧美3d第一页| 免费看光身美女| av天堂在线播放| 男女边吃奶边做爰视频| 亚洲人与动物交配视频| 午夜免费男女啪啪视频观看| 99国产极品粉嫩在线观看| 天堂√8在线中文| 岛国在线免费视频观看| 久久综合国产亚洲精品| 亚洲无线观看免费| 青春草视频在线免费观看| 午夜久久久久精精品| 精品99又大又爽又粗少妇毛片| 午夜精品国产一区二区电影 | 亚洲五月天丁香| 少妇裸体淫交视频免费看高清| 成人二区视频| 国产v大片淫在线免费观看| 亚洲欧美精品综合久久99| 亚洲天堂国产精品一区在线| 成人午夜精彩视频在线观看| 亚洲国产日韩欧美精品在线观看| 老熟妇乱子伦视频在线观看| 日韩国内少妇激情av| a级一级毛片免费在线观看| 熟女电影av网| 亚洲第一区二区三区不卡| 欧美日本亚洲视频在线播放| 国产真实伦视频高清在线观看| 婷婷六月久久综合丁香| 欧美日本亚洲视频在线播放| 成人毛片60女人毛片免费| 人人妻人人澡人人爽人人夜夜 | 亚洲av.av天堂| 精品久久久久久久人妻蜜臀av| 国产免费男女视频| 天堂av国产一区二区熟女人妻| 天天一区二区日本电影三级| 午夜a级毛片| 69人妻影院| 一级av片app| 91狼人影院| 99国产极品粉嫩在线观看| 欧美性猛交黑人性爽| 在线免费十八禁| 啦啦啦观看免费观看视频高清| 人体艺术视频欧美日本| 大香蕉久久网| 卡戴珊不雅视频在线播放| 亚洲精品国产成人久久av| 黑人高潮一二区| 在线观看一区二区三区| 在线观看一区二区三区| 一边亲一边摸免费视频| 欧美精品国产亚洲| 色吧在线观看| 国产亚洲91精品色在线| 欧美一区二区国产精品久久精品| 国产亚洲91精品色在线| 国国产精品蜜臀av免费| 色播亚洲综合网| 国产片特级美女逼逼视频| 久久精品国产亚洲网站| 国产高清三级在线| av在线亚洲专区| 久久久久久久久久久免费av| 亚洲电影在线观看av| ponron亚洲| 国产极品天堂在线| 3wmmmm亚洲av在线观看| 日本爱情动作片www.在线观看| 成人二区视频| 少妇熟女aⅴ在线视频| 26uuu在线亚洲综合色| 99国产精品一区二区蜜桃av| 国产av一区在线观看免费| 亚洲人成网站在线播放欧美日韩| 精品久久国产蜜桃| 国产日本99.免费观看| 亚洲性久久影院| 村上凉子中文字幕在线| 一级毛片久久久久久久久女| 国产久久久一区二区三区| 亚洲经典国产精华液单| 少妇的逼好多水| 亚洲人与动物交配视频| 黄色配什么色好看| 免费不卡的大黄色大毛片视频在线观看 | 日本-黄色视频高清免费观看| 国产精品人妻久久久影院| 久久久色成人| 精品久久久久久久人妻蜜臀av| 国产亚洲5aaaaa淫片| 欧美性感艳星| 久久草成人影院| 欧美激情久久久久久爽电影| 在线免费观看的www视频| 国产亚洲精品久久久com| 欧美潮喷喷水| 美女大奶头视频| 欧美zozozo另类| 高清在线视频一区二区三区 | 人体艺术视频欧美日本| 色哟哟·www| 一级黄片播放器| 亚洲国产日韩欧美精品在线观看| 日韩欧美一区二区三区在线观看| 熟女人妻精品中文字幕| 看免费成人av毛片| 亚洲自偷自拍三级| 亚洲四区av| 可以在线观看毛片的网站| 在线观看av片永久免费下载| 色播亚洲综合网| 老女人水多毛片| 国内精品美女久久久久久| 色综合站精品国产| 欧美极品一区二区三区四区| 1000部很黄的大片| 亚洲精品国产成人久久av| 亚洲精品456在线播放app| 免费无遮挡裸体视频| 97超视频在线观看视频| 麻豆精品久久久久久蜜桃| 人妻制服诱惑在线中文字幕| 欧美精品国产亚洲| 晚上一个人看的免费电影| 黄色日韩在线| 久久精品综合一区二区三区| 欧美另类亚洲清纯唯美| 99久久久亚洲精品蜜臀av| 国产视频首页在线观看| 欧美成人免费av一区二区三区| 网址你懂的国产日韩在线| 免费电影在线观看免费观看| 久久精品久久久久久久性| 岛国毛片在线播放| 免费电影在线观看免费观看| 美女高潮的动态| 亚洲av二区三区四区| 亚洲av免费在线观看| 热99re8久久精品国产| 国产免费男女视频| 又粗又硬又长又爽又黄的视频 | 我的老师免费观看完整版| 少妇的逼好多水| 国产精品一区www在线观看| 欧美变态另类bdsm刘玥| 日产精品乱码卡一卡2卡三| 色综合站精品国产| 国产在视频线在精品| 午夜福利高清视频| 色播亚洲综合网| 国产日韩欧美在线精品| 91av网一区二区| 午夜福利在线观看吧| 99精品在免费线老司机午夜| 男人舔女人下体高潮全视频| 亚洲精品国产av成人精品| 国产欧美日韩精品一区二区| 26uuu在线亚洲综合色| 国产高清有码在线观看视频| 国产成人a区在线观看| 亚洲自偷自拍三级| 久久久久性生活片| 麻豆一二三区av精品| 亚洲精品日韩av片在线观看| 毛片女人毛片| 欧美激情久久久久久爽电影| 丰满乱子伦码专区| 级片在线观看| 男人舔奶头视频| 免费搜索国产男女视频| 精品久久久久久久人妻蜜臀av| 五月伊人婷婷丁香| 国产精品一区www在线观看| 伊人久久精品亚洲午夜| 国产男人的电影天堂91| 特大巨黑吊av在线直播| 亚洲激情五月婷婷啪啪| 久久久久九九精品影院| 欧美激情国产日韩精品一区| 长腿黑丝高跟| 国内久久婷婷六月综合欲色啪| 国内精品美女久久久久久| 综合色丁香网| 久久久精品大字幕| 亚洲欧美精品专区久久| 国产淫片久久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品三级大全| 老师上课跳d突然被开到最大视频| 天天躁夜夜躁狠狠久久av| 99国产精品一区二区蜜桃av| 日韩在线高清观看一区二区三区| 亚洲精品色激情综合| 干丝袜人妻中文字幕| 在线观看免费视频日本深夜| 我要搜黄色片| 日韩视频在线欧美| 国产蜜桃级精品一区二区三区| 热99re8久久精品国产| 黄色日韩在线| 一级毛片久久久久久久久女| 成人综合一区亚洲| eeuss影院久久| 男人和女人高潮做爰伦理| 国产成人一区二区在线| 国产私拍福利视频在线观看| 麻豆av噜噜一区二区三区| 女同久久另类99精品国产91| 天美传媒精品一区二区| av专区在线播放| 精品久久久久久久久亚洲| 亚洲av免费高清在线观看| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久 | a级一级毛片免费在线观看| 午夜a级毛片| 午夜激情欧美在线| 久久精品91蜜桃| 久久综合国产亚洲精品| 一级毛片aaaaaa免费看小| 久久这里只有精品中国| 一级av片app| 国产精品久久久久久久电影| 一区二区三区四区激情视频 | 欧美激情在线99| a级一级毛片免费在线观看| 久久婷婷人人爽人人干人人爱| 国产麻豆成人av免费视频| 国产精品一区二区三区四区免费观看| 九九热线精品视视频播放| 中文字幕人妻熟人妻熟丝袜美| 此物有八面人人有两片| 日本欧美国产在线视频| h日本视频在线播放| 中文字幕熟女人妻在线| 99精品在免费线老司机午夜| 免费不卡的大黄色大毛片视频在线观看 | 听说在线观看完整版免费高清| 又黄又爽又刺激的免费视频.| 亚洲精品久久久久久婷婷小说 | 一级黄片播放器| 成人特级黄色片久久久久久久| 日日干狠狠操夜夜爽| 日韩一区二区视频免费看| 美女国产视频在线观看| 男人狂女人下面高潮的视频| 日日啪夜夜撸| 麻豆国产av国片精品| 婷婷精品国产亚洲av| 五月玫瑰六月丁香| 亚洲av不卡在线观看| 天堂中文最新版在线下载 | 一级av片app| 国产日韩欧美在线精品| 网址你懂的国产日韩在线| 亚洲av免费在线观看| 中文字幕制服av| 91午夜精品亚洲一区二区三区| 成人无遮挡网站| 国产成人freesex在线| 亚洲精品粉嫩美女一区| 男女那种视频在线观看| 亚洲欧美成人综合另类久久久 | 色5月婷婷丁香| 最好的美女福利视频网| 国产淫片久久久久久久久| 国产精品.久久久| 亚洲最大成人av| 久久人妻av系列| 欧美日韩精品成人综合77777| 午夜爱爱视频在线播放| 精品熟女少妇av免费看| 能在线免费看毛片的网站| 天天一区二区日本电影三级| 在线观看美女被高潮喷水网站| 联通29元200g的流量卡| 免费不卡的大黄色大毛片视频在线观看 | 69人妻影院| 国产精品人妻久久久久久| 五月玫瑰六月丁香| 国产精品麻豆人妻色哟哟久久| 国产极品粉嫩免费观看在线 | 久久久亚洲精品成人影院| 99九九在线精品视频| 精品少妇黑人巨大在线播放| 亚洲精品国产色婷婷电影| 国产色婷婷99| 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲乱码少妇综合久久| 少妇人妻 视频| 香蕉精品网在线| 超色免费av| 午夜激情av网站| 制服丝袜香蕉在线| 国内精品宾馆在线| 成年美女黄网站色视频大全免费 | 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 色网站视频免费| 一区二区三区四区激情视频| 亚洲精品美女久久av网站| 在线观看国产h片| 欧美97在线视频| 一本—道久久a久久精品蜜桃钙片| 三上悠亚av全集在线观看| 欧美日韩在线观看h| 国产 精品1| 男女免费视频国产| 女性被躁到高潮视频| 日本免费在线观看一区| 我要看黄色一级片免费的| 亚洲人成77777在线视频| 91在线精品国自产拍蜜月| 久久人人爽人人片av| 天天操日日干夜夜撸| 国模一区二区三区四区视频| 99精国产麻豆久久婷婷| videossex国产| 国产精品一区二区三区四区免费观看| 免费观看无遮挡的男女| 亚洲国产日韩一区二区| 高清不卡的av网站| 国产精品.久久久| 久久97久久精品| 国产探花极品一区二区| 亚洲精品久久午夜乱码| 国产成人freesex在线| 国产综合精华液| 久久av网站| 中国国产av一级| 午夜免费观看性视频| 女人精品久久久久毛片| 国产日韩欧美亚洲二区| 亚洲美女视频黄频| 国产一级毛片在线| 一区在线观看完整版| 妹子高潮喷水视频| 亚洲熟女精品中文字幕| 欧美亚洲日本最大视频资源| av福利片在线| 亚洲不卡免费看| 亚洲欧洲国产日韩| 黑人巨大精品欧美一区二区蜜桃 | 久久午夜福利片| 国产精品.久久久| 国产成人免费无遮挡视频| www.av在线官网国产| 久久久久久久精品精品| 久久鲁丝午夜福利片| 久久精品久久精品一区二区三区| 不卡视频在线观看欧美| 国产成人免费无遮挡视频| 国产成人精品福利久久| 18禁在线无遮挡免费观看视频| 久久久久久久久久久免费av| 欧美日韩国产mv在线观看视频| 色网站视频免费| 最后的刺客免费高清国语| .国产精品久久| 精品卡一卡二卡四卡免费| 亚洲av二区三区四区| 亚洲高清免费不卡视频| 大陆偷拍与自拍| 一级毛片我不卡| 在线天堂最新版资源| 中文字幕精品免费在线观看视频 | 精品久久蜜臀av无| 一级毛片aaaaaa免费看小| 精品久久国产蜜桃| 蜜桃在线观看..| 中文字幕最新亚洲高清| 亚洲,欧美,日韩| 校园人妻丝袜中文字幕| 成人免费观看视频高清| 性色avwww在线观看| 一级毛片黄色毛片免费观看视频| 欧美 亚洲 国产 日韩一| 在线看a的网站| 亚洲精品日本国产第一区| 天天操日日干夜夜撸| 国产成人aa在线观看| 这个男人来自地球电影免费观看 | 国产成人免费观看mmmm| 国产一区有黄有色的免费视频| 日韩av在线免费看完整版不卡| 成人国语在线视频| 又大又黄又爽视频免费| 国产免费一区二区三区四区乱码| 亚洲第一av免费看| 亚洲精品视频女| av电影中文网址| 熟女av电影| 精品久久蜜臀av无| 麻豆乱淫一区二区| 国产精品.久久久| 亚洲精品国产色婷婷电影| 亚洲国产精品国产精品| 欧美日韩成人在线一区二区| 日韩免费高清中文字幕av| 欧美+日韩+精品| 午夜久久久在线观看| av黄色大香蕉| 日韩中字成人| 国产精品99久久99久久久不卡 | 这个男人来自地球电影免费观看 | 国产日韩欧美在线精品| 少妇丰满av| 丰满饥渴人妻一区二区三| 人成视频在线观看免费观看| 能在线免费看毛片的网站| 欧美精品亚洲一区二区| 亚洲精品自拍成人| 建设人人有责人人尽责人人享有的| 欧美精品一区二区免费开放| 精品99又大又爽又粗少妇毛片| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲精品第一综合不卡 | 亚洲综合精品二区| 纵有疾风起免费观看全集完整版| 少妇 在线观看| 大香蕉久久成人网| 国产精品蜜桃在线观看| 国产成人免费观看mmmm| av专区在线播放| 成人漫画全彩无遮挡| 一个人看视频在线观看www免费| 久久韩国三级中文字幕| 日本-黄色视频高清免费观看| 水蜜桃什么品种好| 亚洲色图 男人天堂 中文字幕 | 久热这里只有精品99| 日韩强制内射视频| 看免费成人av毛片| 婷婷色综合www| 伊人亚洲综合成人网| 久久人人爽人人片av| 国产熟女午夜一区二区三区 | 欧美国产精品一级二级三级| 亚洲国产精品999| 91在线精品国自产拍蜜月| 亚洲人成77777在线视频| 99久国产av精品国产电影| 日韩av在线免费看完整版不卡| 亚洲av综合色区一区| 精品国产一区二区久久| 欧美精品高潮呻吟av久久| 欧美国产精品一级二级三级| 十八禁网站网址无遮挡| 一区二区三区乱码不卡18| 欧美精品人与动牲交sv欧美| 欧美精品亚洲一区二区| 交换朋友夫妻互换小说| 18禁在线播放成人免费| 久久久久久久精品精品| 精品一品国产午夜福利视频| 中国三级夫妇交换| 99热这里只有精品一区| 亚洲精品日韩av片在线观看| 新久久久久国产一级毛片| 亚洲精品乱久久久久久| 久久毛片免费看一区二区三区| 国产成人av激情在线播放 | 亚洲精品色激情综合| 国产成人午夜福利电影在线观看| 国精品久久久久久国模美| 中文字幕人妻丝袜制服| 国产日韩欧美视频二区| 九九久久精品国产亚洲av麻豆| 中文字幕久久专区| 综合色丁香网| 国产有黄有色有爽视频| 最近2019中文字幕mv第一页| 一区在线观看完整版| 精品亚洲成国产av| 亚洲欧洲精品一区二区精品久久久 | 日本av免费视频播放| 久久久久久人妻| 午夜激情久久久久久久| 精品少妇黑人巨大在线播放| 午夜福利影视在线免费观看| 最新的欧美精品一区二区| 亚洲色图综合在线观看| 欧美三级亚洲精品| a级毛色黄片| 日韩制服骚丝袜av| 久久久久久久亚洲中文字幕| 国产高清国产精品国产三级| 国产成人精品在线电影| 最近2019中文字幕mv第一页| 少妇丰满av| 欧美97在线视频| 色视频在线一区二区三区| 国产高清不卡午夜福利| 精品人妻熟女av久视频| 26uuu在线亚洲综合色| 欧美97在线视频| 校园人妻丝袜中文字幕| 久久人妻熟女aⅴ| 国产乱来视频区| www.色视频.com| 午夜免费男女啪啪视频观看| 丝袜美足系列| 久久久久久久久久久久大奶| 亚洲精品国产av蜜桃| 黑人高潮一二区| 日日摸夜夜添夜夜添av毛片| 美女内射精品一级片tv| 欧美精品一区二区大全| 国产一级毛片在线| 777米奇影视久久| 国产探花极品一区二区| 国产精品熟女久久久久浪| 国产精品偷伦视频观看了| 新久久久久国产一级毛片| av天堂久久9| 99精国产麻豆久久婷婷| a级毛色黄片| 十分钟在线观看高清视频www| 久久亚洲国产成人精品v| 好男人视频免费观看在线| 亚洲精品视频女| 久久久久久久久久久丰满| 日韩强制内射视频| 大陆偷拍与自拍| 国产精品国产三级国产专区5o| 亚洲av.av天堂| 亚洲无线观看免费| 我要看黄色一级片免费的| 亚洲美女黄色视频免费看| 欧美精品高潮呻吟av久久| 午夜免费鲁丝| 色94色欧美一区二区| 人妻人人澡人人爽人人| 五月开心婷婷网| 免费看光身美女| 人人妻人人添人人爽欧美一区卜| 91精品一卡2卡3卡4卡| 欧美日韩视频高清一区二区三区二| 日韩熟女老妇一区二区性免费视频| 成人无遮挡网站| 男的添女的下面高潮视频| 韩国高清视频一区二区三区| 日韩伦理黄色片| 丝瓜视频免费看黄片| 97超视频在线观看视频| 欧美变态另类bdsm刘玥| 久久青草综合色| 欧美人与善性xxx| 一区二区三区四区激情视频| 精品久久久噜噜| 国产精品秋霞免费鲁丝片| 免费黄频网站在线观看国产| 国产亚洲午夜精品一区二区久久| 日韩成人伦理影院| 亚洲成人手机| 欧美xxⅹ黑人| 丰满饥渴人妻一区二区三|