• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rotor Airload and Acoustics Prediction Based on CFD/CSD Coupling Method

    2018-05-25 06:39:47,

    , ,

    National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    0 Introduction

    Helicopters present the unique capability to hover and fly at very low speeds to perform complex tasks.Rotor is the most important aerodynamic component of a helicopter,providing lift,propulsion and control[1].The capability of the rotor comes at the expense of significant noise.When a rotor operates in a low-speed forward or descent flight,tip vortices shed from the preceding blades move close to the following blades,which may lead to strong blade-vortex interaction(BVI)noise.BVI noise is the major source of annoyance[2].It is of great significance to study the unsteady aerodynamic loads and noise when the rotor is at a BVI condition.

    Prescribed wake and free wake methods were used to calculate the induced velocities of rotor in previous studies,and the results were not satisfactory.With the rapid development of computer capability,rotor computational fluid dynamics(CFD)method with rigid blade assumption has gradually played an important role.The governing equations for solving flowfield evolve from transonic small disturbance (TSD)to Navier-Stokes(N-S)equations[3].Due to the complexity of CFD solution,blade structural deformation was not taken into account before mid-1980′s.Actually,when a helicopter rotor operates in forward flight,the aerodynamic loads on blade will be affected by its elastic deformation.In 1986,Tung et al.[4]first carried out CFD and CSD coupling research,and a TSD code was coupled with comprehensive analytical model of rotorcraft aerodynamics and dynamics (CAMRAD)by them.Pomin and Wagner calculated the airloads of the hovering Helishape 7Amodel rotor and a forward flight Caradonna-Tung(CTung)rotor[5].In their research,Timoshenko beam theory was adpoted in the CSD module,and the results showed better correlation with measured data than rigid blade computations about rotor thrust and torque coefficients.In 2008,Sitaraman et al.[6]predicted the rotor maneuver loads using CFD/CSD analysis.CFD and CSD solvers in their study were transonic unsteady rotor Navier-Strokes(TURNS)and DYMORE,respectively.Ref.[7]assessed the state-of-art of CFD/CSD codes using the HART II data.CFD/CSD method was also used for rotor aerodynamic noise prediction in recent years[8-9].

    In the research of rotor aerodynamic noise,Williams and Hawkings derived the FW-H equation which governs the noise radiated from a solid body in arbitrary motion in Ref.[10].When the blade tip speed is subsonic,the contribution of quadrupole term to rotor noise is negligible,and the quadrupole term could be omitted in the righthand side of the FW-H equation.Thus monopole term and dipole term remain,which can be interpreted as thickness noise and loading noise source term.In the present investigation,the widely used F1Aformula derived from FW-H equation by Farassat[11]is adopted for noise analysis.

    Domestic studies on this field are lag comparatively.Wang et al.[12-13]established CFD/CSD coupling method to calculate rotor airloads without involving rotor noise.Shi et al.[14]investigated the noise abatement level of advanced blade tip without considering blade elasticity.In order to understand the influence of blade deformation on rotor noise,this paper develops a new rotor aerodynamic noise prediction method by combining CFD/CSD coupling model with the F1Aformula.The UH-60Ahelicopter is taken as a numerical example,and the computations of flowfield and noise are performed in a low-speed for-ward flight.A structured moving overset grid system is generated and the CFD solution is based on Reynolds-Averaged Navier-Stokes(RANS)equations.The CSD solution is based on Euler-Bernoulli beam model and Hamilton′s variational principle.The elastic deformation of the blade grid is achieved by an algebraic method.Besides,the airloads and structural deformations between CFD and CSD module are transferred via interpolation.The results indicate that the normal force coefficients calculated by CFD/CSD are more accurate than that by isolated CFD method,and their difference of noise level can be up to 5dB at some observer positions.

    1 Numerical Methods

    whereΩis the control volume,Wthe conservative variables,F(xiàn)candFvthe convective and the viscous fluxes,respectively.Their expressions are as follows

    1.1 Rotor CFD model

    N-S equations for three-dimensional unsteady compressible flows in conservative form are given by[15]

    The spatial discretization of the governing equations is achieved by Jameson central scheme.The dual time-stepping approach is implemented,and explicit Runge-Kutta method is employed at each pseudo time step.The turbulence model adopted in the present analysis is Baldwin-Lomax model.In order to improve the calculation efficiency,the background Cartesian grid is divided into several blocks and the MPI parallel strategy is used.

    1.2 Rotor CSD model

    Blade structural model is decoupled into two parts:A nonlinear one-dimensional beam model and a linear two-dimensional cross-section model.The blade dynamics model is shown in Fig.1.

    Fig.1 Schematic of blade dynamics model

    Each beam element includes two end nodes and one internal node at its midpoint.The end node has 6degrees of freedom (DOFs):Axial displacementu1/u2,transverse deflectionsv1/v2,w1/w2and their radial derivativesv′1/v′2,w′1/w′2,and torsional elastic deformation1/2,while the internal node has only two DOFs (3 andu3).

    Finite element modeling of the beam is based on Hamilton principle[16]

    whereUis the strain energy,Tthe kinematic energy andWethe work of external loads,which are aerodynamic forces and moments of the blade in this analysis.

    The strain energy,kinematic energy and work of external loads on theith element can be derived from its degrees of freedom.The generalized displacements can be assumed as

    wherev,w,,uare generalized displacements at any point on the beam element;Φv,Φw,ΦandΦuspace-dependent interpolation functions;V,W,ΦandUtime-dependent nodal parameters of each generalized displacement.Hermite interpolation polynomials are employed in space-dependent interpolation functions.

    The finite-element equations of motion for theith element are given by

    whereMiis the mass matrix,Cithe damping matrix,Kithe stiffness matrix,andFithe load vector.All the motion equations of each element are assembled and the nodal generalized displacement vectorqcan be solved.More details on CSD model can be found in Ref.[16].

    1.3 Rotor aerodynamic noise model

    Rotor noise includes thickness noise,loading noise and quadrupole noise.When the blade tip speed is subsonic,the quadrupole noise is negligible.Based on F1Aformula,rotor noise calculation is defined as

    wherep′(x,t)is the total acoustic pressure,andp′T(x,t)andp′L(x,t)on the right hand side are thickness and loading noise pressure,respectively.Their expressions can be written as[17]

    where the subscript ret denotes the retarded time.The terms appearing on the right of Eqs.(9),(10)are only related to surface integral and can be solved numerically using the airloads on the blade surface.

    1.4 Flowchart of noise calculation based on CFD/CSD coupling method

    The rigid body displacements of the blade can be easily obtained by Euler transformation.Besides,an efficient algebraic gird deformation method[18]is used to get blade elastic displacements.The deformation at arbitrary location on the blade can be defined as a function of radius and azimuth at the quarter chord and at any section,a rotation matrixTand a vectorxlinare used to get the deformed grid coordinates

    wherex,yandzare the grid coordinates before deformation.

    Fig.2is the flowchart of noise calculation based on CFD/CSD coupling method.The detailed procedures are as follows.

    (1)Generate a moving overset grid system around the rotor;

    (2)For the prescribed flight parameters and blade structural parameters,initialize the CSD module with a simple aerodynamic model;

    (3)When the CSD solution is finished,the deformations of the blade are transferred to the CFD module;

    (4)CFD time-marches at each azimuth (0.5 degrees per timestep);

    (5)If the azimuth equals 360/Nb(Nb is the number of blades),the airloads are transferred to the CSD module.

    Repeat steps (3—5)until the flowfield is converged.After that,rotor noise is calculated by F1Aformula and the iteration is completed.

    Fig.2 Flowchart of noise prediction based on CFD/CSD coupling method

    2 Validations of Numerical Methods

    2.1 Validation of rotor CFD model

    In order to verify the CFD model,the hovering UH-60Arotor case is presented firstly and the blade model is rigid in this section.The UH-60Ais a four-bladed helicopter with advanced blade shape (multiple airfoils,variational chord and irregular twist)[19].Blade tip Mach number and collective pitch of the case areMatip=0.628 andθ0.75=9°.The blade grid follows a C-H topology.198points are used in the wrap around direction,44points in the normal direction,and 98 points in the spanwise direction.The schematic of the blade grid is given in Fig.3.The background grid is Cartesian grid.

    Fig.3 Blade CFD grid used in simulations

    The predicted blade pressure coefficientsCpfrom the CFD analysis are compared with test data in Ref.[20].Two representative span stations are shown in Fig.4.

    From Fig.4,it can be seen that the calculatedCpagrees favorably with the test data.The accuracy of the CFD model in this analysis is validated.

    2.2 Validation of rotor CSD model

    Nondimensional natural frequencies of the model rotor in Ref.[16]are calculated.The model rotor blade is isotropic,hingeless,and soft-inplane.Frequency comparisons for the blade are summarized in Table 1.A blade-tip deflection analysis atμ=0.3is also conducted,and the comparisons with Ref.[16]are depicted in Fig.5.It needs to be noted that in order to validate the CSD model solely,aquasi-steady aerodynamic model is adopted in this section.

    Fig.4 Blade pressure coefficient of UH-60Ain hover

    Table 1 Natural frequencies of model rotor blade

    Fig.5 Nondimensional blade-tip deflections of model rotor

    As seen in Table 1and Fig.5,the calculated blade natural frequencies and tip deflections are highly correlated with the results in Ref.[16].The availability of the CSD model is validated.

    2.3 Validation of rotor noise model

    The acoustic pressure time history result of 1/4scale UH-1model rotor atμ=0.2was compared with the data in Ref.[17].The radius of this two-blade model rotor is 1.829mand with a backward rotor shaft angleαS=8.8°,and the coordinate of observation point is(3.21,-2.16,-0.3)m.As can be seen from Fig.6,the acoustic pressure result of this paper has a favorable correlation with reference data.

    Fig.6 Acoustic pressure of UH-1model rotor

    3 Airload and Noise Analysis Based on CFD/CSD Coupling

    3.1 Rotor airload prediction based on CFD/CSD coupling

    Airloads of flight test Counter C8513of UH-60Aisolated rotor in Ref.[21]are investigated to demonstrate the accuracy and robustness of CFD/CSD coupling model in this paper.C8513is a lowspeed level flight state.The flight parameters and trimmed control angles are documented in Table 2,and the azimuthal step size of CFD and CSD are 0.5°and 2°,respectively.

    Table 2 Flight parameters of counter C8513

    The elastic blade flap and torsion are considered very important to get correct prediction of airload.Since the effective angle of attack of each blade section is directly related to flap and torsion variation.In Fig.7,the elastic blade tip deflection results in flap and torsion of CFD/CSD coupling method are demonstrated.The coupling frequency between CFD and CSD is 90°and the solution has converged after 4rotations of computation.As can be seen from the converged deflection curve,the mean elastic blade tip flap and torsion deflection of one rotation period are about 6%Rand -2°,respectively.Due to the high aspect ratio of UH-60Arotor blade,which approximately equals to 15.5,the influences of elastic blade flap and torsion on airload are significant even at a relative low advance ratio.

    Fig.7 UH-60Ablade tip elastic flap and torsion

    Fig.8shows the vorticity iso-surfaces around the rotor based on CFD/CSD coupling.There are noticeable blade-vortex interactions at advancing and retreating side.Normal force coefficient comparisons with flight test data[21]at three different sections are given in Fig.9.Present isolated CFD method also calculates 4rotations to obtain converged airload results.It can be seen that the rapid changes in blade airloads near 90°and 270°azimuths are captured for both the CFD method and the CFD/CSD coupling one,but the results from CFD method is overpredicted and less satisfactory than CFD/CSD method at the two outer sections.This can be mainly attributed to the inclusion of flapwise and torsional elastic deflection in CFD/CSD coupling method.It is shown that the airloads calculated by CFD/CSD coupling method can be employed in the noise calculation.

    Fig.8 Vorticity iso-surfaces for UH-60Arotor

    Fig.9 Normal force coefficient for UH-60Arotor

    3.2 Rotor noise prediction based on CFD/CSD coupling

    One commonly used way to demonstrate the noise radiated from the rotor is to display the magnitude and directivity on the surface of a noise hemisphere[22].Fig.10shows a typical noise hemisphere.The hemisphere is mapped to 2Dplane by Lambert Conformal Conic projection and in this way one can get an intuitive understanding of noise radiation pattern.

    Fig.10 Schematic of typical noise hemisphere

    The noise hemisphere of flight test Counter C8513of UH-60Ais shown in Fig.11.Robsis the radius of noise hemisphere and letRobs=3Rin present analysis.The hemisphere is spread out along the 0°azimuth.The right side of the figure is the advancing side and the top of the projection is in front of the rotor.The center of the projection corresponds to the bottom of the hemisphere.Figs.11 (a,b)represent thickness noise and loading noise distributions calculated by CFD/CSD method,respectively.Fig.11 (c)is the difference of loading noise between CFD/CSD and CFD.It is needed to be noted that the effect of blade elastic deformation on thickness noise is negligible,thus the thickness noise calculated by isolated CFD method is not plotted.

    It can be seen from Fig.11 (a)that,in the rotor tip-path plane,thickness noise levels(above 95dB)at 180°azimuth is higher than that at 0°and this phenomenon is caused by the Doppler effect.In addition,the noise level at the bottom of the rotor is much less than that in the rotor tippath plane(below 40dB).Therefore,the propagation of thickness noise is along the rotor tippath plane.

    As seen in Fig.11 (b),when rotor operates in a BVI state and the transonic effect of blade tip is not significant,the loading noise is much higher than thickness noise and is the dominant source(above 100dB at most observer positions).In contrast with thickness noise,the″hotspot″of loading noise is approximately underneath the advancing side of the rotor.

    Fig.11 Schematic of noise projection,Robs=3R

    Fig.11(c)shows that,for most observer positions on the hemisphere,there are only minor differences between the magnitudes of loading noise calculated by CFD/CSD and CFD.However,at some observer locations the difference of loading noise level can be up to 5dB.This can be attributed to the different airloads calculated by the two methods.Thus a high fidelity in airloads prediction is necessary for accurate noise analysis.

    The time and frequency domain results of peak thickness and loading noise are shown in Fig.12and Fig.13,respectively.The noise spectrum is obtained by a Fourier analysis of acoustic pressure.Fig.12 (a)demonstrates that thickness noise is characterized by periodic and negative pulses.Fig.12(b)illustrates that the amplitude decreases rapidly with increasing harmonic number.As a contrast,the time history of loading noise in Fig.13(a)is not as smooth as Fig.12(a)and this is caused by the unsteady airloads.Besides,the harmonics fall off more slowly in Fig.13(b)than Fig.12(b).

    Fig.12 Acoustic pressure and spectrum of peak thickness noise

    Fig.13 Acoustic pressure and spectrum of peak loading noise

    4 Conclusions

    A noise prediction method is developed with an implementation of CFD/CSD coupling.A lowspeed forward flight case of UH-60Arotor is calculated and the airloads are used for rotor noise analysis.The following conclusions can be drawn from results presented:

    (1)When the structural elasticity is taken into account,the difference of loading noise levels calculated by CFD/CSD and CFD can be up to 5 dB at some observer positions.

    (2)For the low-speed forward flight state(μ=0.153)investigated in this paper,there are blade-vortex interactions near 90°and 270°azimuths,which results in rapid fluctuations in blade airloads.

    (3)The blade-vortex interactions are captured by both CFD/CSD method and isolated CFD method at three different sections calculated.However,the airloads predicted by isolated CFD method are less satisfactory than CFD/CSD coupling method.

    (4)Loading noise level is much higher than thickness noise when rotor operates in a low tip Mach number and at a BVI condition,and it becomes the dominant contributor to rotor noise.

    (5)A CFD/CSD coupling method for noise analysis is developed in this paper.Numerical examples show that the method is robust in flowfield simulation and noise prediction of rotors.

    Acknowledgement

    This work was supported by Funding of Jiangsu Innovation Program for Graduate Education(No.KYLX16_0389).

    [1] JOHNSON W.Helicopter theory[M].New York,USA:Dover Publications,1994:10-11.

    [2] HUBBARD H H.Aeroacoustics of flight vehicles:Theory and practice NASA-AD-A241141[R].Hampton USA:National Aeronautics and Space Administration,1991:102-105.

    [3] CONLISK A T.Modern helicopter rotor aerodynamics[J].Progress in Aerospace Sciences,2001,37(5):419-476.

    [4] TUNG C,CARADONNA F X,JOHNSON W R.The prediction of transonic flows on an advancing rotor[J].Journal of the American Helicopter Society,1986,31(3):4-9.

    [5] POMIN H,WAGNER S.Navier-Stokes analysis of helicopter rotor aerodynamics in hover and forward flight[J].Journal of Aircraft,2002,39(5):813-821.

    [6] SITARAMAN J,ROGET B.Prediction of helicopter maneuver loads using a coupled CFD/CSD analysis[C]//26th International Congress of the Aeronautical Sciences.Anchorage,Alaska,USA:The ICAS International Inc,2008:1-26.

    [7] SMITH M J,LIM J W,van der Wall B G,et al.An assessment of CFD/CSD prediction state-of-the-art using the HART II international workshop data[C]//American Helicopter Society 68th Annual Forum.Fort Worth,USA:The AHS International Inc,2012:1-41.

    [8] BOYD D D.HART-II acoustic predictions using a coupled CFD/CSD method[C]//American Helicopter Society 65th Annual Forum.Grapevine,Texas,USA:The AHS Inernational Inc,2009:1-19.

    [9] LIM J W,STRAWN R C.Prediction of HART II rotor BVI loading and wake system using CFD/CSD loose coupling [C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit.Reno,Nevada,USA:AIAA,2007:1-15.

    [10]WILLIAMS J E F,HAWKINGS D L.Sound generation by turbulence and surfaces in arbitrary motion[J].Philosophical Transactions of the Royal Society of London A:Mathematical,Physical and Engineering Sciences,1969,264(1151):321-342.

    [11]FARASSAT F.Derivation of formulations 1and 1A of Farassat:NASA-TM-214853[R].Hampton,Virginia,USA:National Aeronautics and Space Administration,2007:1-25.

    [12]WANG Junyi,ZHAO Qijun,XIAO Yu.Calculations on aeroelastic loads of rotor with advanced blade-tip based on CFD/CSD coupling method[J].Acta Aero-nautica et Astronautica Sinica,2014,35(9):2426-2437.(in Chinese)

    [13]XIAO Yu,XU Guohua,SHI Yongjie.Aeroelastic analysis of helicopter rotors using computational fluid dynamics/comprehensive analysis loose coupling model[J].Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering,2014,229(4):621-630.

    [14]SHI Yongjie,SU Dacheng,XU Guohua.Research on influence of shape parameters on blade-vortex interaction noise of helicopter rotor[J].Journal of Nanjing University of Aeronautics and Astronautics,2015,47(2):235-242.(in Chinese)

    [15]BLAZEK J.Computational fluid dynamics:Principles and applications[M].Kidlington,Oxford,UK:Elsevier,2005:16-17.

    [16]YUAN K A,F(xiàn)RIEDMANN P P.Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips:NASA-CR-4665[R].Hampton,Virginia,USA:National Aeronautics and Space Administration,1995:106-107.

    [17]BRENTNER K S.Prediction of helicopter rotor discrete frequency noise:A computer program incorporating realistic blade motions and advanced acoustic formulation:NASA-TM-87721[R].Hampton Virginia,USA:National Aeronautics and space Administration,1986:1-93.

    [18]DATTA A,SITARAMAN J,CHOPRA I,et al.CFD/CSD prediction of rotor vibratory loads in highspeed flight[J].Journal of Aircraft,2006,43(6):1698-1709.

    [19]BOUSMAN W G.Aerodynamic characteristics of SC1095and SC1094R8airfoils:NASA-TP-212265[R].Moffett Field,California,USA:National Aeronautics and Space Administration,2003:1-50.

    [20]LORBER P,STAUTER R,Landgrebe A.A compre-h(huán)ensive hover test of the airloads and airflow of an extensively instrumented model helicopter rotor[C]//American Helicopter Society 45th Annual Forum.Boston,MA,USA:The AHS International Inc,1989:1-16.

    [21]POTSDAM M,YEO H,JOHNSON W.Rotor airloads prediction using loose aerodynamic/structural coupling[J].Journal of Aircraft,2006,43(3):732-742.

    [22]GREENWOOD E.A physics-based approach to characterizing helicopter external noise radiation from groundbased noise measurements[D].Maryland:Univ of Maryland,2008.

    这个男人来自地球电影免费观看| 精品熟女少妇八av免费久了| 一本精品99久久精品77| 国产伦在线观看视频一区| 熟女电影av网| 一区二区日韩欧美中文字幕| 69av精品久久久久久| 97超级碰碰碰精品色视频在线观看| 法律面前人人平等表现在哪些方面| 精品国产乱子伦一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 一进一出抽搐gif免费好疼| 精华霜和精华液先用哪个| 19禁男女啪啪无遮挡网站| 亚洲成a人片在线一区二区| 观看免费一级毛片| 亚洲国产高清在线一区二区三 | 人成视频在线观看免费观看| 狂野欧美激情性xxxx| 麻豆一二三区av精品| 动漫黄色视频在线观看| 亚洲第一青青草原| 一区二区三区精品91| 国产区一区二久久| 欧美乱码精品一区二区三区| 99久久久亚洲精品蜜臀av| 国产一卡二卡三卡精品| 免费观看人在逋| 国产亚洲av嫩草精品影院| 久久久国产成人精品二区| 可以在线观看毛片的网站| 亚洲成人免费电影在线观看| 国产精品免费一区二区三区在线| 嫁个100分男人电影在线观看| 成人三级做爰电影| 精品福利观看| 欧美av亚洲av综合av国产av| 国产精品av久久久久免费| 亚洲一卡2卡3卡4卡5卡精品中文| 淫妇啪啪啪对白视频| 中文字幕精品免费在线观看视频| 亚洲国产精品999在线| 久久久国产精品麻豆| 成年人黄色毛片网站| 正在播放国产对白刺激| 一边摸一边做爽爽视频免费| 亚洲男人天堂网一区| a级毛片在线看网站| 成年女人毛片免费观看观看9| 看黄色毛片网站| 老汉色∧v一级毛片| 国产精品,欧美在线| cao死你这个sao货| 在线播放国产精品三级| 美女国产高潮福利片在线看| 午夜福利欧美成人| cao死你这个sao货| 老司机福利观看| 免费在线观看视频国产中文字幕亚洲| 美女大奶头视频| 丝袜美腿诱惑在线| 女人被狂操c到高潮| 久久久久久久久中文| 悠悠久久av| 欧美黑人欧美精品刺激| 久久香蕉激情| 波多野结衣巨乳人妻| 悠悠久久av| 十八禁网站免费在线| www.www免费av| 亚洲国产精品久久男人天堂| 国产黄片美女视频| 日韩欧美一区视频在线观看| av视频在线观看入口| 成年女人毛片免费观看观看9| 成人永久免费在线观看视频| 国产又爽黄色视频| 欧美黑人巨大hd| 欧美成人免费av一区二区三区| 99国产精品一区二区三区| 村上凉子中文字幕在线| 国产伦人伦偷精品视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲专区字幕在线| 国产成人系列免费观看| 亚洲国产欧美一区二区综合| 午夜久久久久精精品| 日本成人三级电影网站| 国产成年人精品一区二区| 在线观看免费日韩欧美大片| 夜夜躁狠狠躁天天躁| 亚洲电影在线观看av| 久久天堂一区二区三区四区| 国产熟女午夜一区二区三区| 一区二区三区国产精品乱码| 亚洲国产精品999在线| 黄频高清免费视频| 欧美日韩亚洲国产一区二区在线观看| 国产黄片美女视频| 免费高清视频大片| 午夜激情福利司机影院| 搞女人的毛片| 黄色女人牲交| 麻豆国产av国片精品| 50天的宝宝边吃奶边哭怎么回事| 日韩精品青青久久久久久| 成人免费观看视频高清| 免费看日本二区| 国产精品乱码一区二三区的特点| 精品国产美女av久久久久小说| www.www免费av| 九色国产91popny在线| 亚洲国产高清在线一区二区三 | 午夜福利成人在线免费观看| 激情在线观看视频在线高清| 18禁国产床啪视频网站| 十八禁人妻一区二区| 黄色丝袜av网址大全| 国产亚洲精品av在线| 亚洲三区欧美一区| 国产一区二区在线av高清观看| 精品熟女少妇八av免费久了| 亚洲va日本ⅴa欧美va伊人久久| 久久狼人影院| 香蕉国产在线看| 男女那种视频在线观看| 好男人电影高清在线观看| 成人亚洲精品一区在线观看| 熟女少妇亚洲综合色aaa.| 欧美日韩精品网址| 亚洲av成人av| 国产97色在线日韩免费| 国产视频一区二区在线看| 美女高潮喷水抽搐中文字幕| 午夜激情福利司机影院| 777久久人妻少妇嫩草av网站| 日韩欧美一区视频在线观看| 免费在线观看黄色视频的| 一级毛片高清免费大全| av中文乱码字幕在线| 少妇裸体淫交视频免费看高清 | 国产aⅴ精品一区二区三区波| 亚洲精品中文字幕在线视频| a级毛片a级免费在线| 成人国语在线视频| 一级黄色大片毛片| 18禁黄网站禁片免费观看直播| cao死你这个sao货| 成人欧美大片| 国产精品香港三级国产av潘金莲| 久久性视频一级片| 国产成+人综合+亚洲专区| www日本黄色视频网| 一级片免费观看大全| 91大片在线观看| 亚洲精品国产区一区二| 90打野战视频偷拍视频| 丰满人妻熟妇乱又伦精品不卡| 一边摸一边做爽爽视频免费| 国产午夜精品久久久久久| 亚洲精品久久国产高清桃花| 在线播放国产精品三级| 无限看片的www在线观看| 亚洲 国产 在线| 在线天堂中文资源库| 无人区码免费观看不卡| 婷婷精品国产亚洲av| 88av欧美| 婷婷丁香在线五月| 夜夜看夜夜爽夜夜摸| 国产成年人精品一区二区| 热99re8久久精品国产| 搞女人的毛片| 亚洲精品美女久久久久99蜜臀| 久久午夜亚洲精品久久| 日韩国内少妇激情av| 男女下面进入的视频免费午夜 | 脱女人内裤的视频| 男人舔女人下体高潮全视频| 一本久久中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 白带黄色成豆腐渣| 国产精品日韩av在线免费观看| 女人被狂操c到高潮| 变态另类成人亚洲欧美熟女| 99国产综合亚洲精品| 熟女少妇亚洲综合色aaa.| 动漫黄色视频在线观看| 日韩视频一区二区在线观看| 国产又黄又爽又无遮挡在线| 欧美+亚洲+日韩+国产| 国产成人精品久久二区二区91| 正在播放国产对白刺激| 午夜免费成人在线视频| 成年人黄色毛片网站| 欧美乱码精品一区二区三区| 免费电影在线观看免费观看| 女人被狂操c到高潮| 亚洲五月色婷婷综合| АⅤ资源中文在线天堂| 一卡2卡三卡四卡精品乱码亚洲| 精品国产亚洲在线| 51午夜福利影视在线观看| 国产又黄又爽又无遮挡在线| 亚洲第一av免费看| 日本一区二区免费在线视频| 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 人妻丰满熟妇av一区二区三区| 人人妻人人澡欧美一区二区| 禁无遮挡网站| 亚洲一区中文字幕在线| АⅤ资源中文在线天堂| 国内久久婷婷六月综合欲色啪| 身体一侧抽搐| 男女视频在线观看网站免费 | 变态另类成人亚洲欧美熟女| 欧美日韩乱码在线| 久久国产亚洲av麻豆专区| 亚洲自拍偷在线| 大香蕉久久成人网| 亚洲一区中文字幕在线| 久久久精品欧美日韩精品| 欧美中文综合在线视频| 人人妻,人人澡人人爽秒播| 久久久久久久精品吃奶| 国产激情偷乱视频一区二区| 免费av毛片视频| 人人妻人人澡人人看| 老熟妇乱子伦视频在线观看| 黑丝袜美女国产一区| 国内久久婷婷六月综合欲色啪| 男人舔女人的私密视频| 一本久久中文字幕| 亚洲av五月六月丁香网| 美女高潮到喷水免费观看| 亚洲国产中文字幕在线视频| 自线自在国产av| 欧美zozozo另类| 国产激情欧美一区二区| 午夜免费观看网址| 老司机午夜福利在线观看视频| 色哟哟哟哟哟哟| 男女之事视频高清在线观看| 国产激情偷乱视频一区二区| 亚洲男人天堂网一区| 狂野欧美激情性xxxx| 色哟哟哟哟哟哟| 亚洲av熟女| 日日摸夜夜添夜夜添小说| 日本 av在线| 国产国语露脸激情在线看| 国产乱人伦免费视频| 波多野结衣高清作品| 国产v大片淫在线免费观看| 国产成人欧美| 人成视频在线观看免费观看| 99国产精品99久久久久| 男女床上黄色一级片免费看| 精品日产1卡2卡| 12—13女人毛片做爰片一| а√天堂www在线а√下载| 高潮久久久久久久久久久不卡| 搡老岳熟女国产| 亚洲人成电影免费在线| 亚洲人成网站在线播放欧美日韩| 精品国产乱码久久久久久男人| 黑人欧美特级aaaaaa片| 国产主播在线观看一区二区| 久久久久国产一级毛片高清牌| 麻豆久久精品国产亚洲av| 免费高清视频大片| 九色国产91popny在线| 国产精品久久久av美女十八| 很黄的视频免费| 亚洲熟女毛片儿| 免费看美女性在线毛片视频| 午夜日韩欧美国产| 国产成年人精品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 久久精品人妻少妇| 男女之事视频高清在线观看| 国产亚洲精品综合一区在线观看 | 免费人成视频x8x8入口观看| 欧美乱码精品一区二区三区| 视频区欧美日本亚洲| 91大片在线观看| 美女免费视频网站| 欧美色欧美亚洲另类二区| 国产一区二区三区视频了| 51午夜福利影视在线观看| 久久国产亚洲av麻豆专区| 午夜免费观看网址| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久久久亚洲av鲁大| 午夜精品久久久久久毛片777| 国产精品免费视频内射| 99国产精品一区二区蜜桃av| 熟妇人妻久久中文字幕3abv| 国产精品自产拍在线观看55亚洲| 成人精品一区二区免费| 久久精品影院6| 亚洲欧洲精品一区二区精品久久久| 欧美乱码精品一区二区三区| 久久久国产精品麻豆| 国产在线精品亚洲第一网站| 国产精品香港三级国产av潘金莲| 久久久久国产一级毛片高清牌| 欧美+亚洲+日韩+国产| 1024视频免费在线观看| 欧美日韩瑟瑟在线播放| 免费女性裸体啪啪无遮挡网站| 亚洲精品av麻豆狂野| 18禁国产床啪视频网站| 久久久久精品国产欧美久久久| 欧美av亚洲av综合av国产av| 亚洲免费av在线视频| 身体一侧抽搐| 午夜福利在线观看吧| 美国免费a级毛片| 变态另类丝袜制服| 50天的宝宝边吃奶边哭怎么回事| 岛国视频午夜一区免费看| 欧美中文综合在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 法律面前人人平等表现在哪些方面| 村上凉子中文字幕在线| 国产97色在线日韩免费| 亚洲真实伦在线观看| 在线观看免费午夜福利视频| 午夜视频精品福利| 亚洲色图 男人天堂 中文字幕| 婷婷精品国产亚洲av| а√天堂www在线а√下载| 久久精品国产综合久久久| 长腿黑丝高跟| 精品国产乱子伦一区二区三区| 久久天堂一区二区三区四区| 日韩欧美国产在线观看| 亚洲精品久久成人aⅴ小说| 亚洲第一欧美日韩一区二区三区| 精品久久久久久,| x7x7x7水蜜桃| 久久欧美精品欧美久久欧美| 午夜激情福利司机影院| 99国产极品粉嫩在线观看| 男人操女人黄网站| 黄色 视频免费看| 国产色视频综合| 亚洲人成网站在线播放欧美日韩| 18禁裸乳无遮挡免费网站照片 | 亚洲av日韩精品久久久久久密| 精品国产乱子伦一区二区三区| 亚洲成人国产一区在线观看| 国产人伦9x9x在线观看| 91麻豆精品激情在线观看国产| 精品日产1卡2卡| 欧美av亚洲av综合av国产av| 狂野欧美激情性xxxx| 午夜影院日韩av| 99久久精品国产亚洲精品| 此物有八面人人有两片| 热99re8久久精品国产| 国产高清视频在线播放一区| 一进一出抽搐动态| 此物有八面人人有两片| 亚洲成a人片在线一区二区| 久久久久亚洲av毛片大全| 国产麻豆成人av免费视频| 日韩欧美 国产精品| 真人一进一出gif抽搐免费| 黄网站色视频无遮挡免费观看| 午夜福利在线观看吧| 国产精品1区2区在线观看.| 国产黄色小视频在线观看| 91九色精品人成在线观看| 亚洲av电影在线进入| 真人做人爱边吃奶动态| 欧美日韩中文字幕国产精品一区二区三区| 一本精品99久久精品77| 国产精品久久久av美女十八| 男人的好看免费观看在线视频 | 2021天堂中文幕一二区在线观 | 一区二区日韩欧美中文字幕| 亚洲第一电影网av| 日韩欧美一区视频在线观看| 伦理电影免费视频| 日韩欧美三级三区| 欧美一级a爱片免费观看看 | 视频在线观看一区二区三区| 777久久人妻少妇嫩草av网站| 成人午夜高清在线视频 | 一本久久中文字幕| 不卡一级毛片| 给我免费播放毛片高清在线观看| 亚洲 欧美 日韩 在线 免费| 一区二区三区精品91| 欧美性长视频在线观看| 精品久久久久久久毛片微露脸| 午夜久久久久精精品| 黄片小视频在线播放| 男女那种视频在线观看| 啦啦啦 在线观看视频| 波多野结衣巨乳人妻| 嫩草影院精品99| 好看av亚洲va欧美ⅴa在| 国产精品av久久久久免费| 欧美乱码精品一区二区三区| 国产成人精品久久二区二区91| 欧美日韩精品网址| 91国产中文字幕| 久久婷婷成人综合色麻豆| 久9热在线精品视频| 999精品在线视频| 国产极品粉嫩免费观看在线| 久久精品人妻少妇| 十分钟在线观看高清视频www| 午夜影院日韩av| 99久久综合精品五月天人人| 午夜福利一区二区在线看| 久久人妻av系列| 欧美黑人欧美精品刺激| 久久久久久国产a免费观看| 亚洲avbb在线观看| 国产免费av片在线观看野外av| 最近最新中文字幕大全电影3 | 国产激情久久老熟女| 色综合亚洲欧美另类图片| 日韩欧美国产在线观看| 黄色视频不卡| 美国免费a级毛片| 亚洲av熟女| 少妇 在线观看| 香蕉国产在线看| 男人舔女人的私密视频| 亚洲第一欧美日韩一区二区三区| 免费av毛片视频| 免费观看精品视频网站| 亚洲无线在线观看| 欧美日韩瑟瑟在线播放| 嫁个100分男人电影在线观看| 免费在线观看影片大全网站| 成年免费大片在线观看| 草草在线视频免费看| 国产精品一区二区免费欧美| 国产一区二区激情短视频| 久久久久久久久中文| 51午夜福利影视在线观看| 婷婷精品国产亚洲av| 国产色视频综合| 欧美+亚洲+日韩+国产| 少妇的丰满在线观看| 男女做爰动态图高潮gif福利片| 午夜久久久久精精品| 99在线人妻在线中文字幕| 欧美日本视频| 最近最新免费中文字幕在线| 老司机靠b影院| 很黄的视频免费| 18禁黄网站禁片免费观看直播| 在线播放国产精品三级| 女生性感内裤真人,穿戴方法视频| 看黄色毛片网站| 狠狠狠狠99中文字幕| 侵犯人妻中文字幕一二三四区| 99在线视频只有这里精品首页| 亚洲精品在线美女| 很黄的视频免费| 国产不卡一卡二| 正在播放国产对白刺激| 女性生殖器流出的白浆| 久久久久国产精品人妻aⅴ院| 亚洲精品久久国产高清桃花| 天天躁夜夜躁狠狠躁躁| 久久久久国产一级毛片高清牌| 香蕉av资源在线| 久久 成人 亚洲| 18禁美女被吸乳视频| 日本成人三级电影网站| 99久久国产精品久久久| 男女下面进入的视频免费午夜 | 久久精品国产亚洲av香蕉五月| 久久精品aⅴ一区二区三区四区| 淫妇啪啪啪对白视频| 国产精品自产拍在线观看55亚洲| 国产精品98久久久久久宅男小说| 欧美人与性动交α欧美精品济南到| av中文乱码字幕在线| 欧美中文综合在线视频| 黄色视频不卡| 亚洲国产精品合色在线| 真人一进一出gif抽搐免费| 国产三级在线视频| 久久久久精品国产欧美久久久| 19禁男女啪啪无遮挡网站| 搞女人的毛片| 国产亚洲av嫩草精品影院| 亚洲精品在线观看二区| 亚洲第一电影网av| 女生性感内裤真人,穿戴方法视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品一区二区三区四区久久 | 久久香蕉国产精品| 中文资源天堂在线| 1024视频免费在线观看| 日韩精品青青久久久久久| 99热这里只有精品一区 | 不卡一级毛片| 免费看日本二区| 久久99热这里只有精品18| 在线播放国产精品三级| 欧美激情 高清一区二区三区| 怎么达到女性高潮| 黄频高清免费视频| 亚洲中文字幕一区二区三区有码在线看 | 国产欧美日韩精品亚洲av| 亚洲专区字幕在线| 青草久久国产| 中文亚洲av片在线观看爽| 99热6这里只有精品| 久久久国产欧美日韩av| 久久久久久久久免费视频了| 中文字幕另类日韩欧美亚洲嫩草| 亚洲五月色婷婷综合| 非洲黑人性xxxx精品又粗又长| 一区二区日韩欧美中文字幕| 一区二区三区国产精品乱码| 色精品久久人妻99蜜桃| 国产精品影院久久| 色尼玛亚洲综合影院| 午夜福利免费观看在线| 麻豆成人av在线观看| 可以在线观看的亚洲视频| 国产又色又爽无遮挡免费看| 一级毛片精品| av超薄肉色丝袜交足视频| 精品电影一区二区在线| 亚洲男人的天堂狠狠| 国产午夜精品久久久久久| 曰老女人黄片| 麻豆成人午夜福利视频| 在线观看一区二区三区| 一区二区三区国产精品乱码| 欧美成人一区二区免费高清观看 | 亚洲国产高清在线一区二区三 | 嫩草影视91久久| 99热这里只有精品一区 | 人人妻,人人澡人人爽秒播| 精品久久久久久久久久久久久 | 欧美最黄视频在线播放免费| 国产成人精品久久二区二区91| 一区二区三区高清视频在线| 女人被狂操c到高潮| 天堂动漫精品| 激情在线观看视频在线高清| 99久久国产精品久久久| 1024香蕉在线观看| 欧美乱码精品一区二区三区| 两性夫妻黄色片| 美女午夜性视频免费| 欧美最黄视频在线播放免费| 一个人观看的视频www高清免费观看 | 精品久久蜜臀av无| 久久精品影院6| 老熟妇乱子伦视频在线观看| 中文字幕精品亚洲无线码一区 | 久久草成人影院| 99在线人妻在线中文字幕| 欧美日韩精品网址| 国产日本99.免费观看| 久久精品国产清高在天天线| 又黄又粗又硬又大视频| 久久香蕉激情| 久久精品国产亚洲av香蕉五月| 91在线观看av| 久久午夜亚洲精品久久| av欧美777| 黑人操中国人逼视频| 成人手机av| 男人舔女人下体高潮全视频| 色综合婷婷激情| 男人的好看免费观看在线视频 | 啪啪无遮挡十八禁网站| 男人舔奶头视频| 男女那种视频在线观看| 亚洲av熟女| 韩国精品一区二区三区| xxx96com| 日韩av在线大香蕉| av中文乱码字幕在线| 午夜免费鲁丝| a级毛片在线看网站| 91成人精品电影| 啦啦啦韩国在线观看视频| 男女视频在线观看网站免费 | 黄频高清免费视频| ponron亚洲| 中文在线观看免费www的网站 | 欧美日韩亚洲国产一区二区在线观看| 久久久久久大精品| 精品国产超薄肉色丝袜足j| 美女扒开内裤让男人捅视频| 亚洲人成77777在线视频| 精品国产亚洲在线| 亚洲男人的天堂狠狠| av在线天堂中文字幕| 黄网站色视频无遮挡免费观看| 人妻久久中文字幕网| 露出奶头的视频| 欧美日韩黄片免| 精品久久久久久成人av| 黑丝袜美女国产一区| 悠悠久久av| 中文在线观看免费www的网站 | 欧美中文综合在线视频|