• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Perturbation Theory of Fractional Lagrangian System and Fractional Birkhoffian System

    2018-05-25 06:39:49,

    1.School of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou 215009,P.R.China;

    2.College of Science,Nanjing University of Science and Technology,Nanjing 210094,P.R.China;

    3.College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,P.R.China

    [STHZ]0 Introduction[ST]

    In 1917,adiabatic invariant was first proposed by Burgers[1].A certain physical quantity is called adiabatic invariant of a system if it varies more slowly than the parameters which change very slowly.In fact,the parameter changing very slowly can be expressed as the action of small disturbance.Under the action of small disturbance,the original symmetry and conserved quantity may change.At the same time,because perturbation to symmetry and adiabatic invariant concern the integrability of the equations of motion of mechanical systems,they were studied by many scientists,and many important results were obtained[2-9].However,almost all of those results about adiabatic invariant referred to only integer order derivatives of the variables.Therefore,there is still much to do on the aspect of the noninteger order derivatives of the variables.Hence,in this paper,we intend to study perturbation to symmetry and adiabatic invariant in terms of fractional calculus.

    Fractional calculus has been studied for more than 300years by many famous mathematicians,and many significant results about fractional calculus have been obtained[10-17].Besides,based on the fractional calculus,Riewe[18-19]investigated the version of the Euler-Lagrange equations for the problem of the calculus of variations with fractional derivatives under the conservative and non-conservative cases respectively.Since then,many further studies on fractional problems can be found[20-38].For example,in 2002,Agrawal[20]proved a formulation for the variational problem in the sense of Riemann-Liouville derivatives.Then Baleanu and Avkar[26]used those Euler-Lagrange equations to study the problem with Lagrangian which is linear on the velocities.Frederico and Torres[27]used the notion of the Euler-Lagrange fractional extremal[20]to prove a Noethertype theorem.Using the similar method adopted in Ref.[27],Zhou[39]studied the fractional Pfaff-Birkhoff principle in terms of Riemann-Liouville derivatives,and obtained the fractional Birkhoff equations,the corresponding transversality conditions and the fractional-conserved quantities.Based on the results of Refs.[27,39],we intend to study the adiabatic invariant of the fractional calculus of variations.

    1 Preliminaries

    In this section,some relevant knowledge would be recalled.

    Definition 1[14]Letfbe a continuous and integrable function in the interval[t1,t2],for allt∈[t1,t2],the left Riemann-Liouville fractional derivativet1Dαtf(t)of orderα,and the right Rie-mann-Liouville fractional derivative(t)of orderβ,are defined as follows

    whereΓ(·)is the Euler Gamma function,α,βare the orders of the derivatives satisfyingn-1≤α<n,m- 1 ≤β<m,m,n∈[WTHZ]N[WTBX].Ifα,βare integers,those derivatives are defined in the usual sense,that is

    In this paper,we assume that 0<α<1,0<β<1.

    In Ref.[20],Agrawal considered the functional

    whereq(a)=qa,q(b)=qband the LagrangianL:[WTHZ]R[WTBX]is aC2function with respect to all its arguments.And he got the following fractional Euler-Lagrange equation in terms of Riemann-Liouville derivatives

    In Ref.[39],Zhou and Zhang studied the extremum for the following functional

    whereare the Birk-h(huán)off′s functions,B=B(t,aμ)is the Birkhoffian,and they are bothC2functions with respect to all their arguments.And they obtained the following fractional Birkhoff equations

    Definition 2[27]Given two functionsf,g∈C1[a,b],we introduce the following notation

    wheret∈ [a,b],and.

    The linearity of the operatorsaandtimplies the linearity of the operator

    Ifγ=1,the operatorreduces to

    2 Fractional Adiabatic Invariants

    In this section,we study adiabatic invariants under the general and special infinitesimal transformations for the fractional Lagrangian system and the fractional Birkhoffian system.

    2.1 Adiabatic invariants for the fractional Lagrangian system

    Firstly,let′s consider only the infinitesimal transformation forq

    whereζis called the infinitesimal generator.

    Theorem 1[27]Under the infinitesimal transformation(10),if the condition

    holds,then

    is a fractional-conserved quantity.

    Theorem 2[27]Under the infinitesimal transformations

    if functional(4)is invariant,i.e.

    for any subinterval [ta,tb] [a,b]

    is a fractional-conserved quantity.

    Definition 3 If

    is in direct proportion toεz+1

    is called az-th order adiabatic invariant of a fractional order dynamical system.

    For the fractional Lagrangian system (Eq.(5)),ifζ0satisfies Eq.(11),the following exact invariant exists

    Similarly,ifτ0,ζ0satisfy Eq.(14),the exact invariant exists as follows

    Suppose the fractional Lagrangian system(Eq.(5))is disturbed by small quantityεQ,then we can get the disturbed fractional Euler-La-grange equation

    Under the action of small force of perturbationεQ,the invariant of the system may vary.Suppose that the disturbed infinitesimal generatorζcan be expressed as

    we have Theorem 3as follow.

    Theorem 3 For the disturbed fractional Lagrangian system (Eq.(18)),if the infinitesimal generatorsζjj=0,1,2,…(

    )satisfy

    the disturbed fractional Lagrangian system has az-th order adiabatic invariant

    where we setζj-1=0,whenj=0.

    Proof From the disturbed fractional Euler-Lagrange equation and the condition,we have

    Hence,the proof is completed.

    Theorem 4 Under the infinitesimal transformations

    where

    the disturbed fractional Lagrangian system (Eq.(18))has az-th order adiabatic invariant

    Proof In order to considertas a dependent variable,we use a Lipschitzian one-to-one transformation

    which satisfiest′σ=f(λ)=1whenλ=0,t(σa)=a,t(σb)=b.

    From the definitions of the right Riemann-Liouville fractional derivative and the left Riemann-Liouville fractional derivative,we have

    Hence

    From Theorem 3,we can obtain

    Ifλ=0,we can get

    Therefore,whenλ=0,we have

    The proof is completed.

    2.2 Adiabatic invariants for the fractional Birkhoffian system

    We consider only the infinitesimal transformations foraμ

    whereξνν=1,2,…,2n()are called the infinitesimal generators.

    Theorem 5[39]Under the infinitesimal transformations(Eq.(31)),if

    we have

    is a fractional-conserved quantity.

    Therefore,for the fractional Birkhoffian system(Eq.(7)),ifsatisfies Eq.(32),exact invariant exists as follows

    Theorem 6[39]Under the infinitesimal transformations

    if functional(6)is invariant,i.e.

    for any[T1,T2][t1,t2]

    is a fractional conserved quantity for the fractional Birkhoffian system (Eq.(7)).

    Therefore,for the fractional Birkhoffian system(Eq.(7)),ifsatisfy Eq.(36),there ex-ists exact invariant

    Suppose the fractional Birkhoffian system(Eq.(7))is disturbed by small quantitiesεQμ(μ=1,2,…,2n),then we can get the disturbed fractional Birkhoff equations

    Under the action of small forces of perturbationεQμ,the invariant of the system may vary.Suppose that the disturbed infinitesimal genera-torscan be expressed as

    Then we have Theorem 7as follow.

    Theorem 7 For the disturbed fractional Birkhoffian system (Eq.(39)),if the infinitesimal generatorsξjμj=0,1,2,…(

    )satisfy

    the disturbed fractional Birkhoff system has azth order adiabatic invariant

    where we set

    Proof From the disturbed fractional Birkhoff equations and the condition,we have

    The proof is completed.

    Theorem 8 Under the infinitesimal transformations

    where

    the disturbed fractional Birkhoffian system (Eq.(39))has az-th order adiabatic invariant

    Proof Consider a one to one transformation

    which satisfiest(σ1)=t1,t(σ2)=t2andt′σ=dt(σ)/dσ=f(λ)=1,whenλ=0.

    From the definitions of the right Riemann-Liouville fractional derivative and the left Riemann-Liouville fractional derivative,we can get

    Forλ=0,we have

    Hence,using the similar method adopted for Theorem 4,from Theorem 7,forλ=0,we can get

    The proof is completed.

    3 Two Illustrative Examples

    In this section,we give two examples to illustrate the results obtained above.

    Example 1 Let us consider the following fractional Lagrangian system

    We can verify that

    satisfy the condition (11).Then we can obtain from Eq.(16)that

    Suppose the system (Eq.(5))is disturbed by the following small quantities

    By calculating,the following solutions

    satisfy Eq.(20).Therefore,from Theorem 3,we get

    Of course,we can also obtain the higher-order adiabatic invariants.

    Example 2 Let us consider the extreme value for the following fractional problem of the calculus of variations

    The problem (Eq.(55))is a fourth order Pfaff-Birkhoff fractional problem of the calculus of variations in terms of Riemann-Liouville derivatives.From Eq.(55),we obtain that

    Obviously,the following solutions

    satisfy the condition (32).Then we can get the exact invariant from Eq.(34)that

    Suppose the system (Eq.(7))is disturbed by the following small quantities

    By some calculations,the following solutions

    satisfy Eq.(41).Hence,from Theorem 7,we get

    Of course,we can also obtain the higher-order adiabatic invariants.

    4 Conclusions

    In this paper,adiabatic invariants are studied for the fractional Lagrangian system and the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives under the special and general infinitesimal transformations.We can also get adiabatic invariants in the sense of Caputo derivatives,Riesz-Caputo derivatives, Riesz-Riemann-Liouville derivatives and so on.Besides,much work deserves to do since adiabatic invariant and fractional variational problems are still in their early days.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Nos.11272227,11572212)and the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province(No.KYLX15_0405).

    [1] BURGERS J M.Die adiabatischen invarianten bedingt periodischer systems[J].Annals of Physics,1917,357(2):195-202.

    [2] ZHANG Y.A new type of adiabatic invariants for nonconservative systems of generalized classical mechanics[J].Chinese Physics,2006,15(9):1935-1940.

    [3] ZHANG Y,F(xiàn)AN C X.Perturbation of symmetries and Hojman adiabatic invariants for mechanical systems with unilateral holonomic constraints[J].Communications in Theoretical Physics,2007,47(4):607-610.

    [4] LUO S K.Lie symmetrical perturbation and adiabatic invariants of generalized Hojman type for disturbed nonholonomic systems[J].Chinese Physics Letter,2007,24(24):3017-3020.

    [5] JIANG W A,LUO S K.A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems[J].Nonlinear Dynamics,2012,67(1):475-482.

    [6] JIANG W A,LI L,LI Z J,et al.Lie symmetrical perturbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffian systems[J].Nonlinear Dynamics,2012,67(2):1075-1081.

    [7] ZHANG Y.Perturbation to Noether symmetries and adiabatic invariants for generalized Birkhoffian systems[J].Bulletin of Science and Technology,2010,26(4):477-481.(in Chinese)

    [8] CHEN J,ZHANG Y.Perturbation to Noether symmetries and adiabatic invariants for Birkhoffian systems based on El-Nabulsi dynamical models[J].Acta Physica Sinica,2014,63(10):104501.(in Chinese)

    [9] ZHANG Yi.Method of Jacobi last multiplier for solving dynamics equations integration of generalized classical mechanics system[J].Journal of Nanjing U-niversity of Aeronautics & Astronautics,2012,44(2):262-265.(in Chinese)

    [10]HILFER R.Applications of fractional calculus in physics[M].Singapore:World Scientific,2000.

    [11]MILLER K S,ROSS B.An introduction to the fractional integrals and derivatives-theory and applications[M].New York:Wiley Inc,1993.

    [12]SAMKO S G,KILBAS A A,MARICHEV O I.Fractional integrals and derivatives-theory and applications[M].Yverdon:Gordon and Breach,1993.

    [13]KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and applications of fractional differential equations[M].Amsterdam:Elsevier,2006.

    [14]PODLUBNY I.Fractional differential equations[M].San Diego:Academic Press,1999.

    [15]OLDHAM K B,SPANIER J.The fractional calculus[M].San Diego:Academic Press,1974.

    [16]JESUS I S,MACHADO J A T.Fractional control of heat diffusion systems[J].Nonlinear Dynamics,2008,54(3):263-282.

    [17]CHEN Y Q,VINAGRE B M,PODLUBNY I.Continued fraction expansion approaches to discretizing fractional order derivatives-an expository review[J].Nonlinear Dynamics,2004,38(1/2/3/4):155-170.

    [18]RIEWE F.Nonconservative Lagrangian and Hamiltonian mechanics[J].Physical Review E,1996,53(2):1890-1899.

    [19]RIEWE F.Mechanics with fractional derivatives[J].Physical Review E,1997,55(55):3581-3592.

    [20]AGRAWAL O P.Formulation of Euler-Lagrange equations for fractional variational problems[J].Journal of Mathematical Analysis and Applications,2002,272(1):368-379.

    [21]AGRAWAL O P.A general formulation and solution scheme for fractional optimal control problems[J].Nonlinear Dynamics,2004,38(1/2/3/4):323-337.

    [22]AGRAWAL O P.Fractional variational calculus and the transversality conditions[J].Journal of Physics A:Mathematical and General,2006,39(33):10375-10384.

    [23]AGRAWAL O P.Fractional variational calculus in terms of Riesz fractional derivatives[J].Journal of Physics A:Mathematical and Theoretical,2007,40(24):6287-6303.

    [24]AGRAWAL O P.Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative[J].Journal of Vibration and Control,2007,13(9/10):1217-1237.

    [25]AGRAWAL O P,MUSLIH S I,BALEANU D.Generalized variational calculus in terms of multi-parameters fractional derivatives[J].Communications in Nonlinear Science & Numerical Simulation,2011,16(12):4756-4767.

    [26]BALEANU D,AVKAR T.Lagrangian with linear velocities within Riemann-Liouville fractional derivatives[J].Nuovo Cimento B,2004,119(1):73-79.

    [27]FREDERICO G S F,TORRE D F M.A formulation of Noether′s theorem for fractional problems of the calculus of variations[J].Journal of Mathematical A-nalysis and Applications,2007,334(2):834-846.

    [28]MUSLIH S I,BALEANU D.Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives[J].Journal of Mathematical Analysis and Applications,2005,304(2):599-606.

    [29]ATANACKOVIC T M,KONJIK S,PILIPOVIC S.Variational problems with fractional derivatives:Euler-Lagrange equations[J].Journal of Physics A:Mathematical and Theoretical,2008,41(9):095201.

    [30]HERZALLAH M A E,BALEANU D.Fractional order Euler-Lagrange equations and formulation of Hamiltonian equations[J].Nonlinear Dynamics,2009,58(1):385-391.

    [31]JARAD F,ABDELJAWAD T,BALEANU D.Fractional variational optimal control problems with delayed arguments[J].Nonlinear Dynamics,2010,62(3):609-614.

    [32]ALMEIDA R,TORRES D F M.Necessary and sufficient conditions for the factional calculus of variations with Caputo derivatives[J].Communications in Nonlinear Science & Numerical Simulation,2011,16(3):1490-1500.

    [33]HERZALLAH M A E,BALEANU D.Fractional Euler-Lagrange equations revisited[J].Nonlinear Dynamics,2012,69(3):977-982.

    [34]ZHOU S,F(xiàn)U J L,LIU Y S.Lagrange equations of nonholonomic systems with fractional derivatives[J].Chinese Physics B,2010,19(12):120301.

    [35]ZHOU Y,ZHANG Y.Fractional Pfaff-Birkhoff principle and fractional Birkhoff′s equations in terms of Riemann-Liouville derivative[J].Bulletin of Science and Technology,2013,29(3):4-10.(in Chinese)

    [36]ZHOU Y,ZHANG Y.Fractional Pfaff-Birkhoff principle and Birkhoff′s equations in terms of Riesz fractional derivatives[J].Transactions of Nanjing U-niversity of Aeronautics and Astronautics,2014,31(1):63-69.

    [37]SONG C J,ZHANG Y.Perturbation to Noether symmetries and adiabatic invariants for generalized Birkhoff systems based on El-Nabulsi dynamical model[J].Transactions of Nanjing University of Aeronautics and Astronautics,2015,32(4):421-427.

    [38]ZHANG Y,LONG Z X.Fractional action-like variational problem and its Noether symmetries for a nonholonomic system[J].Transactions of Nanjing University of Aeronautics and Astronautics,2015,32(4):380-389.

    [39]ZHOU Y,ZHANG Y.Noether′s theorems of a fractional Birkhoffian system within Riemann-Liouville derivatives[J].Chinese Physics B,2014,23(12):124502.

    亚洲专区国产一区二区| 搡老妇女老女人老熟妇| 免费看a级黄色片| 国产精品乱码一区二三区的特点| 国产精品伦人一区二区| 亚洲av熟女| 99久久精品热视频| 午夜福利高清视频| 久久精品国产亚洲av涩爱 | 国产精品久久久久久久电影| 99热精品在线国产| 99久国产av精品| 久久久国产成人免费| 激情 狠狠 欧美| 久久精品国产亚洲av香蕉五月| 日韩av不卡免费在线播放| 看黄色毛片网站| 国产色爽女视频免费观看| 午夜激情欧美在线| 六月丁香七月| 女生性感内裤真人,穿戴方法视频| av中文乱码字幕在线| 国产毛片a区久久久久| 亚洲人成网站在线播| 午夜福利视频1000在线观看| 一级毛片电影观看 | 美女免费视频网站| 亚洲专区国产一区二区| 免费观看精品视频网站| 99热这里只有精品一区| 一本一本综合久久| 成年女人永久免费观看视频| 国产真实伦视频高清在线观看| 日本成人三级电影网站| 亚洲人成网站在线观看播放| 国产aⅴ精品一区二区三区波| 免费看日本二区| 成人性生交大片免费视频hd| 91久久精品国产一区二区成人| 国产亚洲91精品色在线| 久久精品夜夜夜夜夜久久蜜豆| 欧美又色又爽又黄视频| 99视频精品全部免费 在线| 91狼人影院| 久久久精品大字幕| 尾随美女入室| 午夜福利视频1000在线观看| 国产一区二区三区在线臀色熟女| 深夜精品福利| 91av网一区二区| 麻豆久久精品国产亚洲av| 亚洲欧美日韩东京热| 精品一区二区三区av网在线观看| 女人被狂操c到高潮| 99在线视频只有这里精品首页| av在线播放精品| 九九热线精品视视频播放| 亚洲一级一片aⅴ在线观看| 久久国产乱子免费精品| 国产一区二区在线观看日韩| 亚洲乱码一区二区免费版| 亚洲第一区二区三区不卡| 内射极品少妇av片p| 国产精品电影一区二区三区| 成人亚洲精品av一区二区| 中文字幕精品亚洲无线码一区| 日韩av在线大香蕉| 亚洲精品国产成人久久av| 高清日韩中文字幕在线| 人人妻人人澡欧美一区二区| av天堂中文字幕网| 一个人看视频在线观看www免费| 亚洲丝袜综合中文字幕| 一本精品99久久精品77| 精品日产1卡2卡| 精品无人区乱码1区二区| 毛片女人毛片| 最近中文字幕高清免费大全6| 日本精品一区二区三区蜜桃| eeuss影院久久| 久久久久久九九精品二区国产| 婷婷精品国产亚洲av| 午夜精品一区二区三区免费看| 性欧美人与动物交配| 性色avwww在线观看| 日韩成人av中文字幕在线观看 | 老司机午夜福利在线观看视频| 麻豆国产av国片精品| 日本欧美国产在线视频| 国模一区二区三区四区视频| 一级毛片久久久久久久久女| 久久久久久国产a免费观看| 国产精品国产三级国产av玫瑰| 精品国产三级普通话版| av天堂在线播放| 欧美三级亚洲精品| 久久精品国产亚洲av天美| 中文字幕人妻熟人妻熟丝袜美| 最新在线观看一区二区三区| 丝袜喷水一区| 精品人妻熟女av久视频| 国产成人a∨麻豆精品| 日日干狠狠操夜夜爽| 狠狠狠狠99中文字幕| 超碰av人人做人人爽久久| 噜噜噜噜噜久久久久久91| АⅤ资源中文在线天堂| 亚洲av免费在线观看| 国产精品,欧美在线| 少妇人妻一区二区三区视频| 美女大奶头视频| 国产爱豆传媒在线观看| 国产高清视频在线播放一区| 两个人的视频大全免费| 欧美一区二区精品小视频在线| 老熟妇仑乱视频hdxx| 国产成人精品久久久久久| 成人特级黄色片久久久久久久| 夜夜看夜夜爽夜夜摸| 免费观看在线日韩| 国产精品一区二区性色av| 亚洲一区二区三区色噜噜| 亚洲一区二区三区色噜噜| 色哟哟哟哟哟哟| 成人av一区二区三区在线看| 色哟哟哟哟哟哟| 人妻夜夜爽99麻豆av| 人妻夜夜爽99麻豆av| 亚洲成人久久性| 一进一出抽搐gif免费好疼| 一级黄色大片毛片| 看十八女毛片水多多多| 伦理电影大哥的女人| 看十八女毛片水多多多| 成人特级黄色片久久久久久久| 成人亚洲欧美一区二区av| 免费无遮挡裸体视频| 免费看av在线观看网站| 好男人在线观看高清免费视频| 久久午夜福利片| 欧美成人一区二区免费高清观看| 亚洲性夜色夜夜综合| 日韩三级伦理在线观看| 香蕉av资源在线| 高清日韩中文字幕在线| 国产高清视频在线观看网站| 国产精品一区二区三区四区久久| 国产伦精品一区二区三区视频9| 男女下面进入的视频免费午夜| 少妇丰满av| 精华霜和精华液先用哪个| 深夜精品福利| 一本久久中文字幕| 99热这里只有是精品在线观看| 毛片女人毛片| 国产精品一区www在线观看| 国产黄色视频一区二区在线观看 | 国产在线男女| 国产探花在线观看一区二区| 国产av一区在线观看免费| 亚洲人成网站在线播| 成年女人永久免费观看视频| 成年女人永久免费观看视频| 日韩强制内射视频| a级毛片a级免费在线| 露出奶头的视频| 最近中文字幕高清免费大全6| 岛国在线免费视频观看| 天天躁日日操中文字幕| 高清毛片免费观看视频网站| 国产片特级美女逼逼视频| 国产真实乱freesex| 日本撒尿小便嘘嘘汇集6| 国产精品久久电影中文字幕| 亚洲不卡免费看| 久久久久久久亚洲中文字幕| 午夜视频国产福利| 中文字幕av在线有码专区| 黄色一级大片看看| 国产熟女欧美一区二区| 两个人的视频大全免费| 自拍偷自拍亚洲精品老妇| 婷婷六月久久综合丁香| 亚洲国产欧洲综合997久久,| 欧美性猛交╳xxx乱大交人| 狠狠狠狠99中文字幕| 免费观看的影片在线观看| 国产成人aa在线观看| 女的被弄到高潮叫床怎么办| 男女那种视频在线观看| 国产在线男女| 欧美另类亚洲清纯唯美| 亚洲av不卡在线观看| 老师上课跳d突然被开到最大视频| 99久久精品一区二区三区| 在线播放无遮挡| 黄色日韩在线| 免费在线观看影片大全网站| 久久精品人妻少妇| 一进一出好大好爽视频| 精品久久久久久久久av| 久久久精品94久久精品| 一区二区三区四区激情视频 | 国产三级在线视频| 国产精品免费一区二区三区在线| 国产成人a∨麻豆精品| 中出人妻视频一区二区| 久久久久久久久久久丰满| 国产伦精品一区二区三区四那| 久久精品国产亚洲av涩爱 | 亚洲精华国产精华液的使用体验 | 成人高潮视频无遮挡免费网站| 精品不卡国产一区二区三区| av天堂在线播放| 亚洲综合色惰| 噜噜噜噜噜久久久久久91| 毛片一级片免费看久久久久| 麻豆成人午夜福利视频| 最新在线观看一区二区三区| 天堂影院成人在线观看| 欧美日本视频| 精品一区二区三区视频在线观看免费| 国产三级在线视频| 国产精品一及| 深爱激情五月婷婷| 老司机影院成人| 免费看日本二区| 精品一区二区三区av网在线观看| 一个人看视频在线观看www免费| 国产一级毛片七仙女欲春2| 欧美日韩在线观看h| 日日撸夜夜添| 日韩成人av中文字幕在线观看 | 老熟妇乱子伦视频在线观看| 22中文网久久字幕| 亚洲欧美成人综合另类久久久 | 成人一区二区视频在线观看| 看免费成人av毛片| 成人av一区二区三区在线看| 婷婷色综合大香蕉| 男女边吃奶边做爰视频| 成人无遮挡网站| 99热这里只有是精品在线观看| 免费黄网站久久成人精品| 青春草视频在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲人成网站高清观看| 欧美另类亚洲清纯唯美| 在线国产一区二区在线| 在线a可以看的网站| 亚洲激情五月婷婷啪啪| 亚洲一级一片aⅴ在线观看| 久久久久久大精品| 精品久久久久久久末码| 久久精品国产亚洲网站| 亚洲av成人精品一区久久| 婷婷亚洲欧美| 国产精品久久久久久亚洲av鲁大| 精品国产三级普通话版| 成年女人永久免费观看视频| 免费人成视频x8x8入口观看| 国产精品美女特级片免费视频播放器| 国内久久婷婷六月综合欲色啪| 18+在线观看网站| 国内精品一区二区在线观看| 免费在线观看影片大全网站| 热99在线观看视频| 久久精品影院6| 一区二区三区免费毛片| 97超级碰碰碰精品色视频在线观看| 别揉我奶头 嗯啊视频| 久久久欧美国产精品| 国产一级毛片七仙女欲春2| 看非洲黑人一级黄片| 成人特级av手机在线观看| 亚洲婷婷狠狠爱综合网| 热99re8久久精品国产| 中文在线观看免费www的网站| 国产在线男女| 中文亚洲av片在线观看爽| 男女下面进入的视频免费午夜| 一级毛片电影观看 | 亚洲欧美日韩高清在线视频| 网址你懂的国产日韩在线| 亚洲激情五月婷婷啪啪| 免费电影在线观看免费观看| av在线播放精品| 一级黄片播放器| 天堂网av新在线| 黄色日韩在线| 亚洲精品日韩av片在线观看| 亚洲国产欧洲综合997久久,| 亚洲精品影视一区二区三区av| 日本撒尿小便嘘嘘汇集6| 99精品在免费线老司机午夜| 久久久久国产精品人妻aⅴ院| 亚洲一区二区三区色噜噜| 久久久久久九九精品二区国产| 国产蜜桃级精品一区二区三区| 日本免费a在线| 亚洲国产色片| 久久久久久久亚洲中文字幕| 少妇高潮的动态图| 99国产极品粉嫩在线观看| 日本精品一区二区三区蜜桃| 97热精品久久久久久| 久久久国产成人精品二区| 国产在线男女| 1000部很黄的大片| 91麻豆精品激情在线观看国产| 午夜亚洲福利在线播放| 色视频www国产| 小蜜桃在线观看免费完整版高清| 身体一侧抽搐| 在线免费观看的www视频| 国产精品美女特级片免费视频播放器| 欧美成人免费av一区二区三区| 亚洲无线观看免费| 日本五十路高清| 91久久精品国产一区二区三区| 亚洲四区av| 一级毛片aaaaaa免费看小| 成年女人看的毛片在线观看| 黄片wwwwww| 狠狠狠狠99中文字幕| 成人亚洲精品av一区二区| 午夜免费男女啪啪视频观看 | 美女cb高潮喷水在线观看| 精品日产1卡2卡| 国产免费男女视频| 欧美日韩在线观看h| 国产欧美日韩精品亚洲av| 春色校园在线视频观看| 晚上一个人看的免费电影| 两性午夜刺激爽爽歪歪视频在线观看| 国产一级毛片七仙女欲春2| 菩萨蛮人人尽说江南好唐韦庄 | 欧美中文日本在线观看视频| 欧美日本视频| 久久久午夜欧美精品| 久久综合国产亚洲精品| 性欧美人与动物交配| 日韩在线高清观看一区二区三区| 国产女主播在线喷水免费视频网站 | 国产中年淑女户外野战色| 天堂网av新在线| 99久久久亚洲精品蜜臀av| 精品午夜福利在线看| 老司机影院成人| 黄色欧美视频在线观看| 夜夜看夜夜爽夜夜摸| 久久99热这里只有精品18| 嫩草影院入口| 久久精品国产亚洲av天美| 少妇熟女aⅴ在线视频| 少妇人妻一区二区三区视频| 成人漫画全彩无遮挡| 成人二区视频| 大香蕉久久网| 久久这里只有精品中国| 欧美在线一区亚洲| 亚洲av电影不卡..在线观看| 18+在线观看网站| 黄色一级大片看看| 美女被艹到高潮喷水动态| 久久草成人影院| 毛片女人毛片| 日日摸夜夜添夜夜爱| 激情 狠狠 欧美| 国产欧美日韩一区二区精品| 国产精品一区二区免费欧美| 婷婷精品国产亚洲av| 婷婷六月久久综合丁香| 18禁在线无遮挡免费观看视频 | 亚洲乱码一区二区免费版| 欧美一区二区亚洲| 色视频www国产| 内射极品少妇av片p| 成人三级黄色视频| 嫩草影院新地址| 欧美极品一区二区三区四区| 国产精品乱码一区二三区的特点| 亚洲精品成人久久久久久| 六月丁香七月| 乱码一卡2卡4卡精品| 午夜福利在线观看免费完整高清在 | 在线国产一区二区在线| 亚洲精品日韩在线中文字幕 | 精品一区二区免费观看| 99久久无色码亚洲精品果冻| 久久久久久久久久久丰满| 国产老妇女一区| 波多野结衣高清作品| 久99久视频精品免费| 国产精品野战在线观看| 亚洲精品在线观看二区| 日本免费a在线| 人妻久久中文字幕网| 亚洲成人av在线免费| 国产国拍精品亚洲av在线观看| 久99久视频精品免费| 午夜日韩欧美国产| 日本五十路高清| 日日摸夜夜添夜夜爱| 欧美另类亚洲清纯唯美| .国产精品久久| 亚洲综合色惰| 给我免费播放毛片高清在线观看| 久久久久精品国产欧美久久久| 成年女人看的毛片在线观看| 女生性感内裤真人,穿戴方法视频| 99热全是精品| 国产免费男女视频| 一区福利在线观看| 在线观看午夜福利视频| 啦啦啦韩国在线观看视频| 国产精品一区二区三区四区免费观看 | 日韩精品有码人妻一区| 久久午夜福利片| 亚洲在线观看片| 色在线成人网| 岛国在线免费视频观看| 亚洲图色成人| 日本黄色视频三级网站网址| 亚洲无线在线观看| 国产中年淑女户外野战色| 日本熟妇午夜| 国产精品久久久久久精品电影| 亚洲四区av| 午夜免费男女啪啪视频观看 | 人妻少妇偷人精品九色| 亚洲成av人片在线播放无| 精品人妻视频免费看| 18禁在线无遮挡免费观看视频 | 国产亚洲91精品色在线| 欧美色欧美亚洲另类二区| 伦理电影大哥的女人| 一进一出好大好爽视频| 亚洲av免费高清在线观看| 亚洲丝袜综合中文字幕| 99久国产av精品国产电影| 成人二区视频| 高清午夜精品一区二区三区 | 天堂动漫精品| 免费看av在线观看网站| av天堂中文字幕网| 亚洲无线在线观看| 高清毛片免费看| 久久热精品热| 99国产精品一区二区蜜桃av| 亚洲欧美日韩高清在线视频| 精品人妻视频免费看| 国产精品久久视频播放| 精品国内亚洲2022精品成人| 搡老岳熟女国产| 午夜免费激情av| 波多野结衣巨乳人妻| 一a级毛片在线观看| 99在线视频只有这里精品首页| 亚洲,欧美,日韩| 久久久成人免费电影| 国产美女午夜福利| 日韩,欧美,国产一区二区三区 | 人妻久久中文字幕网| 夜夜看夜夜爽夜夜摸| 欧美性猛交黑人性爽| 国产 一区 欧美 日韩| 人人妻,人人澡人人爽秒播| 日本爱情动作片www.在线观看 | 18禁黄网站禁片免费观看直播| 毛片女人毛片| 不卡视频在线观看欧美| 国产精品一区二区三区四区久久| 非洲黑人性xxxx精品又粗又长| 三级男女做爰猛烈吃奶摸视频| 久久精品综合一区二区三区| 麻豆av噜噜一区二区三区| 一级黄色大片毛片| 一级毛片电影观看 | 久久久久国产精品人妻aⅴ院| 国产亚洲91精品色在线| 99热这里只有精品一区| 亚洲一区二区三区色噜噜| 国产精品精品国产色婷婷| 日本一本二区三区精品| 久久人人精品亚洲av| 美女内射精品一级片tv| 麻豆一二三区av精品| 草草在线视频免费看| 亚洲人与动物交配视频| 亚洲av五月六月丁香网| 久久久精品欧美日韩精品| 直男gayav资源| 日韩一本色道免费dvd| 毛片一级片免费看久久久久| 亚洲人成网站在线观看播放| 在线观看一区二区三区| 久久久国产成人免费| 国产老妇女一区| 免费大片18禁| 天堂av国产一区二区熟女人妻| 国产精品久久久久久精品电影| 在线看三级毛片| 亚洲欧美精品自产自拍| av卡一久久| 日韩国内少妇激情av| 精品久久国产蜜桃| 久久人妻av系列| 国产伦精品一区二区三区视频9| 精品一区二区三区视频在线| 人人妻人人澡人人爽人人夜夜 | 欧美又色又爽又黄视频| 日韩欧美精品免费久久| 亚洲欧美日韩东京热| or卡值多少钱| 中文字幕久久专区| 国产精品人妻久久久影院| 亚洲av电影不卡..在线观看| 人人妻人人澡欧美一区二区| 最近2019中文字幕mv第一页| av.在线天堂| 夜夜爽天天搞| 成人高潮视频无遮挡免费网站| 国产一区二区三区在线臀色熟女| 亚洲av成人精品一区久久| 久久久久久久久大av| 成人二区视频| 又粗又爽又猛毛片免费看| 亚洲欧美日韩高清专用| 大香蕉久久网| 校园人妻丝袜中文字幕| 亚洲中文日韩欧美视频| 国产精品人妻久久久影院| 在线播放国产精品三级| 日本与韩国留学比较| 久99久视频精品免费| 麻豆久久精品国产亚洲av| 亚洲高清免费不卡视频| 国产精品99久久久久久久久| 97在线视频观看| 国产色婷婷99| 亚洲美女视频黄频| 免费看av在线观看网站| 日产精品乱码卡一卡2卡三| 亚洲成人久久爱视频| 日本熟妇午夜| 丰满乱子伦码专区| 亚洲欧美日韩高清在线视频| 久久久久久久久大av| 亚洲美女搞黄在线观看 | 亚洲最大成人手机在线| 成人高潮视频无遮挡免费网站| 在线观看美女被高潮喷水网站| 日韩一区二区视频免费看| 男女做爰动态图高潮gif福利片| 国产视频内射| 天天躁夜夜躁狠狠久久av| 麻豆成人午夜福利视频| 小说图片视频综合网站| 观看美女的网站| 亚洲国产日韩欧美精品在线观看| 国产精品三级大全| 99热精品在线国产| 亚洲av成人av| 青春草视频在线免费观看| 国产成年人精品一区二区| 欧洲精品卡2卡3卡4卡5卡区| 久久精品夜夜夜夜夜久久蜜豆| 如何舔出高潮| 国产 一区精品| 啦啦啦啦在线视频资源| 深夜a级毛片| 国产麻豆成人av免费视频| 日日啪夜夜撸| 美女 人体艺术 gogo| 99久久久亚洲精品蜜臀av| 毛片一级片免费看久久久久| 看免费成人av毛片| 卡戴珊不雅视频在线播放| 国产成人freesex在线 | 精品久久久噜噜| 国产精品久久久久久精品电影| 蜜桃久久精品国产亚洲av| 久久这里只有精品中国| 一卡2卡三卡四卡精品乱码亚洲| 久久国产乱子免费精品| 成人亚洲精品av一区二区| 无遮挡黄片免费观看| 蜜桃亚洲精品一区二区三区| 欧美日本亚洲视频在线播放| 99热全是精品| 国产午夜精品久久久久久一区二区三区 | 少妇猛男粗大的猛烈进出视频 | 亚洲欧美日韩卡通动漫| 亚洲,欧美,日韩| 午夜亚洲福利在线播放| 欧美激情国产日韩精品一区| 欧美日韩乱码在线| 不卡视频在线观看欧美| 日日干狠狠操夜夜爽| 婷婷亚洲欧美| 91久久精品国产一区二区成人| 国产白丝娇喘喷水9色精品| 亚洲国产精品成人综合色| 久久鲁丝午夜福利片| 亚洲精品影视一区二区三区av| 网址你懂的国产日韩在线| 女人十人毛片免费观看3o分钟| 亚洲国产精品合色在线| 久久6这里有精品| 色综合色国产| 日韩欧美精品免费久久| 亚洲人成网站在线播放欧美日韩| 国产亚洲av嫩草精品影院| 国产午夜福利久久久久久|