• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fault Estimation and Accommodation for a Class of Nonlinear System Based on Neural Network Observer

    2018-05-25 06:39:43,,
    關(guān)鍵詞:華山醫(yī)院聯(lián)體研究型

    , ,

    College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,P.R.China

    0 Introduction

    As engineering systems and industrial processes become more and more complex,the requirements for system reliability and security are continuously growing.Once the system fails,it may lead to performance degradation,sometimes even system break-down.So,this necessity has motivated a significant research in the modelbased fault tolerant control (FTC)techniques which need early fault detection (FD)and isolation (FI)[1-4].

    The most common approaches for modelbased FD are based on the state or parameter estimation schemes,which employ techniques such as the adaptive observer[5],the sliding mode observer[6]and the geometric approaches[7].Among these studies,adaptive observer-based approaches have been extensively considered due to their extensive applicability and good fault reconstruction capability[5,8-14].An adaptive observer has been employed to diagnose the actuator and sensor faults in the linear time-varying systems in Ref.[8].This scheme needs certain necessary conditions which limits its application.Zhang et al.presented a fault diagnosis and isolation scheme for a class of Lipschitz,uncertain nonlinear systems with partial state measurements[13],while the fault functions are assumed to be linear in parameters with known functions.Recently,neural networks(NNS)has been applied to the fault diagnosis problem because of its good capabilities in function approximation[15-16].An adaptive fault diagnosis scheme was developed[15]where neural network was employed to approximate the nonlinearities.Multiplicative actuator fault detection scheme using online neural network learning are designed and analyzed,but the faults are not estimated[16].

    Fault accommodation is the strategy to achieve desired performance where the controller reacts to the occurrence of faults[17-22].A fault tolerant controller was proposed based on adaptive observer[18],but the solution between the fault estimation observer and fault tolerant control was in a certain coupling.In Ref.[21],a new method of fault accommodation scheme was proposed with the neural network to approximate the nonlinear system,while the system state was known before hand.

    The motivation of our work is to establish a novel adaptive fault estimation and accommodation scheme for Lipschitz nonlinear systems subject to actuator or component faults.To estimate the fault,an observer based on adaptive control and neural network techniques is designed.Then,a fault tolerant controller is developed to compensate for the fault effects for the systems.

    1 Problem Statement

    Consider a fault-free nonlinear system

    wherex(t)∈Rnrepresents the unknown state vector,y(t)∈Rpthe measurable output vector,andu(t)∈Rmthe control input vector.(x,u,t)andd(t)∈Rqare the smooth vector fields that represent the known dynamics of the nominal model and an external disturbance vector which satisfies‖d(t)‖≤μ1,respectively,andA,B,C,Dthe known matrices with proper dimensions.

    Suppose there occurs faults which are usually mixed with system states and inputs,then the system can be expressed as

    wheref(x,u,t)∈Rrdenotes unknown time-varying fault function which can not only represent actuator faults but also system component faults,andEthe fault distribution matrix with proper dimension.β(t-T)describes the time profile of the fault with the following form

    whereT≥0is the unknown fault occurrence time.

    Assumption 1 (A,C)is observable and(A,B)is controllable.

    Assumption 2 The nonlinear term(x,u,t)is Lipschitz inxwith Lipschitz constantγ,i.e.

    ‖(x,u,t)-(,u,t)‖ ≤γ‖x-‖(4)

    Lemma 1 Assume thatXandYare vectors or matrices with appropriate dimensions,then for any positive scalarα,the following inequality holds

    In this paper,the radial basis function neural network (RBFNN)is used to approximate the unknown fault functionf(x,u,t).The RBFNN is a kind of single-h(huán)idden-layer neural network which is composed of three layers:The input layer,hidden layer and output layer.

    whereW*= [,,…,]Tis the ideal weight matrix,X=[xTuT]T∈Adthe input vector including the state vector and input vector.σ=[σ1,σ2,…,σN]Tis the radial basis function and is usually chosen asσi=exp(-‖X-δi‖2/)with centre vectorδiand widthdi,andNthe node number of hidden layer.Suppose

    whereWis the real weight vector andwm>0the designed parameter.

    Assumption 3εis the optimal approximation error and is bounded,that is|ε|≤ε0,ε0can be taken arbitrarily small.

    2 Adaptive Fault Diagnosis Observer

    Based on system (2),the following fault diagnosis observer is constructed

    where(t)(t),u,t)are the estimations ofx(t),y(t),f(x,u,t),respectively,Lis the observer gain matrix.Then the adaptive fault estimation algorithm is given by

    whereandare the estimations of ideal weight vector and centre vector,respectively.In the practical applications,the value of weight and center of RBFNN have great impact on the approximation error while the influence of the width vectordis small,sodis designed to be constant.Denote:ex=x-,ey=Cex,ef=f-f.Then the error dynamic equation can be presented as

    In order to analyze,the Taylor′s series ofσ,u,δ)is expanded atδ,that is

    whereis high-order items and is bounded.Then one has

    Substituting Eq.(12)into Eq.(10),the error dynamic is described by

    whereandwith‖Δ‖≤μ2.

    To guarantee the observer′s stability,the following theorem is given.

    Theorem 1 Under the nonlinear fault system(2)and Assumption 2,if there exists a positivedefinite matrixP,matrixesYandRsatisfying the following conditions where the gain matrix of the observer is given byL=P-1Y,and the adaptive estimation algorithm are described by

    DenoteΔ=(x,u,t)-,u,t),and according to Lemma 1,the following result is obtained as

    五院是華山醫(yī)院的對口幫扶單位,作為對口幫扶五院的負責(zé)人,華山醫(yī)院神經(jīng)內(nèi)科副主任醫(yī)師韓翔經(jīng)常往返于兩家醫(yī)院,由于距離較遠,每次路上都要耽擱不少時間,于是他想到了借助互聯(lián)網(wǎng),“我們要做的就是,通過互聯(lián)網(wǎng),把本來需要人過去,才能下沉的那些工作,通過互聯(lián)網(wǎng)直接下沉下去。”腦卒中智慧醫(yī)聯(lián)體平臺就是在這樣的初衷之下建立的。韓翔的設(shè)想得到了華山醫(yī)院領(lǐng)導(dǎo)層的大力支持,最終確認建設(shè)目標(biāo):探索規(guī)劃腦卒中醫(yī)聯(lián)體平臺,打造研究型、學(xué)習(xí)型、創(chuàng)新型的基于混合云架構(gòu)的腦卒中智慧醫(yī)聯(lián)體平臺。通過閔行地區(qū)的示范應(yīng)用,實現(xiàn)以“區(qū)域醫(yī)療中心牽頭,三級醫(yī)院業(yè)務(wù)支援,社區(qū)醫(yī)院鄰里支撐,急救養(yǎng)老康復(fù)協(xié)同”為特色的智慧腦卒中示范應(yīng)用。

    whereΓ1>0,Γ2>0,Γ3>0,wm>0are constants which should be designed later and the size ofΓ1will greatly affect the speed of fault estimation.wmis developed to avoid the parameter drift which limits the weight matrixin a convex set,that isΩ^W={/‖‖2<wm}.

    Proof

    To study the stability and convergence of the proposed observer(8),the following Lyapunov function candidate is considered

    whereare both param-eter estimation errors.The time derivative ofVis given by

    Then one has

    If‖‖2<wm,it can be obtained thatρs=0

    whereandλmaxare the minimum eigen-value and the maximum eigenvalue of matrix,respectively.η=Dμ1+Eμ2>0.

    Iftherefore,ex∈L∞∈L∞,∈L∞.These guarantee the stability and convergence of the designed observer by using Barbalat′s Lemma.

    3 Fault Tolerant Controller

    In many applications,especially those involving safety-critical systems,it is important not only to detect and estimate the characteristic and magnitude of any faults but also to accommodate them as soon as possible.The goal of fault-tolerant control is to maintain dynamic performance in case of failure.In this section,a fault tolerant controller is developed according to Ref.[21].As the state vectorxis unavailable,the controller is constructed as

    whereuH=α(y)represents a controller that leads the normal system to achieve the desired behavior.uF=ψ(y,)is an additional control law which should be designed to set stable the following faulty system

    Notation[21]R≥0:[0,∞),a functiong:R≥0→R≥0is of classκif it is continuous,strictly increasing,and outputs zero when inputting zero.

    And it is of classκ∞if it is unbounded.

    Assumption 4 If there exists an normal controlleruH=α(y),functionsK1(·),K2(·)and Lyapunov functionVHsatisfy the following conditions

    whereK1,K2are classκ∞functions.

    Theorem 2 In order to ensure that the faulty system(25)is stable,the following control laws are given

    where switchingβs-modification is designed as the same form in Eq.(16),partial differential function ofσ(y)at,andB*the pseudo inverse ofB.

    Proof

    To study the stability of the system(25),the following Lyapunov function candidate is considered

    The derivative ofVis

    whereW*TO(y,u)+εis bound and can approach arbitrary small number such as zero.

    Considering control law in Eq.(28),then

    where the processing ofρstrT)in Eq.(31)is similar to the previous fault diagnosis observer deignd in Eqs.(21)—(22).Note thatΔycan be taken arbitrary small such as zero,then we can obtainV≤0,such thaty,,are uniformly bounded.

    4 Simulation Results

    In this section,the attitude control system for a quadrotor helicopter is considered to verify the efficiency of the proposed algorithm.It is found that actuator of helicopter is very easy to fail,the faults of the four motors will cause the rotor speed to change abruptly or even out of control.The dynamical model of quadrotor attitude systems[23]is

    J=0.005 2,Jθ=0.005 2,Jψ=0.11,l=0.197,Kt,c=Kt,n=0.003 6,Kfx=Kfy=0.008,Kfz=0.009 1.,θandψdenote roll angle,pitch angle,yaw angle,respectively;Vf,Vb,Vr,Vlthe voltage of the front,the rear,the right and the left motors,respectively;J,Jθ,Jψthe rotational inertia of roll axis,pitch axis and yaw axis;andKt,c,Kt,nthe counter and the normal rotation propeller torque-thrust constant.Kfrepresents the propeller force-thrust constant andlthe distance between the axis of any rotor and the center of mass.

    The aforementioned quadrotor model can be transformed to a common model with faults and disturbances

    whereVl]T.The other parameters are given as follows

    In this paper,three types of faults are considered.Firstly,assuming voltage failure of the front motor occurs at 10sin the form of low amplitude which fails the helicopter to achieve the desired posture.The fault function is modeled asf(u,t)=[-0.4 0 0 0]T.

    The input of NNS is chosen as the system estimation state,the number of hidden layer nodes is 11andΓ1=10,Γ3=0.05I65×1whereI65×1represents a matrix of 65rows and 1column and all elements are 1.wm=0.2,Γ2=-0.01.By contrast, the estimation results under the RBFNN fault estimation method and conventional adaptive fault estimation method[19]are shown in Fig.1.

    Fig.1 Actuator fault and its estimation

    Secondly,assume that the aging of physical structure quadrotor makes voltage of the front motor to be unstable with a continuous jump,and the fault isf(t)=[0.1sint000]T.By taking learning rateΓ1=30,wm=0.02,Γ2=0.01,Γ3=0.05I65×1,the estimation results are shown in Figs.2,3.

    Fig.2 Actuator fault and its estimation(RBFNN fault estimation method)

    Fig.3 Actuator fault and its estimation(conventional adaptive fault estimation method)

    Thirdly,assume a physical component fault appears in the quadrotor which leads to parameter changes in the system state matrix.The fault is with the form off(x)=[x1+0.05 0 0 0]T.By selecting the learning rateΓ1=15,Γ2=0,Γ3=0.05I65×1,the simulation result is shown in Fig.4.

    In view of the above mentioned fault that voltage failure of the front motor occurs at 10s withf(u,t)= [-0.4 0 0 0]T,the node of RBFNN is 11,taking the fault accommodation algorithm in Eq.(28)withΓ1=0.035,Γ2=0.07,Γ3=0.05I65×1.The results are shown in Figs.5—7.It can be seen that the proposed fault tolerant controller can recover the system performance.

    Fig.4 Component fault and its estimation

    Fig.5 Roll angle with fault accommodation

    Fig.7 Yaw angle with fault accommodation

    Fig.6 Pitch angle with fault accommodation

    5 Conclusions

    An adaptive fault estimation and accommodation scheme is proposed for Lipschitz nonlinear systems which are subjected to disturbances and faults.Based on adaptive state observer and RBFNN techniques,a robust adaptive learning algorithm based on switchingβs-modification is developed to estimate the states of the system and actuator or component faults effectively.Meanwhile,not only the weight,but also the centre vector of RBFNN is updated online.Then,a fault tolerant controller is designed to restore system performance.Finally,the simulation results of quadrotor attitude systems validate the efficiency of the proposed techniques.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(No.61533008),the Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing(No.SAMC14-JS-15-053),and the Fundamental Research Funds for the Central Universities(No.NJ20150011).

    [1] GAO Z,CECATI C,DING S X.A survey of fault diagnosis and fault-tolerant techniques—Part I:Fault diagnosis with model-based and signal-based approaches[J].IEEE Transactions on Industrial Electronics,2015,62(6):3757-3767.

    [2] JIANG B,STAROSWIECKI M,COCQUEMPOT V.Fault estimation in nonlinear uncertain systems using robust/sliding-mode observers[J].IEE Proceedings—Control Theory and Applications,2004,151(1):29-37.

    [3] JIANG Bin,ZHAO Jing,QI Ruiyun,et al.Survey of fault diagnosis and fault tolerant control of near space vehicle[J].Journal of Nanjing University of Aeronautics and Astronautics,2012,44(5):603-610.(in Chinese)

    [4] YIN S,WANG G,KARIMI H R.Data-driven design of robust fault detection system for wind turbines[J].Mechatronics,2014,24(4):298-306.

    [5] ZHANG K,JIANG B,SHI P.Fast fault estimation and accommodation for dynamical systems[J].Control Theory & Applications Iet,2009,3(2):189-199.

    [6] ALWI H,EDWARDS C.Robust fault reconstruction for linear parameter varying systems using sliding mode observers[J].International Journal of Robust& Nonlinear Control,2015,24(14):1947-1968.

    [7] de PERSIS C,ISIDORI A.A geometric approach to nonlinear fault detection and isolation[J].IEEE Transactions on Automatic Control,2001,46(6):853-865.

    [8] SHAHRIARI-KAHKESHI M,SHEIKHOLESLAM F,ASKARI J.Adaptive fault detection and estimation scheme for a class of uncertain nonlinear systems[J].Nonlinear Dynamics,2014,79(4):2623-2637.

    [9] GAO Fei,JIANG Guangwen,ZHANG Zebang,et al.An adaptive observer for actuator and sensor fault diagnosis in linear time-varying systems[C]//10th World Congress on Intelligent Control and Automation.Beijing:IEEE,2012:3281-3285.

    [10]GAO C,DUAN G.Robust adaptive fault estimation for a class of nonlinear systems subject to multiplicative faults[J].Circuits,Systems,and Signal Processing,2012,31(6):2035-2046.

    [11]MICHAEL D,VELUVOLU K C,RATH J J,et al.Adaptive sensor and actuator fault estimation for a class of uncertain Lipschitz nonlinear systems[J].International Journal of Adaptive Control &Signal Processing,2015,30(2):271-283.

    [12]LI X J,YANG G H.Fault diagnosis for non-linear single output systems based on adaptive high-gain observer[J].Control Theory & Applications Iet,2013,7(16):1969-1977.

    [13]ZHANG X D,POLYCARPOU M M,PARISINI T.Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation[J].Automatica,2010,46(2):290-299.

    [14]HE S P.Fault estimation for T-S fuzzy Markovian jumping systems based on the adaptive observer[J].International Journal of Control,Automation and Systems,2014,12(5):977-985.

    [15]LIU C S,ZHANG S J,HU S S.Adaptive neuralnetworks-based fault detection and diagnosis using unmeasured states[J].Control Theory & Applications Iet,2008,2(12):1066-1076.

    [16]TALEBI H A,KHORASANI K.A neural networkbased multiplicative actuator fault detection and isolation of nonlinear systems[J].IEEE Transactions on Control Systems Technology,2013,21(21):842-851.

    [17]PATTON R J.Fault-tolerant control:The 1997situation[C]//Proceedings of IFAC Sym-posium,F(xiàn)ault Detection,Supervision Safety for Process.New York:North-Holland,1997:1033-1055.

    [18]JIANG B,STAROSWIECKI M,COCQUEMPOT V.Fault accommodation for nonlinear dynamic systems[J].IEEE Transactions on Automatic Control,2006,51(9):1578-1583.

    [19]ZHANG K,JIANG B,SHI P.Observer-based fault estimation and accomodation for dynamic systems[J].Lecture Notes in Control & Information Sciences,2013,436:1-191.

    [20]YANG Q,CHEN M.Robust fault-tolerant control for longitudinal dynamics of aircraft with input saturation[J].Transactions of Nanjing University of Aeronautics and Astronautics,2016,33(3):319-328.

    [21]POLYCARPOU M M.Fault accommodation of a class of multivariable nonlinear dynamical systems using a learning approach[J].IEEE Transactions on Automatic Control,2001,46(5):736-742.

    [22]HAN J,ZHANG H,WANG Y,et al.Robust fault estimation and accommodation for a class of T-S fuzzy systems with local nonlinear models[J].Circuits,Systems,and Signal Processing,2016,35(10):3506-3530.

    [23]YANG Huiliao,JIANG Bin,ZHANG Ke.Direct self-repairing control for four-rotor helicopter attitude systems[J].Control Theory & Applications,2014,31(8):1053-1060.(in Chinese)

    猜你喜歡
    華山醫(yī)院聯(lián)體研究型
    醫(yī)護抗疫敘事有效融入黨建引領(lǐng)下的公立醫(yī)院思政工作
    自我肯定理論在老年結(jié)直腸癌患者造口護理中的應(yīng)用觀察
    國有企業(yè)研究型審計思考與探索
    “一鴿勝九雞” 鴿子怎樣吃最補虛
    自我保健(2020年10期)2021-01-15 00:54:44
    醫(yī)聯(lián)體:足不出戶的健康保障
    商周刊(2017年26期)2017-04-25 08:13:03
    時軍:定錨現(xiàn)代化研究型醫(yī)院
    定錨研究型人文醫(yī)院
    華山醫(yī)院成為國內(nèi)首家通過3次JCI評審的大型公立醫(yī)院
    健康管理(2016年3期)2016-05-30 10:48:04
    百花齊放的湖北醫(yī)聯(lián)體
    大連 創(chuàng)三級聯(lián)動醫(yī)聯(lián)體
    免费少妇av软件| 日韩制服骚丝袜av| 人人澡人人妻人| 欧美精品亚洲一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成人av在线免费| 视频在线观看一区二区三区| 亚洲国产欧美在线一区| 国语对白做爰xxxⅹ性视频网站| 亚洲专区中文字幕在线 | 99久久99久久久精品蜜桃| 美女视频免费永久观看网站| 国产成人一区二区在线| 哪个播放器可以免费观看大片| 亚洲精品国产色婷婷电影| 成年人午夜在线观看视频| 国产日韩欧美亚洲二区| 成人亚洲欧美一区二区av| 男人操女人黄网站| 国产成人av激情在线播放| 亚洲欧美中文字幕日韩二区| 国产xxxxx性猛交| 精品国产一区二区三区久久久樱花| 国产精品久久久久久人妻精品电影 | 五月天丁香电影| 欧美av亚洲av综合av国产av | 久久久久精品性色| 久久久欧美国产精品| 亚洲国产欧美一区二区综合| 欧美日韩亚洲国产一区二区在线观看 | 国产视频首页在线观看| 精品国产超薄肉色丝袜足j| 亚洲欧美成人精品一区二区| 欧美亚洲 丝袜 人妻 在线| www.熟女人妻精品国产| 国产无遮挡羞羞视频在线观看| 亚洲欧美成人精品一区二区| 婷婷色综合大香蕉| 久久国产亚洲av麻豆专区| 国产成人欧美| 成人亚洲精品一区在线观看| 亚洲伊人久久精品综合| 嫩草影院入口| 一级爰片在线观看| 一级,二级,三级黄色视频| 日韩av免费高清视频| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频| 大陆偷拍与自拍| 久久久精品国产亚洲av高清涩受| 欧美 亚洲 国产 日韩一| 亚洲少妇的诱惑av| 亚洲国产精品一区二区三区在线| 男女国产视频网站| 亚洲精品中文字幕在线视频| 国产成人精品在线电影| 大码成人一级视频| 亚洲精品成人av观看孕妇| 亚洲精华国产精华液的使用体验| 色精品久久人妻99蜜桃| 男女高潮啪啪啪动态图| 国产精品久久久久久久久免| 免费高清在线观看日韩| 亚洲国产欧美在线一区| 亚洲欧美激情在线| 亚洲国产日韩一区二区| 欧美人与性动交α欧美精品济南到| 91老司机精品| 人人妻,人人澡人人爽秒播 | 久久性视频一级片| 一二三四中文在线观看免费高清| 久久久国产欧美日韩av| 纵有疾风起免费观看全集完整版| 中文字幕最新亚洲高清| 又黄又粗又硬又大视频| 精品一品国产午夜福利视频| 久久99精品国语久久久| 热re99久久国产66热| av线在线观看网站| 国产男女超爽视频在线观看| 亚洲av福利一区| av女优亚洲男人天堂| 日韩欧美一区视频在线观看| 日本av免费视频播放| 久久青草综合色| 999久久久国产精品视频| 久久精品人人爽人人爽视色| 国产男人的电影天堂91| 久久人人爽人人片av| 男女床上黄色一级片免费看| 日韩制服骚丝袜av| 欧美日韩精品网址| 老汉色av国产亚洲站长工具| 女人精品久久久久毛片| 午夜激情av网站| 久久天堂一区二区三区四区| 精品国产乱码久久久久久小说| 中文字幕高清在线视频| 在线观看一区二区三区激情| 汤姆久久久久久久影院中文字幕| 午夜福利视频精品| 国产免费又黄又爽又色| 成人手机av| 日本爱情动作片www.在线观看| 亚洲国产成人一精品久久久| 成年美女黄网站色视频大全免费| 欧美另类一区| 成年av动漫网址| 最近中文字幕2019免费版| 成年女人毛片免费观看观看9 | 悠悠久久av| 日韩熟女老妇一区二区性免费视频| 精品一区二区免费观看| 久久久久精品性色| www.av在线官网国产| 99热网站在线观看| 亚洲欧美日韩另类电影网站| 亚洲男人天堂网一区| 久久精品亚洲av国产电影网| 好男人视频免费观看在线| 精品亚洲成国产av| 亚洲精品日韩在线中文字幕| 亚洲国产欧美网| 久久久国产欧美日韩av| 街头女战士在线观看网站| 国产1区2区3区精品| 亚洲成人免费av在线播放| 欧美xxⅹ黑人| 久久ye,这里只有精品| 蜜桃国产av成人99| 亚洲欧美精品自产自拍| 我的亚洲天堂| 天天影视国产精品| 这个男人来自地球电影免费观看 | 中文字幕另类日韩欧美亚洲嫩草| 欧美中文综合在线视频| 中文字幕制服av| av.在线天堂| 国产成人啪精品午夜网站| 亚洲熟女毛片儿| 看十八女毛片水多多多| xxx大片免费视频| 亚洲欧美日韩另类电影网站| 免费高清在线观看日韩| 国产人伦9x9x在线观看| 极品少妇高潮喷水抽搐| 超色免费av| 少妇猛男粗大的猛烈进出视频| 日本91视频免费播放| 久久99一区二区三区| 成人18禁高潮啪啪吃奶动态图| 成年av动漫网址| 亚洲七黄色美女视频| 国产人伦9x9x在线观看| 日本91视频免费播放| 亚洲精品日韩在线中文字幕| 日韩欧美精品免费久久| 国产精品久久久人人做人人爽| av免费观看日本| 日韩欧美精品免费久久| 国产精品二区激情视频| 欧美日韩亚洲国产一区二区在线观看 | 免费日韩欧美在线观看| 国产探花极品一区二区| 在线观看三级黄色| 中文字幕亚洲精品专区| 亚洲国产精品一区二区三区在线| 久久99热这里只频精品6学生| 极品少妇高潮喷水抽搐| 日本av免费视频播放| 亚洲国产最新在线播放| 深夜精品福利| 午夜久久久在线观看| 精品国产超薄肉色丝袜足j| 黑丝袜美女国产一区| 国产激情久久老熟女| 美女视频免费永久观看网站| av网站免费在线观看视频| 黄色怎么调成土黄色| 男女午夜视频在线观看| 一区在线观看完整版| av不卡在线播放| 一本一本久久a久久精品综合妖精| 国产精品秋霞免费鲁丝片| 9热在线视频观看99| 国产一区二区三区综合在线观看| 国产成人啪精品午夜网站| 欧美 日韩 精品 国产| 黄频高清免费视频| 久久 成人 亚洲| avwww免费| 美女主播在线视频| 亚洲精品成人av观看孕妇| 国产精品自产拍在线观看55亚洲| 黑人欧美特级aaaaaa片| 一区福利在线观看| 97超级碰碰碰精品色视频在线观看| 在线观看66精品国产| 久久久国产精品麻豆| 亚洲国产精品久久男人天堂| 色在线成人网| 女警被强在线播放| 国产乱人伦免费视频| 国产亚洲欧美在线一区二区| 国产aⅴ精品一区二区三区波| 色哟哟哟哟哟哟| 免费看美女性在线毛片视频| 亚洲色图综合在线观看| 91麻豆精品激情在线观看国产| 极品人妻少妇av视频| 国产精品98久久久久久宅男小说| 国产亚洲精品久久久久5区| 久久国产精品人妻蜜桃| 欧美av亚洲av综合av国产av| 三级毛片av免费| 老司机在亚洲福利影院| 丝袜美腿诱惑在线| 日日夜夜操网爽| av在线播放免费不卡| 在线观看日韩欧美| av免费在线观看网站| 一个人免费在线观看的高清视频| 人人澡人人妻人| 啦啦啦免费观看视频1| 午夜精品久久久久久毛片777| 岛国在线观看网站| 亚洲中文av在线| 久久伊人香网站| 亚洲伊人色综图| 日韩高清综合在线| 亚洲色图av天堂| 亚洲狠狠婷婷综合久久图片| 日韩大尺度精品在线看网址 | 看免费av毛片| 亚洲第一av免费看| 国产麻豆69| 亚洲欧美日韩另类电影网站| 久久中文字幕人妻熟女| 久久 成人 亚洲| 国产精品久久久人人做人人爽| 99久久精品国产亚洲精品| 欧美成人午夜精品| 69av精品久久久久久| 精品高清国产在线一区| 亚洲av成人av| 级片在线观看| 亚洲第一av免费看| 亚洲免费av在线视频| 国产一级毛片七仙女欲春2 | 人人澡人人妻人| 一a级毛片在线观看| 国产国语露脸激情在线看| 精品不卡国产一区二区三区| 欧美激情高清一区二区三区| 丝袜美足系列| 黄色视频不卡| 国产日韩一区二区三区精品不卡| 国产高清激情床上av| 日本vs欧美在线观看视频| 国产亚洲av高清不卡| 国产亚洲精品久久久久5区| 一级毛片精品| 亚洲熟妇中文字幕五十中出| 美女扒开内裤让男人捅视频| 亚洲国产毛片av蜜桃av| 非洲黑人性xxxx精品又粗又长| 久久精品91蜜桃| av视频在线观看入口| 久久久久久久久中文| 深夜精品福利| 精品第一国产精品| 婷婷六月久久综合丁香| 国产精品久久电影中文字幕| 日韩 欧美 亚洲 中文字幕| 三级毛片av免费| 精品国产超薄肉色丝袜足j| 日韩av在线大香蕉| 搞女人的毛片| 亚洲九九香蕉| 国产成人精品久久二区二区免费| 一二三四社区在线视频社区8| 国内久久婷婷六月综合欲色啪| 亚洲自拍偷在线| 国产国语露脸激情在线看| 一区二区三区激情视频| 最近最新免费中文字幕在线| 亚洲午夜精品一区,二区,三区| 天天添夜夜摸| 精品久久久久久久人妻蜜臀av | 亚洲国产精品久久男人天堂| 国产精品香港三级国产av潘金莲| 国产精品亚洲av一区麻豆| 日韩免费av在线播放| 桃红色精品国产亚洲av| 欧美成人午夜精品| 国产成人影院久久av| 成人国产综合亚洲| cao死你这个sao货| 搞女人的毛片| 性色av乱码一区二区三区2| 亚洲av片天天在线观看| 露出奶头的视频| 精品国内亚洲2022精品成人| 国产一区二区三区综合在线观看| 日韩大尺度精品在线看网址 | 色播在线永久视频| 91成年电影在线观看| 中文字幕久久专区| 亚洲第一青青草原| 成人18禁高潮啪啪吃奶动态图| 亚洲精品久久成人aⅴ小说| 久久久国产成人精品二区| 国产精品影院久久| 精品一区二区三区四区五区乱码| 日韩精品青青久久久久久| 久久久国产成人免费| 亚洲五月色婷婷综合| 欧美成人性av电影在线观看| 亚洲一区中文字幕在线| 亚洲黑人精品在线| 美女国产高潮福利片在线看| 69av精品久久久久久| 欧美 亚洲 国产 日韩一| 嫩草影院精品99| 中文字幕av电影在线播放| 91精品三级在线观看| 久久人妻av系列| 男女做爰动态图高潮gif福利片 | 一级a爱片免费观看的视频| 性少妇av在线| 色在线成人网| 中出人妻视频一区二区| 国产xxxxx性猛交| 国产单亲对白刺激| 搡老岳熟女国产| 国产精品亚洲av一区麻豆| 午夜免费成人在线视频| av片东京热男人的天堂| 97碰自拍视频| 日韩一卡2卡3卡4卡2021年| 嫩草影视91久久| 别揉我奶头~嗯~啊~动态视频| 亚洲精品在线美女| 男人操女人黄网站| 午夜精品国产一区二区电影| 精品国产一区二区久久| 黑人巨大精品欧美一区二区蜜桃| 性少妇av在线| 天天躁狠狠躁夜夜躁狠狠躁| 大码成人一级视频| av欧美777| 亚洲男人的天堂狠狠| 亚洲国产看品久久| √禁漫天堂资源中文www| 一a级毛片在线观看| 精品午夜福利视频在线观看一区| 午夜a级毛片| 亚洲avbb在线观看| 国产精品久久久久久精品电影 | 午夜两性在线视频| 欧美乱妇无乱码| 精品国产超薄肉色丝袜足j| 国产精华一区二区三区| 999精品在线视频| tocl精华| 女人被躁到高潮嗷嗷叫费观| 午夜老司机福利片| 最好的美女福利视频网| 大码成人一级视频| 久久精品aⅴ一区二区三区四区| 国产激情久久老熟女| 亚洲精品久久成人aⅴ小说| 亚洲avbb在线观看| 亚洲激情在线av| 制服人妻中文乱码| 亚洲精品美女久久av网站| 精品国内亚洲2022精品成人| 亚洲无线在线观看| 国产免费男女视频| 夜夜爽天天搞| 久久香蕉精品热| 午夜福利视频1000在线观看 | 两人在一起打扑克的视频| 国产男靠女视频免费网站| 两人在一起打扑克的视频| 国产野战对白在线观看| 色综合欧美亚洲国产小说| 免费高清视频大片| 91精品国产国语对白视频| 亚洲精品国产精品久久久不卡| 中文字幕av电影在线播放| 亚洲无线在线观看| 又黄又粗又硬又大视频| 夜夜爽天天搞| 激情视频va一区二区三区| 国产av又大| 99久久久亚洲精品蜜臀av| 一进一出抽搐动态| 精品久久久久久,| 亚洲欧美精品综合久久99| 国产精品香港三级国产av潘金莲| 亚洲欧洲精品一区二区精品久久久| 亚洲成人国产一区在线观看| 日韩大尺度精品在线看网址 | 又黄又爽又免费观看的视频| 亚洲精品久久国产高清桃花| 亚洲国产欧美日韩在线播放| 亚洲欧美激情综合另类| 日本欧美视频一区| 亚洲欧洲精品一区二区精品久久久| 国产精品,欧美在线| 91老司机精品| 90打野战视频偷拍视频| 欧美 亚洲 国产 日韩一| 69av精品久久久久久| 变态另类成人亚洲欧美熟女 | 免费看a级黄色片| 久久精品国产99精品国产亚洲性色 | 亚洲精品中文字幕一二三四区| 久久久久国产精品人妻aⅴ院| 久久亚洲真实| 精品国产亚洲在线| 人人妻人人澡人人看| 男女午夜视频在线观看| 亚洲成国产人片在线观看| 美女免费视频网站| 日韩欧美国产在线观看| 变态另类丝袜制服| 国产精品亚洲美女久久久| 99国产精品一区二区蜜桃av| 中文亚洲av片在线观看爽| 国产欧美日韩一区二区精品| 99国产极品粉嫩在线观看| 99久久综合精品五月天人人| 1024香蕉在线观看| 亚洲色图综合在线观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美国产精品va在线观看不卡| 露出奶头的视频| 一级毛片精品| 男女之事视频高清在线观看| 又黄又爽又免费观看的视频| 51午夜福利影视在线观看| 香蕉久久夜色| 国产精品久久视频播放| 不卡一级毛片| 日本撒尿小便嘘嘘汇集6| 中文字幕人成人乱码亚洲影| 最近最新中文字幕大全电影3 | 欧美成人性av电影在线观看| 亚洲欧美激情在线| 美女 人体艺术 gogo| 97人妻精品一区二区三区麻豆 | 中文字幕高清在线视频| 满18在线观看网站| 久久久久久免费高清国产稀缺| 久久久国产成人免费| 欧美日本亚洲视频在线播放| 中国美女看黄片| 夜夜看夜夜爽夜夜摸| 国产精品美女特级片免费视频播放器 | 精品欧美国产一区二区三| 老熟妇仑乱视频hdxx| 国产区一区二久久| 黄色女人牲交| 久久国产亚洲av麻豆专区| 久久人妻熟女aⅴ| 一级黄色大片毛片| 人人妻人人澡人人看| 亚洲第一av免费看| 久久久久久久久免费视频了| 黑丝袜美女国产一区| 9热在线视频观看99| 香蕉国产在线看| 日本五十路高清| 美女扒开内裤让男人捅视频| 亚洲av成人av| 国产免费男女视频| 男人的好看免费观看在线视频 | 免费在线观看影片大全网站| 国产成人欧美在线观看| 91麻豆精品激情在线观看国产| 国产精品野战在线观看| 亚洲一码二码三码区别大吗| 精品国产亚洲在线| 十分钟在线观看高清视频www| 两个人免费观看高清视频| 欧美最黄视频在线播放免费| 性色av乱码一区二区三区2| 亚洲人成网站在线播放欧美日韩| 精品一区二区三区四区五区乱码| 久热这里只有精品99| 窝窝影院91人妻| 51午夜福利影视在线观看| 夜夜看夜夜爽夜夜摸| 精品一区二区三区四区五区乱码| 久热这里只有精品99| 亚洲精品av麻豆狂野| 男女之事视频高清在线观看| 日本黄色视频三级网站网址| 桃色一区二区三区在线观看| 国产免费av片在线观看野外av| 国产精品电影一区二区三区| 两个人视频免费观看高清| 妹子高潮喷水视频| 国产单亲对白刺激| 亚洲久久久国产精品| 国产伦一二天堂av在线观看| 黄片大片在线免费观看| 国产亚洲精品第一综合不卡| 成人18禁高潮啪啪吃奶动态图| 亚洲狠狠婷婷综合久久图片| 黑人巨大精品欧美一区二区mp4| 国产麻豆成人av免费视频| 午夜福利欧美成人| 日日夜夜操网爽| 大型av网站在线播放| 老司机靠b影院| 亚洲欧美精品综合久久99| 99国产精品免费福利视频| 熟妇人妻久久中文字幕3abv| 香蕉国产在线看| 在线视频色国产色| 精品国产乱子伦一区二区三区| 久久人妻熟女aⅴ| 国产午夜福利久久久久久| 亚洲一区高清亚洲精品| 99精品欧美一区二区三区四区| 国产精品亚洲美女久久久| 禁无遮挡网站| 国产成人系列免费观看| 精品国产乱子伦一区二区三区| 一夜夜www| 丝袜在线中文字幕| 成熟少妇高潮喷水视频| 亚洲精品国产精品久久久不卡| 亚洲午夜精品一区,二区,三区| av福利片在线| 婷婷六月久久综合丁香| 亚洲av片天天在线观看| a在线观看视频网站| 亚洲少妇的诱惑av| 9色porny在线观看| 一夜夜www| 每晚都被弄得嗷嗷叫到高潮| 校园春色视频在线观看| 黄色视频不卡| 亚洲精品一卡2卡三卡4卡5卡| 美女 人体艺术 gogo| 他把我摸到了高潮在线观看| 女人爽到高潮嗷嗷叫在线视频| 午夜免费激情av| 欧美av亚洲av综合av国产av| 啦啦啦观看免费观看视频高清 | 国产成人欧美| 精品久久久久久成人av| 久久久久久久午夜电影| 久热爱精品视频在线9| 99久久精品国产亚洲精品| 日韩欧美三级三区| 久久精品亚洲熟妇少妇任你| 别揉我奶头~嗯~啊~动态视频| 午夜a级毛片| 精品卡一卡二卡四卡免费| 国产成人影院久久av| 无遮挡黄片免费观看| 怎么达到女性高潮| 日韩av在线大香蕉| 乱人伦中国视频| 制服人妻中文乱码| 18禁美女被吸乳视频| 欧美一区二区精品小视频在线| 日本三级黄在线观看| 亚洲狠狠婷婷综合久久图片| 精品国产亚洲在线| 国产亚洲欧美精品永久| 国产精品九九99| 国语自产精品视频在线第100页| 久久这里只有精品19| 日韩欧美三级三区| 色老头精品视频在线观看| 美女 人体艺术 gogo| 国产精品免费一区二区三区在线| 99国产精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 男女做爰动态图高潮gif福利片 | 亚洲中文av在线| 在线观看免费视频日本深夜| 亚洲成国产人片在线观看| 国产黄a三级三级三级人| av免费在线观看网站| 久久久久久亚洲精品国产蜜桃av| 日本精品一区二区三区蜜桃| 亚洲国产精品合色在线| 久久久精品国产亚洲av高清涩受| 欧美黄色片欧美黄色片| 亚洲午夜精品一区,二区,三区| 极品人妻少妇av视频| 91精品三级在线观看| 欧美精品亚洲一区二区| 国产亚洲欧美98| 99国产精品免费福利视频| 777久久人妻少妇嫩草av网站| 女人精品久久久久毛片| 变态另类丝袜制服| 一边摸一边做爽爽视频免费| 婷婷丁香在线五月| 免费高清在线观看日韩| 亚洲一区二区三区色噜噜| 日本三级黄在线观看| 国产亚洲精品久久久久5区| 18禁观看日本| 亚洲情色 制服丝袜| 母亲3免费完整高清在线观看| 村上凉子中文字幕在线|