• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Zemax-Based Optimum Structural Design of Probe of an Optical-Fiber Sensor

    2018-05-25 06:39:42,,,
    關(guān)鍵詞:規(guī)范化程度矩陣

    , , , ,

    Meteorological Oceanographic College,National University of Defense Technology,Nanjing 211101,P.R.China

    0 Introduction

    Air-sea flux is an important parameter for large-scale atmospheric dynamics,such as air-sea interaction,global climate change,ocean circulation,hurricane development,generation of ocean waves,mixing layers,and the seasonal thermocline.In recent years,because of further research on the ocean surface and lower-atmosphere biogeochemistry coupled with physical processes,air-sea flux has become important also for marine biologists,water chemists,and physical oceanographers[1].During the process of air-sea exchange,bubble plumes entrained by the breaking waves play vital roles in generating sea-salt aerosol and wave acoustics and in forming particulate matter and seston[2].Therefore,there is much interest in the mechanism whereby bubble plumes are entrained by breaking waves.Projects such as International Global Atmospheric Chemistry,the Joint Global Ocean Flux Study,and the Surface Ocean and Lower Atmosphere Study are interested specifically in air-sea interaction,making it a major part of their research.

    Currently,the main ways to observe bubble plumes involve imaging,acoustics,and probes[3].Imaging is the most intuitive method,but it becomes prohibitively expensive when attempting to capture plumes processes that require millisecond time resolution or that are widely distributed[4].Acoustic methods are better in the latter case but do not have sufficient spatial resolution to capture any micron-sized features in bubble plumes[5-6].In recent years,optical-fiber probe(OFP)technology has come into widespread use.It is the best way to observe bubble-plume entrainment by breaking waves precisely on millisecond time scales and micron length scales.Serdula,et al[7]and Rojas,et al[8]pioneered the use of single-tip OFPs to observe large-diameter bubbles generated in a wave tank.Blenkinsopp and Chaplin[9-10]then used an improved dual-tip OFP (DT-OFP)to observe large bubble plumes in a wave tank.However,there is much scope for improving current OFP technology in relation to its performance and structure.In particular,because of its superior optical,mechanical,and chemical properties,sapphire optical fiber is coming into use for measuring two-phase flows[11].Hence,we propose herein a sapphire-based DT-OFP,focusing mainly on its two probe tips(PTs)and how to match them in a single probe.We use the Zemax optical design software to optimize the design with respect to the working performance of the DT-OFP.

    1 Theory for Measuring Bubble Parameters with Optical-Fiber Probe

    Fig.1 Theory of bubble recognition through OFP technology

    Based on total internal reflection and light refraction,OFP technology can be used to measure bubble parameters as shown schematically in Fig.1.This involves an incident ray I(of ray intensityP),a PT cone angleα,and the refractive indices of the probe,bubble,and water(n0,ng,andnw,respectively).The intensity of the ray reflected from the PT differs according to whether the PT is submerged in water or has pierced a bubble.When the PT pierces a bubble,total internal reflection arises when the incident ray arrives at the probe/air interface.By contrast,when the PT is submerged in water,refraction takes place because the refractive index of water exceeds that of the PT.With regard to detecting bubbles in two-phase flows,the higher-intensity ray reflected from the PT when it pierces a bubble causes a higher signal level in the sensor.By contrast,the lower-intensity ray reflected from the PT when it is submerged in water causes a lower signal level in the sensor[12].The different signals generated by the sensor are shown in Fig.2(a).In Fig.2(a),t1—t4are the time when the probe tip(PT)touches the bubble surface andUis the output voltage of optical-electrical converter versus timet.

    Fig.2 Theoretical basis for DT-OFP

    The theoretical basis for using a DT-OFP to measure bubbles entrained by a breaking wave is shown schematically in Fig.2(b).Assuming that the bubbles move at a constant speed (regardless of any bubble deformation or sideways movement),the bubble velocity can be calculated as follows[13]

    wherevaandvbare the bubble velocities when the PT penetrates the upper and lower surfaces,respectively,andLis the difference in vertical position between the two PTs.

    The chord lengthlaof the bubble can be calculated from the bubble velocityvas follows

    It is necessary to apply a statistical correction to calculate the equivalent bubble size distribu-tion[9],from which the probability density function of bubble diameter can be analyzed.

    To estimate the void fractionβin a twophase flow,we use Eq.(3)

    whereTgis the bubble residence time at the PT,Tthe total sampling duration,andNgthe number of bubbles recorded in timeT.

    2 Model for Probe Tip

    An OFP sensor consists of two main parts,namely the PT and the photoelectric conversion module.However,the sensor performance is affected most by the PT.Therefore,to optimize the design in relation to material,shape,and PT cone angle,we use the Zemax optical design software to simulate the PT.The PT optimization is aimed at rising the intensity of the ray reflected from the PT and reducing the coupling loss during optical transmission.There are several optimization procedures including establishing models,optimizing light path and structure parameters.

    Depending on the non-sequential pattern in Zemax[14],we perform ray-tracing simulations of the light transmission inside the PT.We begin by defining the components of the system as a radial source,a detector,an optical fiber,a PT,a bubble(spherical in this case)and a water tank.Then,based on practical application,we set the radial-source output efficiency to 3.75mW and the OFP outer-layer and inner-transmission materials to LZ_NEWGLASS and SILICA(Zemax settings),respectively.We set the PT material as Al2O3initially and its shape as conical(Further optimization of the PT would be discussed later).The PT ray-tracing simulation model is shown in Fig.3,in which the slender rectangle with a conical head represents the OFP,the circle represents a bubble,the bigger rectangle on the right of the model represents the water tank,and the blue solid lines are the rays traced by the software.

    Finally,we use this model to analyze the in-tensity of the PT-reflected ray under different system conditions.A flowchart of the ray-tracing method is shown in Fig.4.

    步驟5 已知規(guī)范化綜合影響矩陣NTDI=(ntdiny)N×N和超矩陣RI=(riny)N×N,其中(ntdi1y,ntdi2y,,ntdiNy)T表征其他指標對指標cy的相對影響程度,(ri1y,ri2y,,riNy)T表征其他指標相較于指標cy的相對重要程度,且與構(gòu)建新的加權(quán)超矩陣W=(wny)N×N,

    Fig.4 Flowchart for ray-tracing simulation of light transmission inside PT

    First,it is necessary to determine whether the PT can distinguish between bubbles and water in a two-phase flow,namely whether the corresponding difference in reflected ray intensity is sufficiently large.To assess this,we use the parameters of total power and peak irradiance(The peak irradiance is the maximum illuminance intensity per unit area projected in a specific direction).With the PT submerged in water,we obtain 8.335×10-5W for the reflected ray intensity and 1.1W/cm2for the peak irradiance.By contrast,we obtain 2.149×10-4W and 1.6W/cm2,seperately,with the PT inside the bubble.Ac-cordingly,the reflected ray intensity is higher by one order of magnitude when the PT pierces the bubble.Therefore,the PT is indeed capable of detecting bubbles.

    3 Optimum Design of Probe Tip

    3.1 Optimum choice of material

    We use sapphire as the PT material,while other common PT materials are quartz,glass,and plastic.Holding all other parameters fixed,we set the PT material as AL2O3,BK7,PMMA,and SILICA.We run the simulation in each case and plot the peak irradiance in Fig.5using the Origin data-analysis software.In Fig.5,X-Yplane represents area of ray detector in simulation model,Z-coordinate represents illuminance intensity,three-dimensional graphics represent the illuminance intensity of each point on the ray detector,and the peak irradiance is the highest for the sapphire PT.

    Fig.5 Illuminance for different PT materials

    The calculated values of peak irradiance and intensity are listed in Table 1and plotted in Fig.6.The sapphire PT clearly performs best.From the illuminance data,we see that the irradiance is the highest in the center of the detector for each PT material and decreases toward the edge.In principle,each type of PT is capable of detecting bubbles.However,glass,plastic,and quartz PTs have certain inherent limitations.We list their advantages and disadvantages in Table 2.

    Compared with the other three types of PT,the sapphire PT has better optical characteristics,good chemical stability and thermal tolerance.It is resistant to acidic and caustic corrosion,and is free from environmental impact.Considering thesimulation results and the practical working environment,we deem the sapphire PT to have the best performance.Consequently,we choose sapphire as the PT material for marine applications.

    Table 1 Peak irradiance and intensity for different probetip materials

    Fig.6 Peak irradiance and intensity for different PT materials

    Table 2 Advantages and disadvantages of glass,plastic,and quartz probe tips

    3.2 Optimum shape of probe tip

    After chosing sapphire as the PT material,we must optimize the PT shape to improve the working performance further.Considering that a PT in actual use affects the surrounding flow,we are guided by the literature to analyze the following PT shapes:Conical,spherical,spherical conical,parabolic,and ellipsoidal.

    We use the standard-lens method to set up ray-tracing simulation models for the PTs of various shapes.In Zemax,the standard-lens coordinate formula is expressed as

    wherecis the curvature,xthe abscissa value,andkthe conic coefficient.Fork= 0,the PT shape is either spherical or conical.Fork=-1,the PT shape is a paraboloid,and fork<-1the PT shape is a hyperboloid.For-1<k< 0,the PT shape is ellipsoidal.

    In the simulation models,we adjust the standard-lens parameters of thickness,radius,and conic coefficient to get the various aforementioned PT shapes.We then run 106ray-tracing simulations for each shape,the results of which are shown in Fig.7,where the blue lines represent the rays traced by the software.

    Fig.7 Side views of ray-tracing simulations for the PTs of various shapes

    Fig.9shows the intensity and peak irradiance for each PT shape,in which the conical PT clearly gives the best performance and the sphericalcone PT gives the worst.

    Analyzing the illuminance for the differently shaped PTs shows that the irradiance is the highest at the center of the detector in each case and decreases to almost zero at the edge.Furthermore,the illuminance distributions for the various PT shapes are similar.As shown in Fig.8,higher illuminance is recorded for the conical and ellipsoid PTs compared to the other shapes.However,for the conical PT,the illuminance is most obviously concentrated at the center of the detector and the peak irradiance is the highest.By contrast,the peak irradiance is the lowest for the spherical-cone PT.Equivalently,the intensity is the highest for the conical PT and the lowest for the spherical-cone PT.Consequently,we decided a cone to be the best PT shape for marine applications.

    Fig.8 Illuminance for the PTs of various shapes

    Fig.9 Peak irradiance and intensity for the differently shaped PTs

    3.3 Optimum design of probe-tip cone angle

    Based on the theory in Section 2for recognizing bubbles using OFP technology,the incident ray is influenced by the cone angle,thus affecting the intensity and illuminance distribution received by the detector.Hence,to improve the PT detection sensitivity,we should determine the optimum cone angle.We do so in this section,using Zemax again to further optimize the PT.

    In Section 2,we set the OFP radius to 0.3mm in the simulation model.So,we only need to adjust the PT length for controlling the cone angle and hence to ascertain the optimum value(or range of values)of the cone angle according to the simulation results.Considering the OFP fabrication process,we investigate the coneangle range of 30°—90°.The PT lengths corresponding to various cone angles (in 5°intervals)in this range are calculated geometrically and listed in Table 3.

    We need to adjust only the PT length while keeping the other parameters unchanged,similar to optimizing the PT shape.For the conical PT,the peak irradiance and intensity received by the detector are shown in Fig.10for the different cone angles.

    From Fig.10,the intensity slowly decreasesinitially with cone angle,reaching a minimum around65°.It then begins to rise rapidly at roughly 70°,reaching a maximum around 80°.If we consider the simulation results only,the best performance should be achieved with a PT cone angle of 80°.However,given the practical working environment,the bubbles in the plumes entrained by the breaking waves could be any shape or size.The smaller the PT angle is,the more easily the PT pierces the bubbles,thus improving the sensitivity and accuracy of the PT and making it easier to detect smaller bubbles.Given that Fig.10 shows a relatively high intensity for a cone angle of 35°,we choose this value for our conical PT.

    Table 3 Relationship between probe-tip length and cone angle

    Fig.10 Peak irradiance and intensity for conical PT with different cone angles

    From the simulation results,the intensity of the reflected ray received by the detector is of the order of 10μW.Hence,we choose the OPT101 optical-electrical converter for the OFP sensor because it is a monolithic photodiode with an onchip transimpedance amplifier.The OPT101output voltageVoutis calculated as

    whereIDis the photodiode current,RFan inter-nal feedback resistance of 1MΩ,andVBapedestal voltage of approximately 7.5mV.Using this resistance,the photodiode responsivity is approximately 0.5A/W at a wavelength of 940nm.Hence,we calculate a theoretical output voltage of approximately 3.6Vbased on the simulation results.

    We then establish the OFP sensor using OPT101and the optimally designed OFP tip with a conical sapphire tip of cone angle 35°.The detection system of the OFP sensor is shown in Fig.11and a picture of the sapphire OFP is shown in Fig.12.The OPT101is powered by a regulated power supply,and the output voltage as measured by a multimeter is 3.2—4.5V.The test results are subject to two major uncertainties:The output power of the infrared laser fluctuates around the set value,and the OPT101is sensitive to the ambient lighting.When the output power of the infrared laser is lower(higher)than the set value and the ambient lighting is weak (strong),the minimum (maximum)OPT101output voltage is 3.2V (4.5V),and the theoretical value lies in this range of output voltage.Note that we obtained the peak irradiance and intensity of the optimized OFP by simulation to choose an appropriate optical-electrical converter.As long as the experimental and theoretical values are of the same order of magnitude,the experimental out-put value can be used to process signal as input signal of microcontroller.Therefore,the test results are reasonable considering the influence of the external environment and the measurement error of the experimental apparatus.

    Fig.11 Detection system of the OFP sensor

    Fig.12 Sapphire OFP

    4 Conclusions

    In this paper,after analyzing the limitations of the existing OFPs regarding their optical and mechanical properties,we demonstrated that the optimum OFP design is the conical sapphire tip with a cone angle of 35°.According to Zemax,an OFP of this design could be used to observe bubble plumes entrained by breaking waves.We then tested a bespoke OFP sensor and obtained results that were consistent with those predicted theoretically.

    However,several shortcomings must be considered.For example,we optimized the structure of only one PT of a DT-OFP without considering the overall operating efficiency of the two PTs.When using a DT-OFP to detect bubble plumes,the simulation results obtained herein would be applied as if the probe had a single PT.In addition,the spatial distribution of the two PTs of the DT-OFP requires further simulation and testing.Hence,future work should concentrate on optimizing the integrated design of the DT-OFP.Furthermore,the present simulation results could be considered to apply to a multiple-tip OFP as well.

    [1] ZHANG Shuwen.Air bubble entrainment by breaking waves and estimation of the related statistical quantities[J].Acta Physica Sinica,2008,57(5):3287-3292.

    [2] LI Xinming.The air bubbles in the sea and their significance in physical oceanography[J].Transactions of Oceanology and Limnology,1984(3):987-991.

    [3] FERREIRA L F,ANTUNES P,DOMINGUES F,et al.Monitoring of sea bed level changes in nearshore regions using fiber optic sensors[J].Measurement,2012,45(6):1527-1533.

    [4] CAO Ruixue.Measurement and analysis of bubbles in ocean surface layer and sub-surface layer[D].Beijing:Institute of Oceanography,Chinese Academy of Sciences,2006.

    [5] TERRILL E J,MELVILLE W K.A broadband acoustic technique for measuring bubble size distributions:laboratory and shallow water measurements[J].Journal of Atmospheric & Oceanic Technology,2000,17(2):220.

    [6] WU X J,CHAHINE G L.Development of an acoustic instrument for bubble size distribution measurement[C]∥ Proceedings of the 9th International Conference on Hydrodynamics.Shanghai,China:China Ocean Press,2010:330-336.

    [7] SERDULA C D,LOEWEN M R.Experiments investigating the use of fiber-optic probes for measuring bubble-size distributions[J].IEEE Journal of O-ceanic Engineering,1998,23(4):385-399.

    [8] ROJAS G,LOEWEN M R.Fiber-optic probe measurements of void fraction and bubble size distributions beneath breaking waves [J].Experiments in Fluids,2007,43(6):895-906.

    [9] BLENKINSOPP C E,CHAPLIN J R.Bubble size measurements in breaking waves using optical fiber phase detection probes[J].IEEE Journal of Oceanic Engineering,2010,35(2):388-401.

    [10]BLENKINSOPP C E,CHAPLIN J R.Void fraction measurements and scale effects in breaking waves in freshwater and seawater [J].Coastal Engineering,2011,58(5):417-428.

    [11]RAHMAN M A,HEIDRICK T,F(xiàn)LECK B A.A critical review of advanced experimental techniques to measure two-phase gas/liquid flow [J].Open Fuels& Energy Science Journal,2009,2(1):54-70.

    [12]YU Lina,DU Shengxue,LI Yingwei.Study on measurement method of gas holdup of oil-gas-water three phase flow based on sapphire optical fiber probe[J].Well Logging Technology,2014,38(2):139-143.

    [13]LIU Feng,LIU ZHihua,ZHENG Junjie.Methodology of an improved technique for the bubble size measure in breaking waves using dual-tip optical fiber probe[J].Chinese Journal of Hydrodynamics,2013,28(3):283-290.

    [14]KANG Jing.Research on structure optimization of array optical fiber probe sensor in oil well[D].Qinhuangdao:Yanshan University,2014.

    猜你喜歡
    規(guī)范化程度矩陣
    男女身高受歡迎程度表
    意林(2021年2期)2021-02-08 08:32:47
    價格認定的規(guī)范化之路
    商周刊(2017年23期)2017-11-24 03:24:09
    初等行變換與初等列變換并用求逆矩陣
    矩陣
    南都周刊(2015年4期)2015-09-10 07:22:44
    矩陣
    南都周刊(2015年3期)2015-09-10 07:22:44
    矩陣
    南都周刊(2015年1期)2015-09-10 07:22:44
    狂犬?、蠹壉┞兑?guī)范化預(yù)防處置實踐
    高血壓病中醫(yī)規(guī)范化管理模式思考
    滿足全科化和規(guī)范化的新要求
    斷裂對油氣富集程度的控制作用
    斷塊油氣田(2014年6期)2014-03-11 15:33:53
    久久久久久伊人网av| 久久国内精品自在自线图片| 亚洲精品456在线播放app| 免费黄频网站在线观看国产| 黄色一级大片看看| av播播在线观看一区| 伦理电影免费视频| 一二三四在线观看免费中文在 | 十八禁网站网址无遮挡| 午夜av观看不卡| 精品久久蜜臀av无| 女性被躁到高潮视频| 久久精品国产a三级三级三级| 狂野欧美激情性bbbbbb| 交换朋友夫妻互换小说| 在线精品无人区一区二区三| 亚洲欧美色中文字幕在线| 久久毛片免费看一区二区三区| 高清视频免费观看一区二区| 亚洲av电影在线进入| 亚洲精品视频女| 日本av免费视频播放| 久久久久久伊人网av| 欧美少妇被猛烈插入视频| 啦啦啦视频在线资源免费观看| 精品卡一卡二卡四卡免费| 美女国产高潮福利片在线看| 99热6这里只有精品| 丝瓜视频免费看黄片| 日韩电影二区| 两个人免费观看高清视频| 久久精品aⅴ一区二区三区四区 | 激情五月婷婷亚洲| 国产亚洲最大av| 一二三四中文在线观看免费高清| 国语对白做爰xxxⅹ性视频网站| 欧美精品av麻豆av| 777米奇影视久久| 久久99热这里只频精品6学生| 青春草亚洲视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片电影观看| 免费观看性生交大片5| 最近中文字幕高清免费大全6| 成人18禁高潮啪啪吃奶动态图| 久久久久精品久久久久真实原创| 国产精品秋霞免费鲁丝片| 久久精品久久精品一区二区三区| 国产深夜福利视频在线观看| 免费看光身美女| 香蕉国产在线看| 亚洲情色 制服丝袜| 一二三四在线观看免费中文在 | 亚洲人成77777在线视频| 制服诱惑二区| 日韩制服骚丝袜av| 毛片一级片免费看久久久久| 久久精品国产a三级三级三级| 久久女婷五月综合色啪小说| 国产成人免费观看mmmm| av不卡在线播放| 欧美精品高潮呻吟av久久| 肉色欧美久久久久久久蜜桃| 亚洲综合色网址| 热99国产精品久久久久久7| 午夜福利视频在线观看免费| 伊人亚洲综合成人网| 黑人猛操日本美女一级片| 一二三四在线观看免费中文在 | 大码成人一级视频| 免费日韩欧美在线观看| 少妇的逼水好多| freevideosex欧美| 亚洲欧美日韩卡通动漫| 国产乱人偷精品视频| 老司机影院毛片| www.色视频.com| 一区二区三区乱码不卡18| 丁香六月天网| 天天操日日干夜夜撸| 国产男女内射视频| 欧美xxxx性猛交bbbb| 国产又色又爽无遮挡免| 国产一区二区在线观看日韩| 春色校园在线视频观看| 精品视频人人做人人爽| 只有这里有精品99| 亚洲婷婷狠狠爱综合网| 新久久久久国产一级毛片| 黑丝袜美女国产一区| 亚洲综合色惰| 亚洲人与动物交配视频| 在线天堂中文资源库| 成人国产麻豆网| 亚洲国产最新在线播放| 国产av一区二区精品久久| 亚洲精品视频女| 黄片播放在线免费| 中文字幕制服av| 亚洲人成77777在线视频| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品久久久com| 国产精品久久久av美女十八| 边亲边吃奶的免费视频| 欧美日韩视频高清一区二区三区二| 超碰97精品在线观看| 捣出白浆h1v1| 爱豆传媒免费全集在线观看| 国产精品熟女久久久久浪| 午夜福利乱码中文字幕| 如日韩欧美国产精品一区二区三区| 一区二区三区四区激情视频| 亚洲伊人色综图| 免费观看av网站的网址| 制服人妻中文乱码| 涩涩av久久男人的天堂| 天天躁夜夜躁狠狠久久av| 中国国产av一级| 亚洲精品中文字幕在线视频| 美女脱内裤让男人舔精品视频| 国产精品人妻久久久影院| 中文乱码字字幕精品一区二区三区| 在线观看免费视频网站a站| 亚洲精品乱码久久久久久按摩| 在线观看国产h片| 欧美3d第一页| 日本免费在线观看一区| 青春草亚洲视频在线观看| 国产欧美日韩一区二区三区在线| 在线看a的网站| 狂野欧美激情性xxxx在线观看| 免费看av在线观看网站| 香蕉丝袜av| 精品久久国产蜜桃| 欧美成人午夜免费资源| 亚洲精品日韩在线中文字幕| 好男人视频免费观看在线| 丝袜喷水一区| 亚洲熟女精品中文字幕| 中文乱码字字幕精品一区二区三区| 国产不卡av网站在线观看| 亚洲美女黄色视频免费看| 一二三四中文在线观看免费高清| 成年动漫av网址| 一区二区三区精品91| 啦啦啦视频在线资源免费观看| 乱码一卡2卡4卡精品| 天天操日日干夜夜撸| 青青草视频在线视频观看| 国产爽快片一区二区三区| 天堂中文最新版在线下载| 免费av中文字幕在线| 亚洲精品中文字幕在线视频| 男女下面插进去视频免费观看 | 99国产综合亚洲精品| 2018国产大陆天天弄谢| 亚洲人与动物交配视频| videos熟女内射| 亚洲精品一二三| 亚洲av电影在线进入| 汤姆久久久久久久影院中文字幕| 桃花免费在线播放| 欧美国产精品一级二级三级| av电影中文网址| 国产精品一区www在线观看| 国产成人欧美| 亚洲欧美精品自产自拍| 久久 成人 亚洲| 国产高清三级在线| 少妇被粗大猛烈的视频| 亚洲欧美一区二区三区国产| 99视频精品全部免费 在线| 欧美另类一区| 精品亚洲乱码少妇综合久久| 一区二区三区精品91| 亚洲在久久综合| 成人国产麻豆网| 亚洲国产色片| 国产一区二区激情短视频 | 国产精品久久久久久av不卡| 午夜视频国产福利| 国产成人免费观看mmmm| 一边摸一边做爽爽视频免费| 亚洲第一区二区三区不卡| 国产精品一区二区在线不卡| 日日啪夜夜爽| 制服丝袜香蕉在线| 热re99久久国产66热| 秋霞伦理黄片| 国产麻豆69| 欧美xxxx性猛交bbbb| 性高湖久久久久久久久免费观看| 多毛熟女@视频| 热re99久久精品国产66热6| 成人亚洲欧美一区二区av| av一本久久久久| 18禁动态无遮挡网站| 满18在线观看网站| 午夜免费鲁丝| 日韩一区二区视频免费看| 五月伊人婷婷丁香| 丝袜脚勾引网站| 久久久久国产网址| 国产精品一区二区在线不卡| 日韩视频在线欧美| 菩萨蛮人人尽说江南好唐韦庄| 精品一区二区三区视频在线| 亚洲成色77777| 男女国产视频网站| 91成人精品电影| 国产黄频视频在线观看| 亚洲国产精品成人久久小说| 国产男女超爽视频在线观看| 制服人妻中文乱码| 免费人成在线观看视频色| 成人黄色视频免费在线看| 色婷婷久久久亚洲欧美| 色94色欧美一区二区| 激情五月婷婷亚洲| 久久国产精品男人的天堂亚洲 | tube8黄色片| 国产一区二区三区av在线| 大香蕉97超碰在线| 免费高清在线观看日韩| 色视频在线一区二区三区| 午夜影院在线不卡| 免费在线观看黄色视频的| 人妻少妇偷人精品九色| 熟女电影av网| 黑人欧美特级aaaaaa片| 80岁老熟妇乱子伦牲交| 少妇的丰满在线观看| 青春草国产在线视频| 国产精品久久久久久久电影| 黄色毛片三级朝国网站| 久久久久久久久久成人| 中文字幕最新亚洲高清| 久久婷婷青草| 国产欧美另类精品又又久久亚洲欧美| 日韩制服丝袜自拍偷拍| 日本色播在线视频| 久久人人爽人人片av| 肉色欧美久久久久久久蜜桃| 久久午夜福利片| 亚洲国产精品999| 18禁裸乳无遮挡动漫免费视频| 成人二区视频| 婷婷色麻豆天堂久久| 一本久久精品| 五月开心婷婷网| 男女国产视频网站| 日韩精品免费视频一区二区三区 | a级毛色黄片| 亚洲欧美一区二区三区黑人 | 99久久人妻综合| 一区二区三区精品91| 欧美国产精品va在线观看不卡| 国产在线免费精品| 久久青草综合色| 日韩欧美一区视频在线观看| 一级毛片 在线播放| 国产精品久久久久久久久免| av在线观看视频网站免费| 老司机影院成人| 女性生殖器流出的白浆| av在线播放精品| 久久这里有精品视频免费| 一级毛片 在线播放| 亚洲av综合色区一区| 欧美精品一区二区大全| 春色校园在线视频观看| 精品国产一区二区三区久久久樱花| 黄色怎么调成土黄色| 午夜福利乱码中文字幕| 日韩中文字幕视频在线看片| 91成人精品电影| 少妇被粗大猛烈的视频| 国产精品久久久久久精品古装| 国产女主播在线喷水免费视频网站| 精品卡一卡二卡四卡免费| 欧美激情国产日韩精品一区| av天堂久久9| 精品国产一区二区三区四区第35| 一本色道久久久久久精品综合| 女人被躁到高潮嗷嗷叫费观| 一区在线观看完整版| 黄色视频在线播放观看不卡| 满18在线观看网站| 在现免费观看毛片| 99国产综合亚洲精品| 国精品久久久久久国模美| 亚洲精华国产精华液的使用体验| 丰满乱子伦码专区| 久久这里有精品视频免费| 18禁裸乳无遮挡动漫免费视频| 熟妇人妻不卡中文字幕| 日韩伦理黄色片| 三级国产精品片| 22中文网久久字幕| 国产精品99久久99久久久不卡 | 日韩熟女老妇一区二区性免费视频| 美女xxoo啪啪120秒动态图| 久久这里有精品视频免费| 爱豆传媒免费全集在线观看| tube8黄色片| 菩萨蛮人人尽说江南好唐韦庄| 香蕉精品网在线| 只有这里有精品99| 久久精品夜色国产| 亚洲av中文av极速乱| 女性被躁到高潮视频| 国产熟女欧美一区二区| 亚洲国产最新在线播放| av有码第一页| 男男h啪啪无遮挡| 欧美日本中文国产一区发布| av在线播放精品| 国产毛片在线视频| 久久午夜综合久久蜜桃| 久久久欧美国产精品| 高清av免费在线| 国产成人精品一,二区| 亚洲国产av影院在线观看| 中文字幕亚洲精品专区| 日韩精品有码人妻一区| 韩国精品一区二区三区 | 欧美97在线视频| av免费在线看不卡| 熟妇人妻不卡中文字幕| 国产麻豆69| 成年av动漫网址| 日本色播在线视频| 女人被躁到高潮嗷嗷叫费观| 26uuu在线亚洲综合色| 成人二区视频| 婷婷色综合大香蕉| 久久久久久久大尺度免费视频| 如日韩欧美国产精品一区二区三区| 人妻系列 视频| 22中文网久久字幕| 侵犯人妻中文字幕一二三四区| 久久99一区二区三区| 又黄又粗又硬又大视频| 欧美xxⅹ黑人| 成年人午夜在线观看视频| 久久狼人影院| 欧美国产精品一级二级三级| 国产精品人妻久久久久久| 一本—道久久a久久精品蜜桃钙片| av黄色大香蕉| 日韩大片免费观看网站| 日日啪夜夜爽| 色吧在线观看| 国产精品麻豆人妻色哟哟久久| 99久久中文字幕三级久久日本| 乱人伦中国视频| 日本wwww免费看| 纯流量卡能插随身wifi吗| 欧美日韩精品成人综合77777| 婷婷成人精品国产| 日本午夜av视频| 婷婷色av中文字幕| 婷婷色综合大香蕉| 亚洲美女搞黄在线观看| 亚洲国产av新网站| 97在线人人人人妻| 最近最新中文字幕免费大全7| 十八禁高潮呻吟视频| 国产成人91sexporn| 亚洲伊人色综图| 亚洲国产精品专区欧美| 国产一区有黄有色的免费视频| 桃花免费在线播放| 成人综合一区亚洲| 日韩av免费高清视频| 国产免费又黄又爽又色| 精品久久国产蜜桃| a级片在线免费高清观看视频| 男女边吃奶边做爰视频| 日韩成人伦理影院| 色视频在线一区二区三区| 精品人妻熟女毛片av久久网站| 人人澡人人妻人| 99国产精品免费福利视频| 色视频在线一区二区三区| 国产一区二区三区综合在线观看 | 日本-黄色视频高清免费观看| 国产在视频线精品| 大话2 男鬼变身卡| 欧美日韩av久久| 亚洲激情五月婷婷啪啪| 热re99久久精品国产66热6| 欧美日韩视频精品一区| 狠狠精品人妻久久久久久综合| 少妇被粗大猛烈的视频| 久久精品国产鲁丝片午夜精品| 日日撸夜夜添| 男女无遮挡免费网站观看| 日本猛色少妇xxxxx猛交久久| 亚洲丝袜综合中文字幕| 搡老乐熟女国产| 亚洲,欧美精品.| 国产综合精华液| 国产欧美亚洲国产| 最后的刺客免费高清国语| av.在线天堂| 99久国产av精品国产电影| 欧美精品一区二区大全| 久久99热6这里只有精品| 成人手机av| 婷婷色av中文字幕| 精品一区二区三区四区五区乱码 | 成人国产麻豆网| 高清在线视频一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 国产免费又黄又爽又色| 国产高清国产精品国产三级| 高清视频免费观看一区二区| 又粗又硬又长又爽又黄的视频| 日韩 亚洲 欧美在线| 黄色毛片三级朝国网站| 一个人免费看片子| 只有这里有精品99| 美女内射精品一级片tv| 亚洲,欧美,日韩| 国产精品女同一区二区软件| a级片在线免费高清观看视频| 国产一区二区在线观看av| 三级国产精品片| 九九在线视频观看精品| 国产男人的电影天堂91| 亚洲精品第二区| 你懂的网址亚洲精品在线观看| 免费大片18禁| 亚洲成色77777| 2021少妇久久久久久久久久久| 22中文网久久字幕| 婷婷成人精品国产| av片东京热男人的天堂| 亚洲丝袜综合中文字幕| 视频中文字幕在线观看| 最近中文字幕2019免费版| 国产精品嫩草影院av在线观看| 欧美精品人与动牲交sv欧美| 欧美3d第一页| 久久久久久伊人网av| 精品一区二区三卡| 亚洲国产精品一区三区| 人人妻人人澡人人爽人人夜夜| 美国免费a级毛片| 日本-黄色视频高清免费观看| 下体分泌物呈黄色| 亚洲美女黄色视频免费看| 内地一区二区视频在线| 久久久久视频综合| 亚洲欧美成人精品一区二区| 黄片无遮挡物在线观看| 亚洲欧美中文字幕日韩二区| 亚洲av中文av极速乱| 婷婷色av中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 日韩视频在线欧美| 免费大片18禁| 精品国产一区二区三区久久久樱花| 精品一区二区三区视频在线| 日本av免费视频播放| 亚洲精品一区蜜桃| 精品久久国产蜜桃| 看免费成人av毛片| 2021少妇久久久久久久久久久| 亚洲av国产av综合av卡| 欧美成人午夜免费资源| 免费久久久久久久精品成人欧美视频 | 婷婷成人精品国产| 色婷婷av一区二区三区视频| 秋霞伦理黄片| 人人妻人人添人人爽欧美一区卜| 最近中文字幕2019免费版| 国产 精品1| 国产精品一国产av| 又黄又爽又刺激的免费视频.| 91久久精品国产一区二区三区| 久久精品国产亚洲av涩爱| 一级毛片我不卡| 欧美精品一区二区大全| 女的被弄到高潮叫床怎么办| 一本—道久久a久久精品蜜桃钙片| 赤兔流量卡办理| 黄色毛片三级朝国网站| 成人毛片60女人毛片免费| 久久久精品区二区三区| 我的女老师完整版在线观看| 少妇被粗大的猛进出69影院 | 亚洲国产精品999| 美女内射精品一级片tv| 日韩人妻精品一区2区三区| 国产成人欧美| 精品午夜福利在线看| 久久av网站| 成人无遮挡网站| 亚洲激情五月婷婷啪啪| 黑人巨大精品欧美一区二区蜜桃 | 国产探花极品一区二区| 国产亚洲精品久久久com| 亚洲精品,欧美精品| 亚洲国产精品国产精品| 伦理电影免费视频| 欧美最新免费一区二区三区| 久久久久国产精品人妻一区二区| 亚洲美女视频黄频| h视频一区二区三区| 国产av国产精品国产| 寂寞人妻少妇视频99o| 最近的中文字幕免费完整| 制服诱惑二区| 日本欧美视频一区| 青青草视频在线视频观看| 国产熟女欧美一区二区| 久久99热6这里只有精品| 久久这里只有精品19| 国产av一区二区精品久久| 黄色毛片三级朝国网站| 伊人亚洲综合成人网| 久久久久久久国产电影| 色哟哟·www| 女性生殖器流出的白浆| 狂野欧美激情性bbbbbb| 日韩制服骚丝袜av| 97超碰精品成人国产| videossex国产| 这个男人来自地球电影免费观看 | 女的被弄到高潮叫床怎么办| 大片电影免费在线观看免费| 亚洲精品美女久久av网站| 色婷婷久久久亚洲欧美| 69精品国产乱码久久久| 精品亚洲成国产av| 人人澡人人妻人| 乱人伦中国视频| 丰满乱子伦码专区| 成人亚洲欧美一区二区av| 一边摸一边做爽爽视频免费| 女人精品久久久久毛片| 亚洲精品一二三| 美国免费a级毛片| av播播在线观看一区| 精品99又大又爽又粗少妇毛片| 免费久久久久久久精品成人欧美视频 | 91aial.com中文字幕在线观看| 国产亚洲精品第一综合不卡 | 精品国产露脸久久av麻豆| 久久人人爽人人片av| 一级毛片 在线播放| 伦精品一区二区三区| 国产精品久久久久成人av| 波多野结衣一区麻豆| tube8黄色片| 人人澡人人妻人| 男女免费视频国产| 天天躁夜夜躁狠狠躁躁| 国产亚洲最大av| 国产熟女欧美一区二区| 欧美亚洲日本最大视频资源| 亚洲内射少妇av| 久久女婷五月综合色啪小说| 国产精品国产三级国产专区5o| 成人国产av品久久久| 最近的中文字幕免费完整| 成人手机av| 99久久人妻综合| 成人漫画全彩无遮挡| 一级毛片黄色毛片免费观看视频| 国产精品一区www在线观看| av播播在线观看一区| 伊人久久国产一区二区| 在线观看美女被高潮喷水网站| 国产福利在线免费观看视频| 高清毛片免费看| 搡老乐熟女国产| 免费观看av网站的网址| 纯流量卡能插随身wifi吗| 精品一区在线观看国产| 免费观看av网站的网址| 在线亚洲精品国产二区图片欧美| av一本久久久久| av.在线天堂| 纯流量卡能插随身wifi吗| 伦理电影免费视频| 精品熟女少妇av免费看| 久久久久久久大尺度免费视频| 男女高潮啪啪啪动态图| av.在线天堂| 三上悠亚av全集在线观看| 成人影院久久| 国产免费福利视频在线观看| 日韩制服丝袜自拍偷拍| 久久综合国产亚洲精品| 交换朋友夫妻互换小说| 国产乱人偷精品视频| 黄色怎么调成土黄色| a级毛片在线看网站| 免费黄频网站在线观看国产| 亚洲精品av麻豆狂野| 国产黄色免费在线视频| 国产精品久久久av美女十八| 91精品国产国语对白视频| 亚洲av国产av综合av卡| 天天影视国产精品| 大片免费播放器 马上看| 如日韩欧美国产精品一区二区三区| 亚洲丝袜综合中文字幕| av电影中文网址| 免费在线观看黄色视频的| 国产伦理片在线播放av一区| 国产精品久久久久久精品电影小说|