• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Test Research of Seepage Monitoring Based on Distributed Optical Fiber

    2018-05-25 06:39:41,,,,

    , , , , , ,

    1.Department of Civil Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.Taizhou Water Conservancy Bureau,Taizhou 225300,P.R.China

    0 Introduction

    Levees have a lot of characteristics such as long lines,wide distribution and dense population in the protection segment.So once a levee collapses,it will cause serious disasters.Seepage is one of the important dam damage forms which are influenced by the construction quality,embankment material,creature-ablation and water level changes.According to the statistics of earth dam destroy crash[1],the percentage of seepage damage is 45%,seriously endangering the dam safety.Therefore,it is of great significance to monitor dam seepage in real time.Distributed optical fiber temperature sensing(DTS)has the advantages of real-time monitoring,low cost,simple construction,lightning protection,wide monitoring range,and resistance to corrosion,high pressure,high temperature,and electromagnetic interference,which shows its broad application prospects in seepage monitoring[2].

    At present,there are a few studies on the seepage monitoring based on distributed optical fiber.Alain et al.[3]studied quantitative relationship between seepage velocity and optical fiber temperature of sandy soil utilizing DTS combined with indoor model test,and concluded that there is a linear relationship between optical fiber temperature and logarithm of the heating time in sandy soil.Marc et al.[4]set up an automatic alarm system to monitor Berlin 55km long underground brine pipeline leakage and determined the leakage location through the changes of temperature curve.Andrea et al.[5]set up an automatic alarm system to monitor Canada's new Brunswick 30km long brine pipeline leakage and summarized that the factors affecting the temperature changes of optical fiber were seasonal temperature changes,pipeline embedment depth,soil or backfill soil types,soil moisture content,terrain conditions and so on.Zhu et al.[6]proposed a seepage flow simulator and monitoring system based on DTS.The simulator equipment can monitor various embankments with different boundary conditions,such as temperature,distributions of soakage line and scales.Xiao et al.[7]deduced the theoretical solution of seepage velocity combining the theory of porous media heat transfer and DTS sensing principle.Based on thermal equilibrium theory and the relationship between the soil temperature changes surrounding the dam body and the leakage velocity,Dong et al.[8]established a mathematical physical model,discussed the determination method of seepage velocity under two different flow conditions (laminar and turbulent),and verified the correctness of the mathematical physical model combining with basic experiment results of the fiber optic monitoring from Munich University of Science and Technology.Gu et al.[9]established a mathematical temperature field model of earth dam feedback seepage field,and verified the model combining with the distributed fiber temperature measurement test results of indoor homogeneous earth dam model.Su et al.[10-11]deduced heat transfer theoretical model of seepage monitoring and verified the feasibility of distributed optical fiber monitoring seepage through establishing experimental model to simulate the seepage.At present,the technologies of distributed optical fiber temperature sensor used in seepage monitoring are mainly focused on seepage positioning.The quantitative seepage monitoring is still under research.There are no mature results which can be used in practice.The influence factors of soil infiltration (e.g.,degree of compaction,etc.)considered in the past experimental analysis are not perfect.Therefore,stud-ying the seepage quantitative monitoring based on the DTS has important theoretical significance and engineering application value.

    1 Seepage Monitoring Principle Based on Distributed Optical Fiber Temperature Sensing

    When an optical pulse is launched into an optical fiber,some backscattered signals come back to the input end.There are three main types of scattering,and Raman scattering is one of them.Raman scattering in fiber consists of anti-Stokes and Stokes signals,and the ratio of the anti-Stokes and Stokes signals backscattered from within the fiber is a function of the absolute temperature of the scattering point.Hence,the Raman distributed temperature sensor uses the ratio of anti-Stokes and Stokes signal intensities to calculate the temperature.The ratio is given by

    whereIasis the anti-Stokes intensity;Isthe Stokes intensity;αthe temperature-related coefficient;pPlanck′s constant;cthe velocity of light;wthe wavenumber shift for the fiber material;kthe Boltzmann constant;Tthe absolute temperature of the scattering point in the fiber.

    The seepage monitoring technology principle based on TDS is similar to the convection heat transfer process with swept round line heat source in the porous media in the thermodynamics.The thermal conductivity coefficient of complex porous mediums (including water and solids)is taken as a whole unified porous medium in the analysis process of heat transfer mode.Therefore,the heat transfer process of porous medium with optical fiber can be converted to that of a single material with fiber.This process can be shown as

    whereQλis the heat transfered to the surrounding medium in the process of heat transfer by the op-tical fiber;λthe coefficient of thermal conductivity after conversion;Athe heat transfer area;Tthe temperature andxthe distance.

    The thermal convection will occur when the fluid contacts with the optical fiber.Newton cooling formula can be used as the basic formula for expression

    whereQvis the convective heat transfer of optical fiber and water;Aathe convective heat transfer surface area of optical fiber and water;hthe heat transfer coefficient;Tsthe surface temperature of optical fiber andTfthe temperature of water.

    Considering the heat transfer and convection during the seepage process,the seepage velocity formula calculation theory based on DTS can be deduced and expressed as[12]

    wherePis the heating power;Ithe current flowing through metal armoured the optical fiber;Rthe resistance of metal armoured;rthe radius of armoured optical fiber;lthe length of armoured optical fiber;θthe temperature changes;ethe porosity of porous media;uthe seepage velocity;λsthe thermal conductivity coefficient of solid particles;nthe constant of swept round;andDa composite constant[6].

    Eq.(4)shows that the optical fiber heating power isntimes polynomial of seepage velocity.There exist related researches about the value range ofnin the relation between heating power and seepage velocity,but the scopes are not the same.The value range ofnshould be determined combining with the analysis of test results because of the soil medium complexity.It′s a linear relationship between the heating power and the optical fiber temperature.So the optical fiber heating temperature isntimes polynomial of seepage velocity,namely

    whereΔTis heating temperature of the optical fiber;k,a,bare the undetermined constants;uis the fluid seepage velocity.

    2 Seepage Monitoring Test Based on Distributed Optical Fiber Temperature Sensing

    2.1 Test model

    The tank for the test is made of 2cm thick solid wood.The size of the tank is 1m×0.5m×0.6m,as shown in Fig.1.The waterproof cloth is pasted in the tank and the waterproof coating is brushed in the tank to prevent the sink from leaking.The faucet is installed at the bottom of the tank to control the water yield.The 10cm gravel,filter cloth,10cm soil,optical fiber and 10cm gravel are embedded in the tank from down to up in turn,as shown in Fig.2.The optical fiber is decorated as serpentine,as shown in Fig.3.The optical fiber arrangement spacing is 6cm.The research objects in the test are soil mediums including fine sand and the mixture of fine sand and clay soil.The quality proportions of fine sand and clay soil are 4∶1and 3∶2,respectively[13].

    Fig.1 Test tank

    Fig.2 Soil arrangement

    2.2 Test method

    Fig.3 Optical fiber arrangement

    In the test,the temperature measurement for seepage detection is performed by Sentinel DTS in conjunction with a heatable armoured optical fiber.The Sentinel DTS machine is a product of British Sensornet Company.The heatable armoured optical fiber with the diameter of 3mm consists of a multimode sensing optical fiber,armoured wire and an outer sheath[14].The heating method is adopted to monitor the seepage.A stable voltage is needed to apply to heat the armoured wire,which is taken as a resistance wire.The heating system consists of an alternating current power source with an adjustable voltage and the load resistance wire.The voltage regulator adopted in the test is single phase regulator TDGC2-5.The working voltage ranges from 20Vto 250V.The rated current is 20Aand any voltage within 250Vcan be put out.The resistance of armoured optical fiber is 17.5Ω/m.The heating power is 19.62W/m to ensure that the average temperature rise of fiber can achieve 15 ℃ after heating for 16min.The water level in the tank is kept at a fixed location during the whole test process.The water switch should be calibrated before the test to ensure that the water yield is close to each other when the opening degree of the switch is the same.The soil is compacted by using static load pressure.With the aid of irrigation method,the soil compaction degree can be measured.Six seepage velocities corresponding to different opening degree of the switch are measured under every compaction degree.DTS is used to measure the temperature changes of the optical fiber during the whole heating process under various seepage velocities.The average temperature rise after heating 10—15min is taken as the reference value of optical fiber heating temperature level.To ensure that the seepage flow can supply outlet water yield,each soil must be penetrated after the change of soil compaction.The seepage flow is enough to supply water yield when the water level in the sink is at the fixed location,if air bubbles do not emerge and the water velocity is not reduced over a period of time.

    3 Analysis of Test Result

    3.1 Relationship between seepage velocity and optical fiber temperature rise

    The average velocity through the soil profile can be calculated based on the test design principle.All kinds of soils under different compaction degree of seepage velocity relation with fiber heating temperature was obtained according to the test results,as shown in Fig.4.

    Fig.4 Relationship between seepage velocity and optical fiber temperature rise for different soils and compaction degree

    It is easy to find that the optical fiber heating temperature rise with the seepage velocity is a quadratic curve relationship from Figs.4(a,b).The relationship between seepage velocity and temperature rise is represented asΔT=av2+bv+c.HereΔTis the optical fiber heating tempera-ture rise andvis the seepage velocity.The fitting parameters of the curve are shown in Table 1.The fitting index between seepage velocity and heating temperature rise is above 0.9from the curve fitting results in Table 1,which means optical fiber heating temperature rise with seepage velocity is a quadratic curve relationship for the high fitting degree.With the increase of seepage velocity,the heating temperature decreased firstly and then increased,as shown in Figs.4(a,b).For the quality proportion of fine sand and clay is 3∶2,the seepage flow is small when the compaction degree is more than 85%due to the increase of clay composition in the soil and the decrease ofpermeability.There are only two sets of data,as shown in Fig.4(c),due to the little velocity difference between different degree of switch.With the increase of seepage velocity,the heating temperature decreased without the rising part,as shown in Fig.4(c).

    Table 1 Fitting index between seepage velocity and heating temperature rise

    The test mechanism can be analyzed through fluid outside swept round tube heat transfer principle[11].When the fluid sweeps outside the round tube,the starting point of the flow around detached namely separation point will appear at the location where the pipe surface velocity gradient is zero.Vortexes formed in the boundary layer of reverse flow will destroy the normal boundary layer flow.The flow condition of wall boundary layer determines the characteristics of heat transfer.The distribution of round tube wall local surface heat transferNuφis shown in Fig.5.The curve shows that the decrease of local surface heat transfer coefficient will lead to the decreases of pipe average surface heat transfer coefficient because of the increase of laminar boundary layer thickness from the tube front stagnation pointφ=0°.

    Fig.5 Distribution of round tube wall local surface heat transfer Nuφ

    The two working conditions of the lowest fluid Reynolds number Re always maintain laminar flow before the separation point in Fig.5and the lowest value ofNuφappears near the separation point.Then with the chaotic movement of vortex in the detached area,the value ofNuφincreases.The turbulent flow happens when the other conditions of high Reynolds number has detached in the wall boundary layer.The two troughs ofNuφcurve are the transition zone from laminar flow to turbulent flow and the location where the turbulent boundary layer detaches the wall,respectively.The value ofφdepends on the value of Reynolds number in Fig.5.The value of Reynolds number depends on the value of seepage velocity in the test.Therefore,the greater the seepage velocity,the greater the value ofφwill be.

    It is easy to find that the value ofNuφhas little change in the range ofφf(shuō)rom Fig.5,which has little impact on fiber surface average heat transfer coefficient.The maximum seepage velocity corresponding to the compaction degree of fine sand and 4∶1soil is about five times of the initial seepage velocity.There exists obvious difference between the maximum and the initial value of seepage velocity.The values ofφcorresponding to different seepage velocities and the values ofNuφexist obvious change,which will lead to violently a decrease in the optical fiber average surface heat transfer coefficient.The heat accumulation caused by the decreases of optical fiber average surface heat transfer coefficient may be greater than the heat loss caused by the increases of seepage velocity.Therefore,the fiber heating temperature rise will be bigger when the seepage velocity is large.The seepage velocity is small because of the poor permeability of 3∶2soil.The difference of the values ofNuφcorresponding to the maximum and initial value of seepage velocity is small because of little difference of the maximum and initial seepage velocity.The heat accumulation caused by the decreases of optical fiber average surface heat transfer coefficient may be less than the heat loss caused by the increases of seepage velocity.Therefore,the temperature rise keeps falling.It is reasonable to adopt a quadratic curve to analyze the relationship between seepage velocity and heating temperature of 3∶2soil.

    3.2 Effect of soil compaction degree on optical fiber temperature

    The compaction degree is one of the main control targets of actual construction quality in project construction.It determines the internal granule structure arrangement and the porosity of soil,which has important influence on the permeability and heat conduction performance of soil.The compaction degree has different influence on different soils.The relationships between compaction degree and optical fiber temperature rise of fine sand,4∶1soil and 3∶2soil are shown in Fig.4.

    As can be seen from Fig.4(a),the optical fiber heating temperature rise keeps failing with the increase of compaction degree of fine sand.The difference of optical fiber temperature rise is quite small and uniform because of the quite uniform sandy medium and the quite small compaction degree.The compression degree has a quite obvious influence on the permeability of the soil containing clay,as shown in Fig.4(b).Therefore,the distribution of the curve is less uniform than that of fine sand.The optical fiber heating temperature rise is on the decline with the increase of the compaction degree,while optical fiber heating temperature rise exists a certain fluctuation because of obvious difference among seepage velocities corresponding to different compaction degree.There exist only two curves because of the quite large clay content of the soil in Fig.4(c)when the compaction degree is large.It is easy to find that optical fiber heating temperature will drop with the increase of the compaction degree from the two curves.The increase of compaction degree changes the proportion of solid particles and wa

    ter in the soil,which will increase the content of solid particles in per unit volume of soil.The thermal conductivity coefficient of solid particles is bigger than that of water.Therefore,the soil thermal conductivity performance enhances with the increase of compaction degree and the optical fiber heating temperature rise will gradually decline.It is easy to find that optical fiber heating temperature rise embedded in the soil will gradually decline with the increase of compaction degree through analyzing all the above situations.Thus,soil compaction should be considered in experimental research and engineering application in the future.

    3.3 Effect of soil composition on optical fiber temperature

    The soil is in saturated condition in the test.The main factors affecting fiber heating temperature rise are the heat conduction performance,the porosity and dry density of mineral solids.The mineral solids containing in the soil are the main part,whose heat conduction performance determines the whole heat conduction performance of soil.The porosity determines the water content and the distribution of seepage channels of soil has important influence on the fiber heating temperature rise.The dry density is equivalent to the compaction degree in the test.The compaction degree affects both the permeability and the porosity of the soil.It′s easy to find that the dry density has little impact on the permeability,but it has an important impact on the soil containing large amount of clay.The greater the clay contains,the greater affects will be.Therefore,the soil medium has important effects on fiber heating temperature rise.The seepage monitoring programme should be studied according to different soil types in actual project monitoring.

    4 Conclusions

    This paper deduces the mathematical model of seepage monitoring through the test study of seepage quantitative monitoring based on distributed optical fiber.The following conclusions can be drawn through the indoor model test.

    (1)The optical fiber heating temperature rise with seepage velocity shows a quadratic curve relationship while monitoring seepage through heating method.There are different quantitative relationships corresponding to different compaction degree.The reasonable quantitative relationships between optical fiber heating temperature rise and seepage velocity need to be selected to monitor seepage velocity according to actual situations in practical engineering.

    (2)The compaction degree of soil has important effects on optical fiber heating temperature rise.The test results show that optical fiber heating temperature rise is on the decline with the increase of compaction degree.Therefore,the relationship between compaction degree and optical fiber heating temperature rise needs to be considered in future research and engineering application.

    (3)Different soils have different physical indicators,which leads to complex effects on optical fiber heating temperature rise for the soils.The test plan needs to be made to study quantitative relationships according to different soil conditions of each project in practical engineering.

    The seepage monitoring technology based on DTS has advantages of low cost,universal coverage,accurate positioning and so on.So it has a broad application prospect in pipeline engineering and levee engineering leakage monitoring.The realization of seepage quantitative monitoring technology exists many problems to be solved at the same time.Therefore,the seepage monitoring research based on DTS has important theoretical significance and engineering application value.

    Acknowledgements

    This work was supported by the Water Conservancy Science and Technology Project of Jiangsu Province(Nos.2012088,2013093).

    [1] QIAN Jiahuan,YIN Zongze.Earthwork principle and calculation[M].Beijing:China Water Conservancy and Hydropower Press,1995.(in Chinese)

    [2] Lin J,WU J.Optical fiber grating monitoring for reinforcement corrosion[J].Journal of Nanjing University of Aeronautics & Astronautics,2008,40(3):395-398.(in Chinese)

    [3] ALAIN C,BENOIT C,JEAN L et al.Water leakage detection using optical fiber at the peribonka dam[C]//Proceedings of the Seventh International Symposium on Field Measurements in Geomechanics.New York:ASCE,2007(175):1-12.

    [4] MARC N,BERNHARD V,F(xiàn)ABIEN B et al.Leakage detection using fiber optics distributed temperature rise monitoring[C]//The Proceedings of the 11th SPIE Annual International Symposium on Smart Structures and Materials.San Diego,California:ASCE,2004:18-25.

    [5] MYLES A.Permanent leak detection on pipes using a fibre optic based continuous sensor technology[C]//Pipelines Conference 2011.Seattle, Washington,USA:American Society of Civil Engineers,2011:744-754.

    [6] ZHU Pingyu,LUC THEVENAZ,LENG Yuanbao,et al.Design of simulator for seepage detection in an embankment based on distributed optic fibre sensing technology[J].Chinese Journal of Scientific Instrument,2007,28(3):431-436.(in Chinese)

    [7] XIAO Henglin,BAO Hua,WANG Cuiying,et al.Research on theory of seepage monitoring based on distributed optical fiber sensing technology[J].Rock and Soil Mechanics,2008,29(10):2794-2798.(in Chinese)

    [8] DONG Haizhou,KOU Dingwen,PENG Huyue.Computational model for dam leakage velocity in concentrated passage based on distributed optic fiber temperature sensing system[J].Chinese Journal of Geotechnical Engineering,2013,35(9):1717-1721.

    [9] GU Yanchang,WANG Shijun,PANG Qiong,et al.Feasibility of temperature field feeding back seepage field for earth dams[J].Chinese Journal of Geotechnical Engineering,2014,36(9):1721-1726.

    [10]SU Huaizhi,KANG Yeyuan.Design of system for monitoring seepage of levee engineering based on distributed optical fiber sensing technology[J].International Journal of Distributed Sensor Networks,2013(3):1-10.

    [11]SU Huaizhi,HU Jiang,YANG Meng.Dam seepage monitoring based on distributed optical fiber temperature system [J].IEEE Sensors Journal,2014,15(1):9-13.

    [12]ZHANG Ximin,REN Zepei,MEI Feiming.Heat transfer [M].Beijing:China Building Industry Press,2001.(in Chinese)

    [13]ZHOU Bobing,XU Guolong,ZHAO Xinming,et al.Seepage monitoring test based on distributed optical fiber temperature sensor technology[J].Water Resources and Power,2015,10:104-107.(in Chinese)

    [14]LIU Rongmei,XIAO Jun,LIANG Dakai,et al.Performance improvement method of CFRP with embedded optical fiber[J].Transactions of Nanjing University of Aeronautics and Astronautics,2015,32(3):261-267.

    在线看a的网站| 如日韩欧美国产精品一区二区三区| 另类亚洲欧美激情| 久久人妻熟女aⅴ| 又大又黄又爽视频免费| 精品少妇内射三级| 国产高清视频在线播放一区 | 欧美黄色片欧美黄色片| 日韩大码丰满熟妇| 国产亚洲午夜精品一区二区久久| 国产精品免费视频内射| 少妇被粗大的猛进出69影院| 亚洲一区二区三区欧美精品| 久久国产精品人妻蜜桃| 一级a爱视频在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 成年美女黄网站色视频大全免费| 少妇的丰满在线观看| 亚洲av片天天在线观看| 女人高潮潮喷娇喘18禁视频| 狠狠婷婷综合久久久久久88av| 精品熟女少妇八av免费久了| 国产99久久九九免费精品| 亚洲精品在线美女| 九草在线视频观看| 69精品国产乱码久久久| 热re99久久国产66热| 18禁观看日本| 成年人免费黄色播放视频| 大香蕉久久成人网| av在线播放精品| 老汉色∧v一级毛片| 国产伦理片在线播放av一区| 久久九九热精品免费| www.熟女人妻精品国产| 99热全是精品| 久久精品国产亚洲av涩爱| 亚洲国产精品一区二区三区在线| 黄色片一级片一级黄色片| 亚洲色图综合在线观看| 亚洲精品中文字幕在线视频| www.av在线官网国产| 欧美日韩成人在线一区二区| 色视频在线一区二区三区| 一级黄色大片毛片| 国产又色又爽无遮挡免| 汤姆久久久久久久影院中文字幕| 精品少妇久久久久久888优播| 性色av一级| 午夜福利乱码中文字幕| 天天躁夜夜躁狠狠久久av| www.精华液| 成年人午夜在线观看视频| 日本五十路高清| 亚洲人成77777在线视频| 一区二区av电影网| 我要看黄色一级片免费的| 久久久国产欧美日韩av| 叶爱在线成人免费视频播放| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩av久久| 日韩精品免费视频一区二区三区| 大香蕉久久成人网| 中文字幕高清在线视频| 亚洲成人免费av在线播放| 亚洲av电影在线进入| 国产精品秋霞免费鲁丝片| 真人做人爱边吃奶动态| 日本91视频免费播放| 精品国产一区二区三区久久久樱花| 99久久精品国产亚洲精品| 欧美日韩国产mv在线观看视频| 精品人妻一区二区三区麻豆| 人成视频在线观看免费观看| 午夜久久久在线观看| 精品福利观看| 中文字幕人妻丝袜一区二区| 少妇人妻久久综合中文| 午夜91福利影院| 日本91视频免费播放| 黄频高清免费视频| 欧美中文综合在线视频| 建设人人有责人人尽责人人享有的| 国产91精品成人一区二区三区 | 亚洲一码二码三码区别大吗| 激情五月婷婷亚洲| 飞空精品影院首页| 国产有黄有色有爽视频| 久久久久国产一级毛片高清牌| 在现免费观看毛片| 亚洲视频免费观看视频| 如日韩欧美国产精品一区二区三区| 亚洲色图综合在线观看| 欧美av亚洲av综合av国产av| 日本a在线网址| 熟女少妇亚洲综合色aaa.| 午夜激情av网站| 国产精品国产av在线观看| 视频在线观看一区二区三区| 制服人妻中文乱码| 妹子高潮喷水视频| 国产男女超爽视频在线观看| 亚洲国产中文字幕在线视频| 黄网站色视频无遮挡免费观看| 中文字幕人妻丝袜一区二区| 亚洲免费av在线视频| 一本大道久久a久久精品| 精品一区二区三卡| 中文欧美无线码| xxxhd国产人妻xxx| 午夜免费成人在线视频| 国产女主播在线喷水免费视频网站| 男女边吃奶边做爰视频| 性色av一级| 欧美激情极品国产一区二区三区| 亚洲免费av在线视频| 中文乱码字字幕精品一区二区三区| 国产av一区二区精品久久| 久久99精品国语久久久| 丰满少妇做爰视频| 国产又色又爽无遮挡免| 精品久久久久久电影网| 亚洲欧美精品综合一区二区三区| 亚洲久久久国产精品| 日本一区二区免费在线视频| 不卡av一区二区三区| 国产精品香港三级国产av潘金莲 | 好男人电影高清在线观看| 丝袜美腿诱惑在线| 伦理电影免费视频| 久久精品国产a三级三级三级| 人体艺术视频欧美日本| 国产高清国产精品国产三级| 狠狠精品人妻久久久久久综合| 国产高清不卡午夜福利| 亚洲精品国产色婷婷电影| 欧美亚洲日本最大视频资源| 中文字幕另类日韩欧美亚洲嫩草| 夫妻午夜视频| 伊人久久大香线蕉亚洲五| 叶爱在线成人免费视频播放| 丰满迷人的少妇在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲av欧美aⅴ国产| 国产一区二区 视频在线| 三上悠亚av全集在线观看| 成在线人永久免费视频| 久久久久精品国产欧美久久久 | 国产精品麻豆人妻色哟哟久久| 美女大奶头黄色视频| 久久综合国产亚洲精品| 精品人妻1区二区| 国产福利在线免费观看视频| 制服人妻中文乱码| 91成人精品电影| 人成视频在线观看免费观看| 午夜福利视频精品| 另类亚洲欧美激情| 18禁裸乳无遮挡动漫免费视频| 97精品久久久久久久久久精品| 欧美日本中文国产一区发布| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲三区欧美一区| 你懂的网址亚洲精品在线观看| 多毛熟女@视频| 亚洲精品中文字幕在线视频| 久久人妻熟女aⅴ| 久久午夜综合久久蜜桃| 一个人免费看片子| 后天国语完整版免费观看| netflix在线观看网站| 一区二区日韩欧美中文字幕| 亚洲国产av新网站| 国产精品99久久99久久久不卡| 亚洲精品美女久久久久99蜜臀 | 亚洲av在线观看美女高潮| 男女之事视频高清在线观看 | 国产又爽黄色视频| 18禁黄网站禁片午夜丰满| 欧美 亚洲 国产 日韩一| 国产精品国产av在线观看| 女警被强在线播放| 侵犯人妻中文字幕一二三四区| 国产在线视频一区二区| 国产精品三级大全| 999精品在线视频| 少妇裸体淫交视频免费看高清 | 日日摸夜夜添夜夜爱| 国产在线观看jvid| 成人手机av| 精品国产国语对白av| 欧美黑人精品巨大| 极品人妻少妇av视频| 国产精品免费视频内射| videosex国产| 久久人人爽av亚洲精品天堂| 美女中出高潮动态图| 国产色视频综合| 国产在视频线精品| kizo精华| 国产精品人妻久久久影院| 国产日韩欧美视频二区| 99国产精品一区二区蜜桃av | 亚洲七黄色美女视频| 亚洲av电影在线观看一区二区三区| 亚洲精品一区蜜桃| 成人黄色视频免费在线看| 夜夜骑夜夜射夜夜干| 黄片小视频在线播放| 99久久精品国产亚洲精品| 一边摸一边做爽爽视频免费| 国产成人精品无人区| 脱女人内裤的视频| 久久精品aⅴ一区二区三区四区| 久9热在线精品视频| 久久久久网色| 国产男女超爽视频在线观看| 一级毛片女人18水好多 | 9色porny在线观看| 久久狼人影院| 日本一区二区免费在线视频| 国产精品99久久99久久久不卡| 视频区欧美日本亚洲| 欧美国产精品一级二级三级| 在线观看人妻少妇| 国产成人av教育| 又紧又爽又黄一区二区| 天堂中文最新版在线下载| 高潮久久久久久久久久久不卡| 国产一区有黄有色的免费视频| 亚洲熟女精品中文字幕| 手机成人av网站| 视频区欧美日本亚洲| 国产视频首页在线观看| 欧美97在线视频| 国产欧美日韩综合在线一区二区| 国产精品一二三区在线看| 久久人妻熟女aⅴ| 亚洲,一卡二卡三卡| 一区福利在线观看| 精品久久蜜臀av无| 午夜视频精品福利| 久久99精品国语久久久| 九色亚洲精品在线播放| 高清黄色对白视频在线免费看| 少妇猛男粗大的猛烈进出视频| 亚洲人成网站在线观看播放| 亚洲免费av在线视频| 婷婷成人精品国产| 亚洲精品久久久久久婷婷小说| 一本久久精品| 久久久久精品人妻al黑| 久久影院123| 天天躁狠狠躁夜夜躁狠狠躁| 极品人妻少妇av视频| 久久久久久免费高清国产稀缺| 国产成人精品久久久久久| 国产成人免费无遮挡视频| 国产xxxxx性猛交| 少妇人妻 视频| 韩国高清视频一区二区三区| 美女大奶头黄色视频| 精品久久久精品久久久| 亚洲国产日韩一区二区| 精品第一国产精品| 另类亚洲欧美激情| 国产精品 欧美亚洲| 日本91视频免费播放| 中文字幕人妻熟女乱码| 麻豆乱淫一区二区| 亚洲精品自拍成人| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品国产三级专区第一集| 2021少妇久久久久久久久久久| 国产一区二区三区综合在线观看| 精品第一国产精品| 宅男免费午夜| 男女高潮啪啪啪动态图| 国产又爽黄色视频| 中文字幕色久视频| 国产亚洲av片在线观看秒播厂| 欧美人与性动交α欧美精品济南到| 黄色视频在线播放观看不卡| 亚洲一码二码三码区别大吗| 日本欧美国产在线视频| 你懂的网址亚洲精品在线观看| 黄色毛片三级朝国网站| 成年人免费黄色播放视频| 久久ye,这里只有精品| 免费少妇av软件| 亚洲欧美成人综合另类久久久| 在线观看www视频免费| 男的添女的下面高潮视频| 亚洲欧美一区二区三区久久| 久久久国产精品麻豆| 国产成人av激情在线播放| 午夜福利一区二区在线看| 亚洲成国产人片在线观看| 日韩制服丝袜自拍偷拍| 亚洲欧洲国产日韩| www.自偷自拍.com| 一区二区av电影网| 99久久人妻综合| 亚洲天堂av无毛| 麻豆乱淫一区二区| 十八禁人妻一区二区| 久久久久网色| 欧美激情高清一区二区三区| 午夜福利影视在线免费观看| 久久中文字幕一级| 欧美日韩国产mv在线观看视频| 九草在线视频观看| 黄色毛片三级朝国网站| 女性生殖器流出的白浆| 免费一级毛片在线播放高清视频 | 另类亚洲欧美激情| 亚洲精品国产色婷婷电影| 青春草视频在线免费观看| 十分钟在线观看高清视频www| 亚洲专区中文字幕在线| 观看av在线不卡| 妹子高潮喷水视频| 日本色播在线视频| 晚上一个人看的免费电影| 久久性视频一级片| 丝袜脚勾引网站| 久久精品国产亚洲av高清一级| 国语对白做爰xxxⅹ性视频网站| av有码第一页| av在线播放精品| 亚洲久久久国产精品| 亚洲国产精品一区三区| 男女床上黄色一级片免费看| 日本av手机在线免费观看| 18禁国产床啪视频网站| www.熟女人妻精品国产| 国产一卡二卡三卡精品| 欧美中文综合在线视频| 日韩制服丝袜自拍偷拍| 日本一区二区免费在线视频| 韩国精品一区二区三区| 亚洲伊人久久精品综合| 久久久国产欧美日韩av| 久久久久国产一级毛片高清牌| 久久久国产欧美日韩av| av又黄又爽大尺度在线免费看| 精品亚洲成国产av| 婷婷丁香在线五月| 日韩电影二区| 国产精品欧美亚洲77777| 精品国产一区二区三区四区第35| www.精华液| 一区福利在线观看| 国产片内射在线| 赤兔流量卡办理| 免费av中文字幕在线| h视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 少妇精品久久久久久久| 欧美日韩亚洲国产一区二区在线观看 | 国产熟女欧美一区二区| 不卡av一区二区三区| 狠狠婷婷综合久久久久久88av| 最近手机中文字幕大全| 国产福利在线免费观看视频| 亚洲欧美一区二区三区国产| 18在线观看网站| 久久国产精品影院| 久久性视频一级片| 久久久久久久大尺度免费视频| 亚洲美女黄色视频免费看| 在线观看www视频免费| 成人手机av| 亚洲精品成人av观看孕妇| 欧美日韩综合久久久久久| 亚洲av电影在线观看一区二区三区| 精品欧美一区二区三区在线| 亚洲 欧美一区二区三区| 啦啦啦啦在线视频资源| 国产成人精品在线电影| 一边亲一边摸免费视频| 欧美+亚洲+日韩+国产| 亚洲av电影在线进入| 2018国产大陆天天弄谢| 日韩中文字幕欧美一区二区 | 亚洲av男天堂| 国产精品一二三区在线看| 亚洲成av片中文字幕在线观看| 99热网站在线观看| 亚洲国产欧美网| 国产日韩欧美在线精品| 男的添女的下面高潮视频| 99久久精品国产亚洲精品| 王馨瑶露胸无遮挡在线观看| 亚洲欧美色中文字幕在线| 国产精品久久久久久人妻精品电影 | 久久毛片免费看一区二区三区| 亚洲欧洲精品一区二区精品久久久| 久久亚洲国产成人精品v| 国产精品欧美亚洲77777| 欧美黑人精品巨大| 国产日韩一区二区三区精品不卡| 国产欧美日韩精品亚洲av| 脱女人内裤的视频| 大陆偷拍与自拍| 国产精品久久久久成人av| 久久人妻熟女aⅴ| 美女国产高潮福利片在线看| 十八禁人妻一区二区| 午夜两性在线视频| 免费在线观看黄色视频的| 乱人伦中国视频| 最新在线观看一区二区三区 | 老司机午夜十八禁免费视频| 亚洲国产毛片av蜜桃av| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线观看播放| 日本av手机在线免费观看| 日韩熟女老妇一区二区性免费视频| 91精品伊人久久大香线蕉| 99国产综合亚洲精品| 无限看片的www在线观看| cao死你这个sao货| 亚洲中文字幕日韩| 免费观看a级毛片全部| 嫩草影视91久久| 国产成人91sexporn| 亚洲国产毛片av蜜桃av| 久久久久精品国产欧美久久久 | 欧美日韩综合久久久久久| 2021少妇久久久久久久久久久| 精品福利永久在线观看| 精品国产超薄肉色丝袜足j| 美女主播在线视频| 精品人妻1区二区| 91麻豆av在线| 尾随美女入室| 91精品伊人久久大香线蕉| 一级毛片黄色毛片免费观看视频| 国产精品99久久99久久久不卡| 丝袜人妻中文字幕| 18禁观看日本| 777米奇影视久久| 午夜免费男女啪啪视频观看| 亚洲av男天堂| 精品一区二区三卡| 国产精品一区二区免费欧美 | 久久这里只有精品19| 国产精品久久久av美女十八| 免费久久久久久久精品成人欧美视频| 亚洲国产精品999| 丁香六月欧美| 国产成人精品久久久久久| 侵犯人妻中文字幕一二三四区| 成人手机av| www.自偷自拍.com| 2018国产大陆天天弄谢| 99re6热这里在线精品视频| 午夜日韩欧美国产| 伊人亚洲综合成人网| 国产日韩欧美视频二区| 国产成人av教育| 国产日韩欧美在线精品| 亚洲av电影在线观看一区二区三区| 黄色一级大片看看| 老司机亚洲免费影院| 大型av网站在线播放| 亚洲成人免费电影在线观看 | 国产精品香港三级国产av潘金莲 | 国产精品av久久久久免费| 国产老妇伦熟女老妇高清| 大香蕉久久成人网| 十八禁高潮呻吟视频| 亚洲精品国产一区二区精华液| 亚洲av美国av| 精品久久久精品久久久| 亚洲黑人精品在线| 国产高清视频在线播放一区 | 中文乱码字字幕精品一区二区三区| 免费高清在线观看视频在线观看| 男人舔女人的私密视频| 成人三级做爰电影| 十八禁网站网址无遮挡| 亚洲自偷自拍图片 自拍| 18在线观看网站| 亚洲国产成人一精品久久久| 亚洲国产欧美在线一区| 亚洲男人天堂网一区| 精品国产国语对白av| 欧美精品一区二区大全| 妹子高潮喷水视频| 国产精品亚洲av一区麻豆| 国产午夜精品一二区理论片| 丁香六月欧美| 交换朋友夫妻互换小说| 超碰97精品在线观看| e午夜精品久久久久久久| 一区福利在线观看| 中文字幕av电影在线播放| 成年美女黄网站色视频大全免费| 在线观看www视频免费| 99久久精品国产亚洲精品| 欧美黑人精品巨大| 少妇猛男粗大的猛烈进出视频| 在线看a的网站| 另类精品久久| 狂野欧美激情性xxxx| 人妻一区二区av| av电影中文网址| 超色免费av| 97在线人人人人妻| 久久影院123| 国产av精品麻豆| 久久国产精品影院| 少妇人妻久久综合中文| 久久天堂一区二区三区四区| 精品国产国语对白av| 麻豆av在线久日| 久久久久久久国产电影| www.精华液| 捣出白浆h1v1| 在现免费观看毛片| 美女主播在线视频| 国产成人91sexporn| 亚洲人成网站在线观看播放| 好男人视频免费观看在线| 男的添女的下面高潮视频| 中文字幕亚洲精品专区| 日本猛色少妇xxxxx猛交久久| 黄色视频不卡| 欧美精品啪啪一区二区三区 | 可以免费在线观看a视频的电影网站| 亚洲,欧美精品.| 人妻人人澡人人爽人人| 国产精品偷伦视频观看了| 亚洲精品一区蜜桃| 久久影院123| 亚洲九九香蕉| 超碰97精品在线观看| 国产精品人妻久久久影院| 精品人妻熟女毛片av久久网站| 欧美精品啪啪一区二区三区 | 精品欧美一区二区三区在线| 国产在线视频一区二区| 手机成人av网站| 女警被强在线播放| 另类亚洲欧美激情| 一本久久精品| 后天国语完整版免费观看| 亚洲第一av免费看| xxxhd国产人妻xxx| 母亲3免费完整高清在线观看| 在线亚洲精品国产二区图片欧美| 亚洲精品国产一区二区精华液| av有码第一页| 侵犯人妻中文字幕一二三四区| 日本vs欧美在线观看视频| 黄片小视频在线播放| 高清欧美精品videossex| 午夜av观看不卡| 美女中出高潮动态图| 少妇猛男粗大的猛烈进出视频| 日韩av在线免费看完整版不卡| 国产欧美日韩一区二区三区在线| 夫妻午夜视频| 精品国产一区二区三区久久久樱花| 久久久精品区二区三区| 狂野欧美激情性xxxx| 国产伦理片在线播放av一区| 久久99热这里只频精品6学生| 亚洲av日韩精品久久久久久密 | 搡老岳熟女国产| 自拍欧美九色日韩亚洲蝌蚪91| 精品视频人人做人人爽| 搡老乐熟女国产| 亚洲成av片中文字幕在线观看| 国产成人av激情在线播放| 久久精品人人爽人人爽视色| 一本综合久久免费| 欧美精品人与动牲交sv欧美| 久久精品久久久久久久性| 免费观看a级毛片全部| 十八禁高潮呻吟视频| 2018国产大陆天天弄谢| 亚洲av美国av| 大片免费播放器 马上看| 精品免费久久久久久久清纯 | 国产午夜精品一二区理论片| 亚洲精品久久午夜乱码| 欧美日韩综合久久久久久| a 毛片基地| 免费观看a级毛片全部| 亚洲av成人不卡在线观看播放网 | 免费av中文字幕在线| 99re6热这里在线精品视频| 99久久99久久久精品蜜桃| 国产成人精品久久久久久| 亚洲欧美激情在线| 操美女的视频在线观看| 国产在线视频一区二区| 久久久久国产精品人妻一区二区| 首页视频小说图片口味搜索 | www日本在线高清视频| 国产成人av教育| 人妻一区二区av| 精品福利观看| 日韩大片免费观看网站| 岛国毛片在线播放| 亚洲成人免费电影在线观看 | 国产在线视频一区二区| 97精品久久久久久久久久精品| 久久久久视频综合| 久久久国产精品麻豆| 妹子高潮喷水视频| 欧美少妇被猛烈插入视频|