• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compressive Sensing Sparse Sampling Method for Composite Material Based on Principal Component Analysis

    2018-05-25 06:39:39,,1,2,,

    , , 1,2,,

    1.Jiangsu Engineering Centre of Network Monitoring,Nanjing University of Information Science and Technology,Nanjing 210044,P.R.China;

    2.Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology,Nanjing University of Information Science and Technology,Nanjing 210044,P.R.China;

    3.School of Computer and Software,Nanjing University of Information Science and Technology,

    Nanjing 210044,P.R.China;

    4.School of Information and Control,Nanjing University of Information Science and Technology,Nanjing 210044,P.R.China

    0 Introduction

    Principal component analysis (PCA)is one of the most commonly used multivariate statistical techniques[1]It uses an orthogonal mathematical transformation to convert the observed values of a set of possible dependent variables to principal components,the values that are not linearly related .The number of principal components is less than or equal to the number of original variables.Only when the data is combined with normal distribution,the principal component is independent from each other.PCA is sensitive to the cor-relation level between the original variables.It is also known as Hotelling transform,discrete KLT transform or proper orthogonal decomposition in different fields.

    By projecting the data into the low dimensional space and obtaining the most possible features of the original data,PCA can be used to deal with the data of high dimension,noisy and high correlation.So far it has developed into a kind of exploratory data analysis and prediction model in terms of feature extraction using covariance or correlation matrix decomposition or using a set of matrix signal values.In recent decades,scholars have looked into the characteristics of PCA extraction and dimension reduction in different disciplines[2-4].Wold et al.[5]used cross examination to determine the number of PCA principal components,and a PCA-method for model prediction.Ku[6]introduced"time lag transfer"to statistical monitoring,and developed the monitoring method of the previous static PCA to a dynamic PCA method,which was applied to the detection of the disturbance of the dynamic multivariable system.

    As long as the signals are sparse,through the sampling rate of compressive sensing (CS)is far lower than that of the traditional Nyquist sampling theorem[7-9].The theory must be premised on the sparsity of the signal,and PCA can be used for data dimensionality reduction.Masiero et al.[10]used PCA to find transformations to sparsify signals for CS to retrieve.They dynamically adapted non-stationary real-world signals through the online estimation on their correlation properties in space and time,and then utilized PCA to to derive the transformations for CS.Li et al.[11]proposed an adaptive block compressive sensing based on edge detection at the encoder,and a smoothed projected Landweber (SPL)reconstruction algorithm based on principal component analysis at the decoder.The reconstruction algorithm used PCA to train a dictionary adapting to image structure with hard thresholding,thus the image blocking effects were eliminated effectively and the reconstructed image quality was improved.Dietz et al.[12]presented a real-time dynamic image reconstruction technique, which combined CS and PCA to achieve real-time adaptive radiotherapy with the use of a linac-magnetic resonance imaging system.Li et al.[13]proposed an efficient image fusion framework for infrared and visible images on the basis of robust principal component analysis(RPCA)and CS.Compared with several popular fusion algorithms,this framework could extract the infrared targets while retaining the background information in the visible images.

    Therefore,the compressive sensing method based on PCA is proposed to provide a better so-lution to sparse data representation problem of huge amount of ultrasonic phased array signal.

    1 Principal Component Analysis

    PCA is to reduce the dimension of the original data space by constructing a new set of latent variables,and then extract statistical features from the mapping space,therefore to understand the spatial characteristics of the original data.The variables of the new mapping space are composed of linear combination of the original data variables,which greatly reduces the dimension of the projection space.The number of new variables is less than that of the original variables,while still carry useful information of the original data as much as possible.Its contents include the definition and acquisition of main elements,as well as the principal component of the data reconstruction.Since the statistical characteristic vectors of the projection space are orthogonal to each other,the correlations between variables are eliminated,and the complexity of the original process characteristic analysis is simplified.Therefore,this method can effectively identify the most important elements and structures in the data,remove the noise and redundancy,reduce the original complex data,and reveal the simple structure behind the complex data.

    Given the original datax= (xij)N×M,xis standardized to eliminate the dimensional effects,and the expression is shown as

    The correlation coefficient matrix is calculated between the data variables after standardized operation,and the covariance matrixRis

    where the elementrjkrepresents the correlation coefficient of the original variablex′jandx′k,andrjk=rkj,shown as

    Jacobi method is used to solve the character-istic equationand the eigenvalues of the covariance matrix and the corresponding eigenvectors are obtained.Then it is sorted according to the size of the order,and the characteristic value is recorded as[λ1,λ2,…,λm],and the corresponding feature vector is recorded as[p1,p2,…,pm]

    Then the main elements are calculatedti=Xpi,where the principal componenttion behalf of the projection of the data matrixxon the direction of the load vector corresponding to the main element.

    The contribution rate of each principal com-ponents is calculated asas well as the cumulative contribution rate1,2,…,m.

    In general,the 1th,2th,kth principal component corresponding to the eigenvalues ofλ1,λ2,…,λkwill be selected,where the cumulative contribution rate of eigenvalues is between 85%and 95%.

    In addition,according to the needs,the corresponding dimension (that is,the number of principal components)is selected to composition of the transformation matrix

    Finally,the new data after dimension reduction is calculated as

    2 Compressive Sensing Method Based on PCA

    CS is a novel theory of sampling and restoration for sparse signal[7-9].As long as the original signals are sparse in the time domain or under some kind of orthogonal transform,the signals can be sampled in a low sampling rate,and the original signals can be reconstructed with high probability.

    2.1 Sparse representation of signals

    CS is based on the premise that the signal must be sparse.When sparsifying the signals,the appropriate sparse transform base according to the signal characteristics is necessary to be selected.

    Suppose an originalxsignal with the length ofN,the number of signal isM,aN×Mdimension matrix can be constructed with the original signal,because there are mutual relationship between the amplitude of each signal in each time point.According to the principal component analysis,the covariance matrix obtained ofN×Ndimension can be used as the sparse transform base for sparse representation of signal.Then,the original signalxcan be expressed as

    whereΨ= [ψ1,ψ2,…,ψN]is the transformation matrix ofN×Ndimension,Θthe sparse coefficient vector obtained byxaccording to the principal component analysis,and must meet the following formula

    PCA reduces a kind of high dimensional data to low dimensional data.Then,a set of new variables in low dimensional replace the original variables in high dimension satisfies the conditions associated with the original ones.Therefore,the new variables can carry the maximum information of the original ones.PCA can be used to make sparse representation of the signals.Compared with the commonly used sparse representation method,the sparse signals obtained by the proposed method is more closely related to the original signals.

    According to Section 1,the sparse coefficient vector of original signal is calculated as

    whereΨis the transformation of matrixAin Section 1.

    2.2 Projection observation of signals

    The core of the compressive sensing theory is to design the measurement matrix,and directly determine whether the compressive sensing can be implemented successfully.If the signalxhas a sparse representation under an orthogonal transformΨ,a measurement matrixΦ,Ψ∈RM×N,which is not related to the transform baseΨ,and a linear measurement ofMdimension can be obtained

    Suppose the production measurement vector isy=[y1,y2,...,yM],then

    In order to restore the original signal with high probability,the production measurement matrixΦ,which is not related to the sparse transform baseΨand satisfied with the restricted isometry property,is needed to be constructed to make production transformation of the signal.Gauss random measurement matrix is not related to the majority of the fixed orthogonal base and satisfies the restricted isometry property,so the Gauss matrix can be used as the projection observation matrix[14-16].For the ultrasonic phased array signal,the Gauss random measurement matrix is multiplied with the sparse coefficient of the phased array signal,and the observation vector of the signal can be obtained.

    Suppose the measurement matrixΦisM×Ndimension,andΦ∈RM×N,then the general term

    Each element in the matrix is independent to the Gauss distribution with the mean value of 0,and the varianceThis matrix is not relat-ed to the vast majority of sparse signals,and requires less measurement values in the reconstruction.Gauss random measurement matrix is a matrix with very strong randomicity but high uncertainty.For a signal with a length ofNand a sparse degree ofK,onlyM≥cKlogmeas-ured values are needed to recover the original signal with high probability,wherecis a very small constant.

    2.3 Sparse reconstruction of signals

    During the process of compressive sensing,reconstructing the signalxfrom the observationsyis the inverse problem related to compression sampling,and is called signal reconstruction.By solving Eq.(11),the reconstructed signal can be obtained.This problem is underdetermined with infinite solutions.Candes et al.proved that the underdetermined problem can be solved by solving the minimuml0-norm[13],that is,

    Eq.(13)is a linear programming problem,and is also a convex optimization problem.Taking the reconstruction error into account,it is converted into a minimuml1-norm problem as

    During the process of signal reconstruction,convex optimization algorithm and greedy iterative algorithm are commonly used[17-18].One kind of algorithm is based on convex optimization,mainly by increasing the constraint to obtain the sparsest.And commonly used algorithms are basis pursuit algorithm and gradient projection sparse reconstruction algorithm.The other kind of algorithm is based on greedy iterative algorithm,mainly by the combination of local optimization method to find the non-zero coefficients,in order to approach the original signal.Commonly used algorithms are matching pursuit algorithm and orthogonal matching pursuit algorithm.

    3 Experiment and Results

    A composite plate is the experimental object.There are nine piezoelectric elements in the linear array arranged on the plate with an equal interval of 12mm.In signal acquisition,data collection points are 1 024,and sampling frequency isfs=1 000 000Hz.

    One array element is set as a drive to transmit signal,and the other eight elements as the sensor to receive the reflection signal.Each array element stimulates the signal in turns,then each degree corresponds to 9×8signals,and 9×8×181sets of data can be obtained.The 90°direction of the data emitted by No.0array element and received by No.1array element is selected as the experimental data,and the processing method of other angles is consistent with this.The time domain waveform of the data set is shown in Fig.1.

    Fig.1 Waveform of original signal in time domain

    At first,PCA is used to deal with the waveform obtained by the 90°direction of the phased array signal emitted by No.0array element and received by No.1array element.The sparse representation of the original signal is obtained,as shown in Fig.2.It can be seen that the sparse coefficient of the phased array signal after PCA transform is mostly zero or close to zero,which is consistent with the characteristic of sparse signal.

    Fig.2 Sparse coefficient after principal component analysis

    Then,the length of utrasonic phased array data isN=1 200,and the number of observationsM=400is selected to complete the operation of signal projection observation,and the waveform is shown in Fig.3.

    Fig.3 Signal obtained by projection observation

    Finally,the basis pursuit algorithm is used to deal with the ultrasonic phased array signal,and the reconstructed signals obtained are shown in Fig.4.

    4 Experimental Error Analysis

    The reconstructed signal based on orthogonal matching pursuit algorithm has some differences in the signal waveform,compared with the original phased array signal.In order to analyze the effect of the reconstruction algorithm more accurately,the reconstructed error with different reconstruction algorithm is displayed numerically,as shown in Table 1.The absolute errorΔVand the relative errorδare calculated as below

    Fig.4 The signal reconstruction based on basis pursuit algorithm

    whereV0is the amplitude of reconstructed signal at the point of maximum amplitude deviation,andV1the amplitude of original phased array signal at the same point.

    Table 1 Reconstruction error

    In Table 1,GPSR is gradient projection for sparse reconstruction algorithm,and OMP is orthogonal matching pursuit algorithm.Fig.5shows the reconstructed signal obtained by BP,GPSR and OMP,respectively.

    Table 2shows the error comparison of some common transform base and the principal component analysis method.

    Fig.5 The signal reconstruction based on BP,GPSR and OMP

    Table 2 The error comparison

    In Table 2,DCT is discrete cosine transform,and DFT is discrete fourier transform.

    The analysis of experimental error indicates that the relative error is relatively lower than that of commonly used method.That is,the proposed method can be applied to signal sparse representation of compressive sensing.

    5 Conclusions

    This paper studies the compressive sensing sparse sampling method based on PCA.This method not only solves the difficulty in storage and processing due to the large amount of data obtained by ultrasonic phased array structural health monitoring,but also effectively improves the relationship between the original signal and the signal after sparse representation.And the experimental result shows that PCA can be used to reconstruct the signal obtained from the phased array structure health monitoring after sparse representation of the signal with small reconstruction error.In future research,we can choose more optimized projection observation matrix,and more efficient reconstruction algorithm to reconstruct the ultrasonic phased array signal.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China(Nos.51405241,61672290),and the Jiangsu Government Scholarship for Overseas Studies and the PAPD Fund.

    [1] LIU S,GU G,ZHANG Q,et al.Principal component analysis algorithm in video compressed sensing[J].International Journal for Light and Electron Optics,2014,125(3):1149-1153.

    [2] MASIERO R,QUER G,MUNARETTO D,et al.Data acquisition through joint compressive sensing and principal component analysis[C]∥IEEE Conference on Global Telecommunications.USA:IEEE,2009 :1271-1276

    [3] ZHANG Y,XU C,LI C,et al.Wood defect detection method with PCA feature fusion and compressed sensing[J].Journal of Forestry Research,2015,26(3):745-751.

    [4] SINGH A,SHARMA L N,DANDAPAT S.Multichannel ECG data compression using compressed sensing in eigenspace[J].Computers in Biology &Medicine,2016,73:24-37.

    [5] WOLD S.Cross-validatory estimation of the number of components in factor and principal components models[J].Technometrics,1978,20(4):397-405.

    [6] KU W,STORER R H,GEORGAKIS C.Disturbance detection and isolation by dynamic principal component analysis[J].Chemometrics and Intelligent Laboratory Systems,1995,30(1):179-196.

    [7] DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.

    [8] YIN H,LIU Z.Survey of compressed sensing[J].Control and Decision,2013,28(10):1441-1445.

    [9] SUN Y J,GU F H.Compressive sensing of piezoelectric sensor response signal for phased array structural health monitoring[J].International Journal of Sensor Networks,2017,23(4):258-264.

    [10]LI Ran, GAN Zongliang, ZHU Liangchang.Smoothed projected Landweber image compressed sensing reconstruction using hard thresholding based on principal components analysis[J].Journal of Image & Graphics,2013(5):504-514.(in Chiense).

    [11]DIETZ B,YIP E,YUN J,et al.Real‐time dynamic MR image reconstruction using compressed sensing and principal component analysis(CS-PCA):Demonstration in lung tumor tracking[J].Medical Physics,2017,44(8):3978

    [12]LI J,SONG M,PENG Y.Infrared and visible image fusion based on robust principal component analysis and compressed sensing[J].Infrared Physics &Technology,2018,89:129-139.

    [13]CANDES E.The restricted isometry property and its implications for compressed sensing[J].C R Math Acad Sci Paris 2008,346(9-10):589-592.

    [14]ZHANG B Y,CHEN H H,WANG R C,et al.New random signal generating method of multiple excitation vibration system based on white noises(in chinese)[J].Journal of Nanjing University of Aeronautics & Astronautics,2017,49(6):839-844.

    [15]CHEN T,ZHU G,LIU Y.Optimization research of Gauss matrices in compressive sensing[J].Application Research of Computers,2014,31(12):3599-3602.

    [16]QI M X,CHEN S J,ZHOU S P,et al.Crack Detection in Pipes with Different Bend Angles Based on Ultrasonic Guided Wave[J].Transactions of Nanjing University of Aeronautics and Astronautics,2017,34(3):318-325.

    [17]LI Y,HE S.Blind signal separation algorithm for non-negative matrix factorization based on projected gradient[J].Computer Engineering,2016,42(2):104-107.

    [18]ZHU Y,ZHU Y,PENG Y.Adaptive compressive sensing and tracking of dynamic sparse spectrum[J].Journal of Signal Processing,2016,32(3):341-348.

    人妻制服诱惑在线中文字幕| 久久久精品欧美日韩精品| 久久天躁狠狠躁夜夜2o2o| 日本黄色片子视频| 免费一级毛片在线播放高清视频| 精品一区二区三区视频在线观看免费| 久久亚洲精品不卡| 毛片一级片免费看久久久久 | 99久久九九国产精品国产免费| 男人舔奶头视频| 变态另类丝袜制服| 人妻少妇偷人精品九色| 内地一区二区视频在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲乱码一区二区免费版| 五月玫瑰六月丁香| 久久久精品欧美日韩精品| 亚洲av第一区精品v没综合| 俺也久久电影网| 亚洲欧美清纯卡通| 毛片女人毛片| 天天躁日日操中文字幕| 国内精品宾馆在线| 久久久久国内视频| 国产精品久久久久久av不卡| 成人午夜高清在线视频| 69av精品久久久久久| 亚洲七黄色美女视频| 欧美成人性av电影在线观看| 69人妻影院| 桃红色精品国产亚洲av| 亚洲一区高清亚洲精品| 亚洲久久久久久中文字幕| av专区在线播放| 又黄又爽又免费观看的视频| 三级国产精品欧美在线观看| 亚洲精品日韩av片在线观看| www日本黄色视频网| 日本-黄色视频高清免费观看| 国产视频一区二区在线看| 亚洲一区二区三区色噜噜| 国产精品久久久久久久电影| 日本成人三级电影网站| 国产老妇女一区| 一区二区三区激情视频| 三级国产精品欧美在线观看| 色哟哟哟哟哟哟| 国产熟女欧美一区二区| 最新中文字幕久久久久| 亚洲精品影视一区二区三区av| 欧美成人免费av一区二区三区| 欧美+日韩+精品| 亚洲美女黄片视频| 国产伦人伦偷精品视频| 中出人妻视频一区二区| 欧美+日韩+精品| 日韩精品青青久久久久久| 大型黄色视频在线免费观看| aaaaa片日本免费| 一本久久中文字幕| 夜夜爽天天搞| 欧美黑人欧美精品刺激| 国产一区二区在线av高清观看| 日韩欧美免费精品| 一夜夜www| 亚洲精品久久国产高清桃花| 在线免费十八禁| 桃色一区二区三区在线观看| 成年女人毛片免费观看观看9| 国产亚洲欧美98| 久久久久精品国产欧美久久久| 国产色婷婷99| 亚洲成人久久性| 欧美黑人欧美精品刺激| 欧美xxxx性猛交bbbb| 人人妻人人看人人澡| 精品人妻1区二区| 18禁在线播放成人免费| 欧洲精品卡2卡3卡4卡5卡区| 国产极品精品免费视频能看的| 五月玫瑰六月丁香| 精品无人区乱码1区二区| 中国美白少妇内射xxxbb| 亚洲乱码一区二区免费版| 一夜夜www| 校园春色视频在线观看| 99视频精品全部免费 在线| 欧美黑人欧美精品刺激| 亚洲人成伊人成综合网2020| 成人国产综合亚洲| 亚州av有码| 1024手机看黄色片| 小蜜桃在线观看免费完整版高清| 精品久久久久久,| 两个人视频免费观看高清| 亚洲久久久久久中文字幕| av天堂中文字幕网| 有码 亚洲区| 很黄的视频免费| 亚洲,欧美,日韩| 午夜福利欧美成人| 亚洲av免费高清在线观看| 看片在线看免费视频| 男人舔奶头视频| 国内毛片毛片毛片毛片毛片| 免费黄网站久久成人精品| av天堂中文字幕网| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人成伊人成综合网2020| 99久久九九国产精品国产免费| 一进一出好大好爽视频| 狂野欧美白嫩少妇大欣赏| 国产午夜精品论理片| 美女免费视频网站| 国产亚洲av嫩草精品影院| 免费在线观看日本一区| 亚洲成人精品中文字幕电影| 桃红色精品国产亚洲av| 欧美日本视频| 少妇被粗大猛烈的视频| 真人一进一出gif抽搐免费| 麻豆一二三区av精品| 亚洲真实伦在线观看| а√天堂www在线а√下载| 蜜桃久久精品国产亚洲av| 在线观看免费视频日本深夜| 丰满乱子伦码专区| 欧美3d第一页| 日本黄色视频三级网站网址| a级毛片a级免费在线| 啦啦啦啦在线视频资源| 亚洲电影在线观看av| 精品久久久久久久久av| 成人亚洲精品av一区二区| 女同久久另类99精品国产91| 亚洲最大成人av| 老司机福利观看| 亚洲专区国产一区二区| a级毛片免费高清观看在线播放| 日本黄色片子视频| 九九在线视频观看精品| 中文字幕熟女人妻在线| 国产在视频线在精品| 12—13女人毛片做爰片一| 乱人视频在线观看| 日韩欧美国产在线观看| 日本与韩国留学比较| 亚洲黑人精品在线| 国产精品电影一区二区三区| 男女下面进入的视频免费午夜| a在线观看视频网站| 精品久久久久久久人妻蜜臀av| 国产精品无大码| 国产精品久久视频播放| 国产精品不卡视频一区二区| 99久久中文字幕三级久久日本| 国产人妻一区二区三区在| 亚洲无线观看免费| 亚洲精品色激情综合| 国内精品久久久久久久电影| 亚洲人成网站在线播放欧美日韩| 亚洲精品粉嫩美女一区| 老司机午夜福利在线观看视频| 在线观看免费视频日本深夜| 在线观看美女被高潮喷水网站| 桃色一区二区三区在线观看| 永久网站在线| av视频在线观看入口| 久久国产精品人妻蜜桃| 精品人妻视频免费看| 俺也久久电影网| 国产精品人妻久久久久久| www日本黄色视频网| 久久国内精品自在自线图片| 看黄色毛片网站| 亚洲国产精品sss在线观看| 国产精品久久视频播放| 国产成人一区二区在线| 亚洲av免费在线观看| 日本撒尿小便嘘嘘汇集6| 国产黄片美女视频| 国产精品精品国产色婷婷| 日本三级黄在线观看| 12—13女人毛片做爰片一| 国产伦人伦偷精品视频| 人妻丰满熟妇av一区二区三区| 国产男靠女视频免费网站| 久久午夜福利片| 亚洲成人中文字幕在线播放| 午夜免费激情av| 国产精品人妻久久久久久| 国产高清激情床上av| 成人性生交大片免费视频hd| 免费av不卡在线播放| 久久久久久国产a免费观看| 中文字幕免费在线视频6| 国内精品美女久久久久久| 免费大片18禁| 可以在线观看毛片的网站| 午夜福利欧美成人| 国产视频内射| 99久久久亚洲精品蜜臀av| 日本a在线网址| 国产在线精品亚洲第一网站| 少妇人妻一区二区三区视频| 久99久视频精品免费| 成人国产综合亚洲| 亚洲最大成人av| 天堂影院成人在线观看| 最好的美女福利视频网| 能在线免费观看的黄片| 在线天堂最新版资源| 俄罗斯特黄特色一大片| 99热精品在线国产| 国产精品一及| 成人亚洲精品av一区二区| 一区二区三区高清视频在线| 免费大片18禁| 天堂av国产一区二区熟女人妻| 3wmmmm亚洲av在线观看| 亚洲成a人片在线一区二区| 小说图片视频综合网站| 乱人视频在线观看| 99久久精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 能在线免费观看的黄片| 欧美三级亚洲精品| 性插视频无遮挡在线免费观看| 国产精品野战在线观看| 亚洲18禁久久av| 如何舔出高潮| 国产av在哪里看| 午夜福利视频1000在线观看| 精品福利观看| 91在线精品国自产拍蜜月| 欧美潮喷喷水| 亚洲av免费在线观看| 老司机福利观看| 日韩人妻高清精品专区| 亚洲最大成人手机在线| 国产黄片美女视频| av在线天堂中文字幕| 十八禁国产超污无遮挡网站| 3wmmmm亚洲av在线观看| 干丝袜人妻中文字幕| 两个人的视频大全免费| 最后的刺客免费高清国语| 国产伦在线观看视频一区| 免费高清视频大片| 黄色丝袜av网址大全| 欧美日本亚洲视频在线播放| 国产麻豆成人av免费视频| 在线观看66精品国产| 日韩欧美免费精品| 亚洲国产日韩欧美精品在线观看| 色哟哟·www| 日本在线视频免费播放| 婷婷色综合大香蕉| 午夜激情福利司机影院| 免费在线观看影片大全网站| 嫩草影院入口| 亚洲国产精品合色在线| 免费看美女性在线毛片视频| 午夜免费男女啪啪视频观看 | 国产成年人精品一区二区| 91精品国产九色| 日本免费一区二区三区高清不卡| 毛片女人毛片| 亚洲中文字幕日韩| 最后的刺客免费高清国语| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久久av| 最好的美女福利视频网| 精品久久久久久久久久免费视频| 人妻制服诱惑在线中文字幕| 国产精品av视频在线免费观看| 国产精品美女特级片免费视频播放器| 天天一区二区日本电影三级| 国产精品一区二区三区四区久久| 国产69精品久久久久777片| 欧美精品啪啪一区二区三区| www.色视频.com| 国产精品一区www在线观看 | 欧美bdsm另类| 免费人成视频x8x8入口观看| 亚洲久久久久久中文字幕| av天堂中文字幕网| 88av欧美| 国产高清三级在线| 久久久成人免费电影| 老司机午夜福利在线观看视频| 日韩一本色道免费dvd| 久久九九热精品免费| 99久久九九国产精品国产免费| 欧美性感艳星| 亚洲精华国产精华液的使用体验 | 一级a爱片免费观看的视频| 国产成人av教育| 精品一区二区三区人妻视频| 男人的好看免费观看在线视频| 免费无遮挡裸体视频| 国内毛片毛片毛片毛片毛片| 中国美白少妇内射xxxbb| 色哟哟·www| 亚洲人成网站高清观看| 美女高潮喷水抽搐中文字幕| 久久精品国产鲁丝片午夜精品 | 亚洲人成网站高清观看| 免费不卡的大黄色大毛片视频在线观看 | 丝袜美腿在线中文| 日韩精品中文字幕看吧| 精品免费久久久久久久清纯| 特级一级黄色大片| 少妇裸体淫交视频免费看高清| 午夜免费男女啪啪视频观看 | 国产真实乱freesex| 国产视频一区二区在线看| 一个人观看的视频www高清免费观看| 亚洲性久久影院| 国产精品爽爽va在线观看网站| 联通29元200g的流量卡| АⅤ资源中文在线天堂| 亚洲av成人精品一区久久| 亚洲综合色惰| 一本精品99久久精品77| 91麻豆精品激情在线观看国产| 亚洲久久久久久中文字幕| 日本色播在线视频| 婷婷丁香在线五月| 亚洲精品日韩av片在线观看| 欧美成人免费av一区二区三区| 午夜影院日韩av| 非洲黑人性xxxx精品又粗又长| 欧美一区二区精品小视频在线| 国产亚洲精品久久久com| 欧美日韩综合久久久久久 | 91在线观看av| 精品久久国产蜜桃| 国产在线男女| 国产精品自产拍在线观看55亚洲| 日韩欧美在线乱码| 深爱激情五月婷婷| 91狼人影院| 中文字幕熟女人妻在线| 亚洲性久久影院| 美女xxoo啪啪120秒动态图| 波多野结衣巨乳人妻| 变态另类丝袜制服| 日日夜夜操网爽| 97超视频在线观看视频| 国产精品一区二区免费欧美| 亚洲一级一片aⅴ在线观看| 亚洲第一电影网av| 色综合亚洲欧美另类图片| 蜜桃久久精品国产亚洲av| 精品久久久久久久久亚洲 | 免费电影在线观看免费观看| 久久国产精品人妻蜜桃| 亚州av有码| 久久人妻av系列| 色噜噜av男人的天堂激情| 中出人妻视频一区二区| 3wmmmm亚洲av在线观看| 欧美高清性xxxxhd video| 色噜噜av男人的天堂激情| 91麻豆av在线| 精品国产三级普通话版| 在线播放国产精品三级| 丰满人妻一区二区三区视频av| 国产av一区在线观看免费| 成人国产麻豆网| 一卡2卡三卡四卡精品乱码亚洲| 无遮挡黄片免费观看| 亚洲成a人片在线一区二区| av天堂在线播放| 亚洲人成伊人成综合网2020| 午夜影院日韩av| 夜夜夜夜夜久久久久| 变态另类成人亚洲欧美熟女| 高清毛片免费观看视频网站| 999久久久精品免费观看国产| 嫁个100分男人电影在线观看| 在线观看66精品国产| 欧美xxxx黑人xx丫x性爽| 国产黄片美女视频| 99riav亚洲国产免费| 亚洲专区国产一区二区| 男插女下体视频免费在线播放| 女同久久另类99精品国产91| 亚洲四区av| 成年版毛片免费区| 嫩草影院入口| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看 | 欧美xxxx黑人xx丫x性爽| 亚洲专区国产一区二区| 美女cb高潮喷水在线观看| 日韩中文字幕欧美一区二区| 日韩亚洲欧美综合| 亚洲 国产 在线| 热99re8久久精品国产| 波多野结衣高清无吗| 在线看三级毛片| 国内少妇人妻偷人精品xxx网站| 亚洲成人久久爱视频| 嫩草影视91久久| 少妇人妻精品综合一区二区 | 成人一区二区视频在线观看| 露出奶头的视频| 国产精品不卡视频一区二区| 最近中文字幕高清免费大全6 | 18禁在线播放成人免费| 亚洲国产精品合色在线| 日韩欧美精品免费久久| 国产一区二区三区视频了| 在线免费十八禁| 嫩草影视91久久| 久久99热6这里只有精品| 国产 一区精品| 特大巨黑吊av在线直播| 婷婷六月久久综合丁香| 亚洲人成网站高清观看| 国产精品日韩av在线免费观看| 赤兔流量卡办理| 我要看日韩黄色一级片| 久久久久国产精品人妻aⅴ院| 99久久无色码亚洲精品果冻| 亚洲国产高清在线一区二区三| 一本一本综合久久| 国产乱人视频| 又爽又黄无遮挡网站| 男女下面进入的视频免费午夜| 久久久久久久久久久丰满 | 成熟少妇高潮喷水视频| 他把我摸到了高潮在线观看| 午夜精品一区二区三区免费看| 长腿黑丝高跟| 中文资源天堂在线| 免费人成视频x8x8入口观看| 夜夜看夜夜爽夜夜摸| 99在线视频只有这里精品首页| 久久精品人妻少妇| 极品教师在线视频| 国产私拍福利视频在线观看| 可以在线观看毛片的网站| or卡值多少钱| 国产精品国产高清国产av| 欧美黑人巨大hd| 久久精品91蜜桃| 人妻少妇偷人精品九色| 日韩欧美精品v在线| 精品久久久久久成人av| 亚洲精品色激情综合| 国产av麻豆久久久久久久| 欧美性感艳星| 波野结衣二区三区在线| 午夜精品久久久久久毛片777| 欧美在线一区亚洲| 婷婷精品国产亚洲av| 国产亚洲av嫩草精品影院| 成人毛片a级毛片在线播放| 美女 人体艺术 gogo| 最好的美女福利视频网| 亚洲图色成人| 国产欧美日韩精品亚洲av| 在线国产一区二区在线| 国产高清有码在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 久久午夜亚洲精品久久| 人人妻,人人澡人人爽秒播| 特大巨黑吊av在线直播| 99热只有精品国产| 亚洲成av人片在线播放无| 女人十人毛片免费观看3o分钟| 国产亚洲精品久久久久久毛片| 亚洲欧美日韩高清专用| 日本与韩国留学比较| 九九爱精品视频在线观看| 亚洲自偷自拍三级| 中国美白少妇内射xxxbb| 一个人观看的视频www高清免费观看| 欧美三级亚洲精品| 国产视频内射| 色综合亚洲欧美另类图片| 成人一区二区视频在线观看| 搡老妇女老女人老熟妇| 亚洲电影在线观看av| 非洲黑人性xxxx精品又粗又长| 欧美日韩精品成人综合77777| 天堂影院成人在线观看| 91久久精品国产一区二区三区| 亚洲最大成人中文| 亚洲最大成人手机在线| 日本与韩国留学比较| 国产久久久一区二区三区| 久久精品影院6| 欧美日韩国产亚洲二区| 国产成人影院久久av| 大型黄色视频在线免费观看| 精品日产1卡2卡| 99久久中文字幕三级久久日本| 赤兔流量卡办理| 欧美在线一区亚洲| 一区二区三区高清视频在线| 91麻豆av在线| 国产男人的电影天堂91| 一个人看视频在线观看www免费| www.www免费av| 此物有八面人人有两片| 国产久久久一区二区三区| 九色成人免费人妻av| 久久精品国产亚洲av涩爱 | 少妇猛男粗大的猛烈进出视频 | 亚洲成人免费电影在线观看| 国产麻豆成人av免费视频| 色噜噜av男人的天堂激情| 人妻丰满熟妇av一区二区三区| 国内毛片毛片毛片毛片毛片| 在线天堂最新版资源| 午夜激情欧美在线| 国产主播在线观看一区二区| 国产伦精品一区二区三区四那| av视频在线观看入口| 三级国产精品欧美在线观看| 国产精品久久久久久久久免| 亚洲国产欧洲综合997久久,| 伊人久久精品亚洲午夜| 日韩亚洲欧美综合| 精品久久久久久久久亚洲 | 午夜亚洲福利在线播放| 动漫黄色视频在线观看| 麻豆av噜噜一区二区三区| 久久精品国产清高在天天线| 国产精品不卡视频一区二区| 性色avwww在线观看| 日日啪夜夜撸| 国产在视频线在精品| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲一级av第二区| 国产视频内射| 99热只有精品国产| 搞女人的毛片| 麻豆国产av国片精品| 亚洲国产精品sss在线观看| 久久久久久久亚洲中文字幕| 观看美女的网站| 成人特级黄色片久久久久久久| 成年免费大片在线观看| 88av欧美| 黄色配什么色好看| 熟女人妻精品中文字幕| 婷婷六月久久综合丁香| 欧美高清成人免费视频www| 一区二区三区免费毛片| 日本五十路高清| 久久人妻av系列| 免费观看人在逋| 国产免费一级a男人的天堂| 欧美日韩亚洲国产一区二区在线观看| 女生性感内裤真人,穿戴方法视频| 精品福利观看| 久久精品国产亚洲网站| 高清日韩中文字幕在线| 国产午夜精品论理片| 一本一本综合久久| 在线观看一区二区三区| 在线国产一区二区在线| 桃红色精品国产亚洲av| 一级a爱片免费观看的视频| 99精品在免费线老司机午夜| 毛片一级片免费看久久久久 | 毛片女人毛片| 久久精品国产自在天天线| 午夜视频国产福利| 国产成人影院久久av| 久久精品人妻少妇| 欧美日韩亚洲国产一区二区在线观看| 黄色女人牲交| 99精品在免费线老司机午夜| 俄罗斯特黄特色一大片| 国内少妇人妻偷人精品xxx网站| 成人毛片a级毛片在线播放| 很黄的视频免费| 少妇人妻一区二区三区视频| 久久久国产成人精品二区| 一级a爱片免费观看的视频| 色尼玛亚洲综合影院| 亚洲自偷自拍三级| 中文字幕高清在线视频| 在线观看美女被高潮喷水网站| 成年版毛片免费区| 毛片女人毛片| 日日啪夜夜撸| 欧美日韩亚洲国产一区二区在线观看| 我的女老师完整版在线观看| 免费一级毛片在线播放高清视频| 黄色视频,在线免费观看| 黄色一级大片看看| 美女cb高潮喷水在线观看| 97碰自拍视频| 精品午夜福利视频在线观看一区| 久久久久久伊人网av| 国产av麻豆久久久久久久| 校园人妻丝袜中文字幕| 女同久久另类99精品国产91| 成人av在线播放网站| 亚洲国产精品sss在线观看| 最近最新中文字幕大全电影3| 91在线精品国自产拍蜜月| 日韩精品青青久久久久久| 亚洲av成人精品一区久久| 久久亚洲真实| 国产精品无大码| 日日摸夜夜添夜夜添小说| 性色avwww在线观看|