• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Loading Localization by Small-Diameter Optical Fiber Sensors

    2018-05-25 06:39:38,

    , , ,

    1.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    0 Introduction

    In many industrial structures applied in aerospace and renewable energy(wind turbines),longer service life and lower costs are among major concerns[1].Replacing critical parts and high stress members by composite materials is a solution.Because of their higher specific strength and stiffness, composite structures are widely used[2-4].However,the damage mechanism of composite materials is much more complex compared with traditional isotropic metal materials.Furthermore,the mechanical properties of composite materials can be rapidly degraded when internal damage occurs[4].For composite structures,like those for aircraft,low velocity impacts can result in structural failure[5-6].Therefore,structural health monitoring (SHM)of structures needs to be performed in order to detect load,es-pecially dynamic load[7-8].

    Among the developed technologies,optical fiber sensors have attracted considerable attention because they are lightweight,and immune to electromagnetism.Furthermore,they are flexible with sufficient strength and can be embedded into composite laminates[9-10].Fiber optic sensors have played a major role in smart structure applications.Because of their characters of low-cost and wavelength-encoded linear response to the measured physical parameter,fiber Bragg grating(FBG)sensors have been extensively utilized in SHM[11-13].

    FBG sensors have been utilized in impact localization.Shrestha[5]studied localizing impact points on composite wing by analyzing signal acquired by FBG sensors.They trained data from 121points.The maximum localization error was 35mm.After they improved the algorithm,the maximum error was decreased to 28mm[6].Chan et al.[14]studied the bird strike in a composite UAV wing using FBG sensors.The average error was 33.6mm for the strike location estimate.Zhu[15]studied impact localization algorithm on an aluminum alloy structure by using a four-FBG sensing network.The maximum impact ordinate localization error was 9mm.Small-diameter FBG sensors are preferred since they affect less on mechanical performance of host structures[16-18].

    In this paper,load localization based on small-diameter FBG sensors is proposed.Two algorithms for load localization are discussed hereby.Feasibility of the proposed approach is evaluated through an experiment involving application of a 2-D FBG sensor array.An FBG interrogator is used to measure strain on the plate.The detected strain data are trained by the two different algorithm methods.The testing results are compared.

    1 Methodology

    Two different algorithms are proposed to recognize the load position on a structure.

    1.1 Sensing principle

    Small-diameter fiber Bragg grating(SDFBG)sensors are applied to structural strain monitoring here.The core diameter of the above-mentioned fiber sensor is 7μm,and the cladding is 80μm.

    A schematic of FBG sensor is presented in Fig.1.As a kind of reflective sensor,F(xiàn)BG perceives the change of parameters through the movement of resonant wavelength. When a broadband light transmits through the grating,the wavelengthλBthat satisfies the condition of Eq.(1)will be reflected

    Fig.1 Schematic of FBG sensing

    whereneffis the effective refractive index of FBG andΛthe period of grating.

    With the assumption of no temperature change,the Bragg wavelength will change with axial strain on optical fiber.The relative change in FBG wavelengthΔλwith axial strainεzcan be expressed as[19]

    whereSεis the relative strain sensitivity of a FBG sensor.For a common FBG,whose core is made of silicon oxide,the sensitivitySεis 0.784.

    1.2 Support vector machine theory

    Support vector machine(SVM)is a learning method based on statistical learning theory[20-21].It is successfully used in prediction,pattern detection and classification.

    Given a set of training data,i.e.{(x1,y1),… ,(xn,yn)},xi∈XRn,yi∈YR,xiis the input data andyithe corresponding target value.The SVM tries to estimate target values by using the following linear equation[22]

    wheref(x)is the output,wthen-dimensional vector andba scalar.

    By using a Vapnikε-insensitive loss function,the optimal linear regression function can be obtained as a solution to the following optimization[23]

    The following condition is to be satisfied

    The calculation can be simplified by converting the problem into the equivalent Lagrangian dual problem[22].

    With a kernel function asK(xi,x)=φ(xi)·φ(x),the estimation of the SVM is obtained byEq.(6)[24]

    whereai,are the Lagrange multipliers.

    1.3 Back propagation neural network algorithm

    BP neutral network has been one of the most widely used algorithms[25].The network contains at least three parts:One input layer,at least one hidden layer,and one output layer.The input layer receives and distributes the input pattern.The hidden layers capture the nonlinearities of the input/output relationship.The output layer produces the output pattern.The structure of the BP neural network is shown in Fig.2.

    Fig.2 Structure of a BP neural network

    In the network,every neuron in each layer receives total input from all of the neurons in the previous layer.The relation is shown[24]

    wherepjis the total input andNthe number of inputs to the unitjin next layers,wijthe weight coefficient,bjthreshold value,andxithe input from unitiin the preceding layer.Then the outputOjof unitjcan be calculated by processing the input through a transfer functionf(x)as

    Hereby the functionf(x)is optional and selected as

    Based on BP neutral network,the data are trained by a series of input/output pattern sets,which are repeatedly presented to the network.The error between the actual data and the predicted output is used to adjust the weight.The net-work will gradually learn the relationship between the input and the output by adjusting the weights.When the error of the test set reaches its minimum, network training completes and the weights are fixed.

    1.4 Load orientation

    As a load is applied to a structure,the structure deforms.SDFBG sensors on the structure will detect the deformation.Load positions are changed during the test.Sensors will record the deformation changes.Therefore,historical database is built on the basis of recorded data.Afterwards,the data will be trained by algorithm till the loading discriminate is accomplished.Consequently,the orientation is achieved.As the structure is loaded,the captured data is denoted as real-time data.After the real-time data are input,the load would be located.

    The discriminate procedure is sketched in Fig.3.

    Fig.3 Process of load orientation

    In training and discrimination procedures,SVM and BP algorithms are applied,respectively.Therefore,two orientation programs are set.The feasibility of the proposed methods is evaluated experimentally.

    2 Experiment

    Optical fiber-based sensors were applied to monitoring a designed carbon fiber reinforced plastic(CFRP)laminate.The size of the laminate is 600mm × 600mm × 2.16mm.The laminate is clamped on edges by specially designed clamps with a width of 30mm.

    Four small-diameter FBG sensors were glued on the back of the laminate,as shown in Fig.4.The working length of the used Bragg is 10mm.A local coordinate is set as shown in Fig.4.The positions and the original central wavelengths of the sensors are listed in Table 1.

    Fig.4 Schematic of sensors on the monitored laminate

    Table 1 Details of FBG sensors

    A FBG demodulator SI425from Micron Optics Inc was used to capture the central wavelength of the sensor array.The experimental setup is shown in Fig.5.The work area of the plate is 540mm × 540mm,which is divided into 12 parts on each side.

    Fig.5 Experimental setup

    As the temperature is constant,a weight of 3 kg is slowly put on the surface of the plate.The weight stands at different grids.The wavelengths of four sensors are recorded every time.Together 65signals are acquired.Among the detected data,58are taken as reference data at random.The left data,i.e.,seven data are chosen as tested ones.

    3 Results and Discussions

    The reference database is trained by using SVM and BP neutral network separately.The seven load localizations are predicted.The results are shown in Fig.6.

    Fig.6 Estimated load positions

    The details of the tested load positions are illustrated in Table 2.According to SVM results,the maximum location error are 13.669mm and 9.248mm inxandydirections,respectively.However,the maximum error is 1.124mm inxdirection,and 0.015mm inydirection based on the BP algorithm.

    Table 2 Tested load positions

    Obviously,the predictive position is closer to the actual location according to the results by the BP algorithm.The reason may lies in difference between the two training methods.When the data are trained by means of BP procedure,a neural network which has marvelous approximation would be built.The network is trained to calculate the weights which minimize the mean square error (MSE)between network prediction and training data.The weights are updated until it converges to a certain value.

    The training performance by BP is shown in Fig.7,where the best training performances are 0.040 0307and 0.001 989 8at 539and 897epoches,respectively.In our study,MSE of the training data is set to 0.002.It can be observed that MSE gradient descend till it approaches the set value.Training process takes about 4sfor 897iterations.

    4 Conclusions

    Loading position detective methods based on discrete strain have been proposed.The strain measurements are implemented by four small-diameter FBG sensors arranged in 2-D array.Development of the methods involves use of reference database by two different training techniques,namely SVM and BP neural network.The methods are evaluated experimentally on a 540mm ×540mm CFRP laminate.

    Experimental results indicate that the 2-D small-diameter FBG sensors can estimate the planar loading location even with less data.The maximum error is less than 14mm by using SVM method and could be limited to about 1mm by the BP neural network algorithm.The testing error difference between the two methods is due to the difference in the training.

    Fig.7 Training performance by BP procedure

    If the loading amplitudes are changed besides the loading positions,the predictive method is similar.However,more complicated algorithms are needed to predict both the loading positions and the loading amplitudes.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(Nos.11402112,51405223).

    [1] LICARI J,UGALDE-LOO C E,EKANAYAKE J B,et al.Comparison of the performance and stability of two torsional vibration dampers for variable-speed wind turbines[J].Wind Energy,2014,18(9):1545-1559.

    [2] VANNIAMPARAMBIL P A,CARMI R,KHAN F,et al.An active-passive acoustics approach for bond-line condition monitoring in aerospace skin stiffener panels[J].Aerospace Science and Technology,2015,43:289-300.

    [3] MOGHADDAM M K,BREEDE A,CHALOUPKA A,et al.Design,fabrication and embedding of microscale interdigital sensors for real-time cure monitoring during composite manufacturing[J].Sensors and Actuators A:Physical,2016,243:123-133.

    [4] NORRIS C J,WHITE J A P,MCCOMBE G,et al.Autonomous stimulus triggered self-h(huán)ealing in smart structural composites[J].Smart Materials and Structures,2012,21:094027.

    [5] SHRESTHA P,KIM J H,PARK Y,et al.Impact localization on composite wing using 1Darray FBG sensor and RMS/correlation based reference database algorithm[J].Composite Structures,2015,125:159-169.

    [6] SHRESTHA P,KIM J H,PARK Y,et al.Impact localization on composite structure using FBG sensors and novel impact localization technique based on error outliers[J].Composite Structures,2016,142:263-271.

    [7] WANG Z,WANG J,SUI Q,et al.Deformation reconstruction of a smart Geogrid embedded with fiber Bragg grating sensors[J].Measurement Science and Technology,2015,26(12):125202.

    [8] BAO T,BABANAJAD S K,TAYLOR T,et al.Generalized method and monitoring technique for shear-strain-based bridge weigh-in-motion[J].Journal of Bridge Engineering,2015,21(1):1-13.

    [9] MINAKUCHI S,TAKEDA N.Recent advancement in optical fiber sensing for aerospace composite structures[J].Photonic Sensors,2013,3(4):345-354.

    [10]LUYCKX G,VOET E,LAMMENS N,et al.Strain measurements of composite laminates with embedded fiber Bragg gratings:criticism and opportunities for research[J]Sensors,2011,11(1):384-408.

    [11]LAI M,F(xiàn)RIEDRICH K,BOTSIS J,et al.Evaluation of residual strains in epoxy with different nano/micro-fillers using embedded fiber Bragg grating sensor[J].Composites Science and Technology,2010,70:2168-2175.

    [12]RAZALI N F,BAKAR M H A,TAMCHEK N,et al.Fiber Bragg grating for pressure monitoring of full composite lightweight epoxy sleeve strengthening system for submarine pipeline[J].Journal of Natural Gas Science and Engineering,2015,26:135-141.

    [13]ZHU Nannan,ZHANG Jun.Multi-wavelength fiber sensor for measuring surface roughness based on laser scattering[J].Infrared & Laser Engineering,2016,45(5):225-231.(in Chinese)

    [14]CHAN Y P,JANG B W,KIM J H,et al.Bird strike event monitoring in a composite UAV wing using high speed optical fiber sensing system[J].Composite Science and Technology,2012,72(4):498-505.

    [15]ZHU X.Aluminum alloy material structure impact localization by using FBG sensors[J].Photonic Sensor,2014,4(4):344-348.

    [16]LIU R M,LIANG D K.Natural frequency detection of smart composite structure by small diameter fiber Bragg grating[J].Journal of Vibration and Control,2015,21:2896-2902.

    [17]TAKEDA S I,OGASAWARA T,YOKOZEKI T.Damage monitoring of polymer-lined carbon fibrereinforced plastic using small-diameter fibre Bragg grating sensors[J].Journal of Reinforced Plastics and Composites,2015,34(6):454-462.

    [18]LIU R M,LIANG D K,ASUNDI A.Small diameter fiber Bragg gratings and applications[J].Measurement,2013,46(9):3440-3448.

    [19]PANOPOULOU A,LOUTAS T,ROULIAS D,et al.Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures[J].Acta Astronautica,2011,69:445-457.

    [20]SPILLMAN W B,SIRKIS J S,GARDINER P T.Smart materials and structures:what are they?[J].Smart Materials and Structures,1996,5(3):245-254.

    [21]NAJAFI G,GHOBADIAN B,MOOSAVIAN A,et al.SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline–ethanol blended fuels[J].Applied Thermal Engineering,2016,95:186-203.

    [22]WIDODO A,YANG B S.Support vector machine in machine condition monitoring and fault diagnosis[J].Mechanical Systems and Signal Processing,2007,21:2560-2574.

    [23]BURGES C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):955-974.

    [24]XU Y,YOU T,DU C.An integrated micromechani-cal model and BP neural network for predicting elastic modulus of 3-D multi-phase and multi-layer braided composite[J].Composite Structures,2015,122:308-315.

    [25]WU B,HAN S,XIAO J,et al.Error compensation based on BP neural network for airborne laser ranging[J].Optik,2016,127:4083-4088.

    男人和女人高潮做爰伦理| 久久影院123| 九九在线视频观看精品| 超碰97精品在线观看| 美女xxoo啪啪120秒动态图| 国产一区二区三区av在线| 在线精品无人区一区二区三 | 日韩一本色道免费dvd| 国产 一区 欧美 日韩| 丝袜美腿在线中文| 深夜a级毛片| 中国美白少妇内射xxxbb| 少妇 在线观看| 亚洲欧洲日产国产| 欧美精品一区二区大全| 国产精品人妻久久久久久| 国产亚洲一区二区精品| 免费大片18禁| 亚洲欧洲日产国产| 亚洲精品,欧美精品| 欧美人与善性xxx| 观看免费一级毛片| 婷婷色av中文字幕| 国产精品熟女久久久久浪| 日本av手机在线免费观看| 免费电影在线观看免费观看| 日韩一本色道免费dvd| 国产成人精品福利久久| 国产色婷婷99| 国产欧美日韩一区二区三区在线 | 久久6这里有精品| 国产亚洲91精品色在线| 亚洲精品成人久久久久久| 亚洲第一区二区三区不卡| 蜜桃亚洲精品一区二区三区| 91久久精品国产一区二区三区| 天天躁夜夜躁狠狠久久av| 亚洲在久久综合| 国产高清三级在线| 极品教师在线视频| 精品人妻熟女av久视频| 精品一区二区三区视频在线| 在线观看美女被高潮喷水网站| 久久久成人免费电影| 一区二区三区精品91| 三级国产精品欧美在线观看| 亚洲国产日韩一区二区| 看黄色毛片网站| 久久精品国产亚洲av天美| 国产淫片久久久久久久久| 69av精品久久久久久| 亚洲精品国产成人久久av| 亚洲综合色惰| 精华霜和精华液先用哪个| 全区人妻精品视频| 亚洲av中文字字幕乱码综合| 国产精品蜜桃在线观看| 亚洲婷婷狠狠爱综合网| 少妇的逼好多水| 国产 一区精品| 国产成人精品久久久久久| 一个人看视频在线观看www免费| 久久精品国产自在天天线| 国产成人精品福利久久| 日韩电影二区| 别揉我奶头 嗯啊视频| 黄色视频在线播放观看不卡| 亚洲欧美清纯卡通| 久久97久久精品| 综合色av麻豆| 精品久久久久久久久亚洲| 欧美亚洲 丝袜 人妻 在线| 国产女主播在线喷水免费视频网站| 国产成人精品福利久久| 熟女av电影| 午夜视频国产福利| 欧美一级a爱片免费观看看| av黄色大香蕉| 欧美日韩亚洲高清精品| 蜜桃亚洲精品一区二区三区| 好男人视频免费观看在线| 国产精品爽爽va在线观看网站| 五月玫瑰六月丁香| 少妇被粗大猛烈的视频| 一区二区三区精品91| 亚洲av中文av极速乱| 午夜福利高清视频| 中文天堂在线官网| 肉色欧美久久久久久久蜜桃 | 最新中文字幕久久久久| 亚洲欧美精品专区久久| 国产永久视频网站| 1000部很黄的大片| 国产午夜福利久久久久久| 黄色日韩在线| 人妻制服诱惑在线中文字幕| 国产毛片在线视频| 久久久欧美国产精品| 80岁老熟妇乱子伦牲交| 在线观看人妻少妇| 又黄又爽又刺激的免费视频.| 国产乱人偷精品视频| 内地一区二区视频在线| 国产69精品久久久久777片| 亚洲精品第二区| 简卡轻食公司| 欧美激情在线99| 国产欧美另类精品又又久久亚洲欧美| 午夜日本视频在线| 91久久精品电影网| 天天躁夜夜躁狠狠久久av| 欧美精品人与动牲交sv欧美| a级一级毛片免费在线观看| 久久人人爽av亚洲精品天堂 | 日本午夜av视频| 自拍偷自拍亚洲精品老妇| 只有这里有精品99| 国产免费福利视频在线观看| 日韩,欧美,国产一区二区三区| 久久久a久久爽久久v久久| 在线亚洲精品国产二区图片欧美 | 校园人妻丝袜中文字幕| 国产精品三级大全| 亚洲精品成人久久久久久| 久久热精品热| 纵有疾风起免费观看全集完整版| 色综合色国产| 欧美+日韩+精品| av在线app专区| 欧美3d第一页| 天堂俺去俺来也www色官网| 欧美xxxx性猛交bbbb| 国产 精品1| 熟女人妻精品中文字幕| 亚洲国产精品成人久久小说| 三级国产精品片| 51国产日韩欧美| 少妇熟女欧美另类| 在线免费观看不下载黄p国产| 在线 av 中文字幕| 美女cb高潮喷水在线观看| 国产综合精华液| 青春草亚洲视频在线观看| 欧美精品国产亚洲| 爱豆传媒免费全集在线观看| 久久久久久久久大av| 草草在线视频免费看| 性色avwww在线观看| 嫩草影院新地址| 91在线精品国自产拍蜜月| 欧美zozozo另类| 免费观看无遮挡的男女| av卡一久久| 成人无遮挡网站| 日韩免费高清中文字幕av| 亚洲综合精品二区| 好男人视频免费观看在线| 久久韩国三级中文字幕| 久久精品久久精品一区二区三区| 免费观看性生交大片5| 久久韩国三级中文字幕| 卡戴珊不雅视频在线播放| 欧美zozozo另类| 欧美一区二区亚洲| 天堂中文最新版在线下载 | 97在线人人人人妻| 日韩强制内射视频| 免费在线观看成人毛片| 午夜福利在线观看免费完整高清在| 亚洲人成网站在线观看播放| 男女那种视频在线观看| 亚洲精品国产av蜜桃| 九九爱精品视频在线观看| 精品亚洲乱码少妇综合久久| 香蕉精品网在线| 中文字幕免费在线视频6| 国产爽快片一区二区三区| 国产中年淑女户外野战色| 成年人午夜在线观看视频| 在现免费观看毛片| 一本久久精品| 热99国产精品久久久久久7| 婷婷色综合www| 婷婷色综合www| 国产在视频线精品| 久久国内精品自在自线图片| 午夜老司机福利剧场| 国产在视频线精品| 一区二区三区乱码不卡18| 国语对白做爰xxxⅹ性视频网站| 卡戴珊不雅视频在线播放| av一本久久久久| 亚洲内射少妇av| 久久人人爽av亚洲精品天堂 | 国产男女内射视频| 自拍欧美九色日韩亚洲蝌蚪91 | 中文字幕免费在线视频6| 久久精品国产亚洲av天美| 国产成人a区在线观看| 赤兔流量卡办理| 欧美激情国产日韩精品一区| 国产高清不卡午夜福利| 亚洲精品视频女| 免费播放大片免费观看视频在线观看| 国产精品国产三级国产av玫瑰| 日韩av免费高清视频| 亚洲精品国产成人久久av| 大片免费播放器 马上看| 国产精品嫩草影院av在线观看| 欧美xxxx性猛交bbbb| 国产精品久久久久久久久免| 国产高清三级在线| 中文资源天堂在线| 夫妻性生交免费视频一级片| 边亲边吃奶的免费视频| 自拍偷自拍亚洲精品老妇| 国产一区二区在线观看日韩| 七月丁香在线播放| 国产成人精品婷婷| 日韩成人av中文字幕在线观看| 男插女下体视频免费在线播放| 亚洲精品成人av观看孕妇| 亚洲在线观看片| 国产伦在线观看视频一区| .国产精品久久| 国产黄色免费在线视频| 亚洲国产av新网站| 久久久久久国产a免费观看| 69av精品久久久久久| 少妇人妻精品综合一区二区| 丝瓜视频免费看黄片| 国产成人a区在线观看| 国产伦精品一区二区三区四那| 黄色日韩在线| 蜜臀久久99精品久久宅男| 成人国产av品久久久| 国产成人91sexporn| 又粗又硬又长又爽又黄的视频| 激情 狠狠 欧美| 亚洲va在线va天堂va国产| 激情五月婷婷亚洲| 18禁裸乳无遮挡免费网站照片| 亚洲综合精品二区| 亚洲不卡免费看| 国产探花在线观看一区二区| 国产探花极品一区二区| 欧美日韩一区二区视频在线观看视频在线 | 老师上课跳d突然被开到最大视频| 小蜜桃在线观看免费完整版高清| 一个人看的www免费观看视频| 在线看a的网站| 婷婷色麻豆天堂久久| 少妇人妻久久综合中文| 国产精品三级大全| av国产久精品久网站免费入址| 免费看日本二区| 国产 一区 欧美 日韩| 亚洲av二区三区四区| 国产av码专区亚洲av| 只有这里有精品99| 色吧在线观看| 精品少妇久久久久久888优播| 久久国内精品自在自线图片| 国产中年淑女户外野战色| 中文字幕人妻熟人妻熟丝袜美| 日韩在线高清观看一区二区三区| 夫妻性生交免费视频一级片| 亚洲激情五月婷婷啪啪| 国产成人免费观看mmmm| 我要看日韩黄色一级片| 午夜老司机福利剧场| 免费看av在线观看网站| 一级毛片aaaaaa免费看小| 亚洲av二区三区四区| 婷婷色麻豆天堂久久| 中文精品一卡2卡3卡4更新| 欧美激情在线99| 成年人午夜在线观看视频| 国产91av在线免费观看| 91精品一卡2卡3卡4卡| 人妻夜夜爽99麻豆av| 亚洲欧洲国产日韩| av在线天堂中文字幕| 五月天丁香电影| 日日啪夜夜爽| 精品少妇黑人巨大在线播放| 国产午夜福利久久久久久| 精华霜和精华液先用哪个| 国产精品爽爽va在线观看网站| 亚洲av免费高清在线观看| 精品99又大又爽又粗少妇毛片| 麻豆成人av视频| 日韩av不卡免费在线播放| 亚洲欧美成人综合另类久久久| 亚洲av电影在线观看一区二区三区 | 99热6这里只有精品| 精品久久久噜噜| 99精国产麻豆久久婷婷| 亚洲精品成人久久久久久| 日韩强制内射视频| av女优亚洲男人天堂| 国产 一区 欧美 日韩| 国产白丝娇喘喷水9色精品| 亚洲成人精品中文字幕电影| 亚洲怡红院男人天堂| 欧美高清成人免费视频www| 精品国产露脸久久av麻豆| 九九久久精品国产亚洲av麻豆| 久久ye,这里只有精品| 亚洲欧美中文字幕日韩二区| 观看免费一级毛片| .国产精品久久| 又大又黄又爽视频免费| 午夜免费鲁丝| 建设人人有责人人尽责人人享有的 | 中文欧美无线码| av一本久久久久| 国产 精品1| 夜夜爽夜夜爽视频| .国产精品久久| 亚洲欧洲国产日韩| 91在线精品国自产拍蜜月| 狂野欧美激情性bbbbbb| 免费少妇av软件| 亚洲国产高清在线一区二区三| 日本wwww免费看| 免费观看性生交大片5| 男人狂女人下面高潮的视频| 免费av观看视频| 91午夜精品亚洲一区二区三区| 啦啦啦在线观看免费高清www| 日韩免费高清中文字幕av| 久久精品国产鲁丝片午夜精品| 女人久久www免费人成看片| 街头女战士在线观看网站| 美女xxoo啪啪120秒动态图| 韩国av在线不卡| av专区在线播放| 亚洲精品aⅴ在线观看| 亚洲av福利一区| 高清欧美精品videossex| 黄色欧美视频在线观看| 午夜福利在线观看免费完整高清在| 国产成人免费观看mmmm| 一级毛片我不卡| 成年av动漫网址| 国产欧美亚洲国产| 日本色播在线视频| 免费大片18禁| 亚洲精品中文字幕在线视频 | 熟女电影av网| 免费av毛片视频| 能在线免费看毛片的网站| 国产大屁股一区二区在线视频| 国产男女超爽视频在线观看| 婷婷色综合大香蕉| 日日摸夜夜添夜夜爱| 晚上一个人看的免费电影| 亚洲最大成人中文| 欧美bdsm另类| 毛片一级片免费看久久久久| 高清毛片免费看| 久久女婷五月综合色啪小说 | 亚洲av一区综合| 免费看日本二区| 欧美激情久久久久久爽电影| 免费播放大片免费观看视频在线观看| av国产精品久久久久影院| 国产91av在线免费观看| 日韩国内少妇激情av| 亚洲精品色激情综合| 嫩草影院新地址| 热re99久久精品国产66热6| 亚洲在久久综合| 亚洲av成人精品一二三区| videossex国产| 国产色爽女视频免费观看| 夜夜看夜夜爽夜夜摸| 少妇的逼好多水| 成年人午夜在线观看视频| av黄色大香蕉| 免费观看在线日韩| 少妇的逼好多水| 亚洲精品第二区| 国产毛片在线视频| 精品国产乱码久久久久久小说| 少妇猛男粗大的猛烈进出视频 | 久久99精品国语久久久| 听说在线观看完整版免费高清| 免费看日本二区| 看十八女毛片水多多多| 久久久久精品久久久久真实原创| 在线观看免费高清a一片| 国产久久久一区二区三区| h日本视频在线播放| 国产成人91sexporn| 国产综合精华液| 日韩欧美精品免费久久| 久久久久久久大尺度免费视频| 精品一品国产午夜福利视频| 黑丝袜美女国产一区| 亚洲伊人久久精品综合| 一级毛片我不卡| 亚洲第一av免费看| a级毛片在线看网站| 国产视频首页在线观看| 亚洲欧美激情在线| 91精品三级在线观看| 一区在线观看完整版| 国产免费一区二区三区四区乱码| 日日啪夜夜爽| 满18在线观看网站| 亚洲国产中文字幕在线视频| 亚洲国产精品一区三区| 亚洲精品av麻豆狂野| 一二三四中文在线观看免费高清| 久久97久久精品| 久久国产亚洲av麻豆专区| 好男人视频免费观看在线| 亚洲三区欧美一区| 午夜免费男女啪啪视频观看| 久久性视频一级片| 色播在线永久视频| 搡老岳熟女国产| 亚洲国产欧美一区二区综合| 久久久久久久精品精品| av线在线观看网站| 黄频高清免费视频| 国产视频首页在线观看| 亚洲精品国产av蜜桃| 男女之事视频高清在线观看 | 国产成人精品无人区| 亚洲精品国产色婷婷电影| 久久久久久人人人人人| 国产成人精品久久久久久| 制服人妻中文乱码| 九九爱精品视频在线观看| 国产女主播在线喷水免费视频网站| 美女扒开内裤让男人捅视频| 热re99久久精品国产66热6| 国产精品一区二区在线观看99| 又粗又硬又长又爽又黄的视频| 啦啦啦啦在线视频资源| 国产高清不卡午夜福利| www.精华液| 自线自在国产av| 在线看a的网站| 人人澡人人妻人| 新久久久久国产一级毛片| 亚洲精品日韩在线中文字幕| av国产精品久久久久影院| 国产精品麻豆人妻色哟哟久久| 视频在线观看一区二区三区| 精品少妇内射三级| 国产av一区二区精品久久| 日韩伦理黄色片| 久久精品亚洲熟妇少妇任你| 久久精品国产亚洲av涩爱| 中国三级夫妇交换| 国产精品99久久99久久久不卡 | 欧美中文综合在线视频| 啦啦啦啦在线视频资源| 国产精品av久久久久免费| 国产成人啪精品午夜网站| 中文字幕亚洲精品专区| 国产福利在线免费观看视频| 午夜免费鲁丝| 欧美精品高潮呻吟av久久| 国产精品一国产av| 亚洲自偷自拍图片 自拍| 亚洲,欧美精品.| 最近最新中文字幕免费大全7| av又黄又爽大尺度在线免费看| 欧美黑人精品巨大| 成人黄色视频免费在线看| 美国免费a级毛片| 国产av一区二区精品久久| av福利片在线| 一二三四在线观看免费中文在| 成人亚洲精品一区在线观看| svipshipincom国产片| 欧美 日韩 精品 国产| 制服丝袜香蕉在线| 91老司机精品| tube8黄色片| 汤姆久久久久久久影院中文字幕| 精品国产国语对白av| 99re6热这里在线精品视频| 最近最新中文字幕免费大全7| 麻豆精品久久久久久蜜桃| 肉色欧美久久久久久久蜜桃| av国产精品久久久久影院| av视频免费观看在线观看| 日本wwww免费看| 亚洲三区欧美一区| 久久99一区二区三区| 亚洲,一卡二卡三卡| 80岁老熟妇乱子伦牲交| 精品一区二区三区四区五区乱码 | 亚洲av福利一区| 麻豆精品久久久久久蜜桃| 亚洲欧美一区二区三区黑人| 国产一区二区 视频在线| 国产淫语在线视频| 亚洲免费av在线视频| 少妇人妻精品综合一区二区| 免费女性裸体啪啪无遮挡网站| 黄色毛片三级朝国网站| 精品人妻在线不人妻| 人人妻人人澡人人看| 国产精品免费视频内射| 国产高清不卡午夜福利| 午夜免费鲁丝| 亚洲人成网站在线观看播放| 免费不卡黄色视频| 婷婷成人精品国产| 男的添女的下面高潮视频| 亚洲欧美一区二区三区久久| 91精品三级在线观看| 2018国产大陆天天弄谢| 久久久久久久国产电影| 国产黄色免费在线视频| 久久精品亚洲熟妇少妇任你| 岛国毛片在线播放| 久久午夜综合久久蜜桃| 欧美精品高潮呻吟av久久| 日本午夜av视频| a 毛片基地| 黄频高清免费视频| 99九九在线精品视频| 日韩,欧美,国产一区二区三区| 国产亚洲欧美精品永久| 国产爽快片一区二区三区| 一区二区三区精品91| 亚洲欧美一区二区三区国产| 欧美日韩一区二区视频在线观看视频在线| 免费观看性生交大片5| 亚洲人成网站在线观看播放| 国产精品人妻久久久影院| 天天躁夜夜躁狠狠躁躁| 国产精品无大码| 亚洲精品第二区| 国产成人精品久久久久久| 午夜91福利影院| 性高湖久久久久久久久免费观看| 综合色丁香网| 久久久欧美国产精品| 一边亲一边摸免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区三区四区五区乱码 | 熟女少妇亚洲综合色aaa.| 精品亚洲乱码少妇综合久久| 最黄视频免费看| 超碰97精品在线观看| 亚洲激情五月婷婷啪啪| 欧美日韩精品网址| 亚洲国产精品一区二区三区在线| 精品国产国语对白av| 女性生殖器流出的白浆| 欧美日韩视频高清一区二区三区二| 久久天堂一区二区三区四区| 多毛熟女@视频| h视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利视频在线观看免费| 性少妇av在线| 乱人伦中国视频| 一区二区av电影网| 男人舔女人的私密视频| 欧美日韩一级在线毛片| 国产精品蜜桃在线观看| 成人黄色视频免费在线看| 免费看av在线观看网站| 国产精品无大码| 精品国产超薄肉色丝袜足j| 亚洲av中文av极速乱| 久热爱精品视频在线9| 汤姆久久久久久久影院中文字幕| av女优亚洲男人天堂| 亚洲第一区二区三区不卡| 高清欧美精品videossex| 在线天堂最新版资源| 国语对白做爰xxxⅹ性视频网站| 老司机影院毛片| 精品卡一卡二卡四卡免费| 看十八女毛片水多多多| 一区二区三区四区激情视频| 老汉色av国产亚洲站长工具| 日韩成人av中文字幕在线观看| 中文字幕人妻丝袜一区二区 | 亚洲精品久久成人aⅴ小说| www.精华液| 精品人妻在线不人妻| 丰满乱子伦码专区| 另类亚洲欧美激情| 制服人妻中文乱码| 深夜精品福利| 日本爱情动作片www.在线观看| 99国产精品免费福利视频| 精品一区二区三区av网在线观看 | 国产一级毛片在线| 婷婷色综合大香蕉| 男人舔女人的私密视频| 国产精品秋霞免费鲁丝片| 极品少妇高潮喷水抽搐| 国产成人欧美在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 男人添女人高潮全过程视频| 国产男女内射视频| 亚洲人成网站在线观看播放| 国产片内射在线| 欧美黄色片欧美黄色片| 免费观看性生交大片5| 亚洲av日韩精品久久久久久密 | 久久精品久久久久久噜噜老黄|