• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-destructive Evaluation of Absolute Stress in Steel Members Using Shear-Wave Spectroscopy

    2018-05-25 06:39:34,,

    , , ,

    Shenzhen Graduate School,Harbin Institute of Technology,Shenzhen 518055,P.R.China

    0 Introduction

    Absolute stress in structural steel members plays an important role in design and analysis of steel structures.Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of structures and allow the safety of existing structures to be evaluated[1].One of the promising directions of all non-destructive methods for absolute stresse measurement is the application of ultrasound[2].Ultrasonic stress measurement is based on the acoustoelastic effect[3],i.e.,in the elastic range,the velocity of ultrasound linearly varies with material stress when a wave propagates in the material.Compared with other methods,ultrasonic stress measurement method has advantages in both cost and flexibility[4].This makes ultrasonic method one of the most promising directions in absolute stress non-destructive measurement.

    In recent years,the most widely studied ul-trasonic stress measurement technique is critically refracted longitudinal(Lcr)wave method[5].The Lcr wave is a bulk longitudinal wave[6].It can propagate underneath the steel member surface with a certain penetration depth[7,8].It has been studied by Egle and Bray[9,10]that the Lcr wave exhibits the largest sensitivity to stress among all ultrasonic waves and is least affected by material texture.In addition,the LCR technique neither requires opposite parallel surfaces non imposes any strict geometric limitations on the test specimens[11].All these features make Lcr waves the best candidate for evaluation of absolute stress[12,13].Although certain progress has been achieved in the development of different experimental techniques,methods and devices that investigate the application of ultrasonic methods to measure the absolute stress of steel members remain rare in the literatures[2].The main reason is that the ultrasonic wave velocity is not very sensi-tive to stress,i.e.,the change of the ultrasonic wave velocity and time-of-flight(TOF)are hard to be measure.For example,a 100MPa stress change corresponds to a velocity change of less than 1%[14].In addition,environmental factors[2],such as temperature,noises and roughness of the steel member surface,will lead to a change of the ultrasonic wave form,which will affect the accuracy of the absolute stress measurement.Apart from environmental factors,ultrasonic propagation characteristics are also influenced by some factors such as grain size[15],material texture[16],and coupling conditions[17],all of which will exert more influence on the change of ultrasonic propagation velocity than absolute stress.

    Realizing the defects of velocity and TOF measurement methods,some scholars proposed the use of ultrasonic power spectrum to measure absolute stress,which is based on the birefringence of shear waves[18].One advantage of this method is that it is less affected by environmental noise[18,19].Blinka and Sachse[19]investigated the interference between two decomposed shear waves in stressed aluminium and found the echo power spectrum exhibited periodic stress-induced minima,which laid the foundation for stress measurement using ultrasonic power spectrum method.In recent years,there is no new research works in the field of absolute stress evaluation using ultrasonic shear-wave spectroscopy.In fact,ultrasonic stress measurement using the shearwave spectroscopy has not formed a mature method.In general,stress measurement using shearwave spectroscopy requires further investigation.

    In this paper,a non-destructive evaluation approach to measure the absolute stress of steel members using ultrasonic shear-wave spectroscopy is proposed.A formula is derived for steel member absolute stress measurement based on ultrasonic shear-wave birefringence and acoustoelasticity theory.Two steel members made of Q235steel are employed to investigate the relationship between the stress and the frequency corresponding to the minimum value in shear-wave echo amplitude spectrum.On this basis,the absolute stress of steel member loaded by a test ma-chine is measured by the proposed method and the results are validated.

    1 Stress Measurement Theory in Shear-Wave Spectroscopy

    In a free state,the velocity of ultrasonic shear waves in an acoustically isotropic metallic material is independent of the directions of propagation and polarization.When a metallic material is subjected to stress,the stress causes acoustic anisotropy of the material.When a beam of shear waves travels from one medium to another,it separates into two shear-wave modes.Shear waves whose polarization directions are parallel and perpendicular to the stress direction have different velocities[20].This phenomenon is known as birefringence,and is particular to shear waves.

    The two separated wave components propagate simultaneously with different velocities and produce interference effects.The shear-wave pulse-echo amplitude spectrum exhibits a periodic minimum value that is sensitive to stress.The periodicity in the pulse-echo amplitude spectrum has an inverse relation with the difference of arrival time between the two separated wave components and the relative difference of velocities is approximately proportional to stress[21].

    Therefore,the frequency corresponding to the minimum value in shear-wave echo amplitude spectrum inversely varies with the stress and this relationship has potential to be used to indicate the stress in the material.For the sake of illustration,compressive stress of the steel members is positive and tensile stress is negative.The relationship between the frequency and the stress is expressed by[19]

    whereσis the stress,is defined as the first characteristic frequency(FCF);κandγare two parameters containing the information of steel member material and thickness.They are expressed as>

    whereμis the second-order elastic constants;nthe third-order elastic constants;αthe initial acoustic anisotropy of the steel member;t0the TOF from the contact surface to the bottom surface of the steel member when it is under freestress condition.

    2 Absolute Stress Measurement System and Method

    2.1 Absolute stress measurement system

    The photograph and schematic diagram of the measurement system includes an ultrasonic generator,a shear-wave transceiver probe and an oscilloscope,which is shown in Fig.1.The ultrasonic generator can transmit pulse signals and shunts them into the shear-wave transceiver probe.The pure shear wave is then generated and propagates in steel member.After being reflected by the rear side of steel member,the shear wave is received by the same probe and transmitted to the ultrasonic generator.The received signal is finally displayed on the oscilloscope.The Fourier analysis is used to study the signal′s amplitude spectrum.

    Fig.1 The measurement system

    2.2 Absolute stress measurement method

    Based on the theory and the absolute stress measurement system,a five-step framework for the measurement of stresses of steel members is proposed.The flowchart is shown in Fig.2.The detailed process is as follows.

    Step 1 Replication of the tested structural steel member.The tested structural steel members are usually non-removable after installation.Since the calibration of two parameters in Eq.(1)should be performed on the original steel member,a steel member with the same material and thickness to the tested structural steel member should be used as a replication member.

    Step 2 Measurement of the FCF corresponding to each stress condition in replication member through the uniaxial test.A group of axial forces(σ1,σ2,…,σn)are imposed on the replication member.The shear-wave echo signals in each corresponding stress conditions are recorded.

    Fig.2 The ultrasonic method

    The first pulse-echo signals are converted into the amplitude spectrum and the FCFs are extracted from the amplitude spectra.Then,the FCF and the corresponding stress value under each load state((f1-1*,σ1),(f1-2*,σ2),…,(f1-n*,σn))can be obtained.

    Step 3 Calibration of the two parameters for the replication member.This step is the core of the proposed method.The parameters to be calculated areκandγin Eq.(1).Based on the data ob-tained from Step 2,the inverse of FCF and the corresponding stress ((f1-1*,σ1),(f1-2*,σ2),…,(f1-n*,σn))can be calculated.The relationship between the inverse of FCF and the stress can be fitted using the least squares method.The parametersκandγare then calibrated.

    Step 4 Measurement of FCF in the tested steel member.The shear-wave transceiver probe is placed on the tested steel member and the echo signal is collected.The first pulse-echo signal is converted into the amplitude spectrum and the FCF of the tested steel member can be extracted from the amplitude spectrum.

    Step 5 Calculation of the absolute stress of the tested steel member.The calibrated parametersκandγ,and the measured FCF are substituted into Eq.(1),and absolute stress of the tested steel member can be determined.

    3 Experiment

    3.1 Test sample

    Components made of Q235steel are widely used in engineering structure field,which makes it one of the most important and typical components.Therefore,specimens made of Q235steel are selected as test objects to study how to evaluate the absolute stress using the proposed method.Two steel blocks,named sample A and sample B,and one H-beam,named sample C,are employed as test specimens.Their dimensions and photographs are shown in Fig.3,respectively.

    3.2 Calibration of the parameters

    Fig.3 Dimension of sample

    Fig.4 Amplitude spectra under different stress conditions

    Sample A is employed to investigate the relationship between the stress and the FCF in amplitude spectrum.Fig.4shows the shear-wave pulseecho amplitude spectra variation trend when sample A is under the stress of 0,100,200,300and 400MPa,respectively.The loading method is shown in Fig.1.It can be seen that the FCF in shear-wave echo amplitude spectrum decreases with stress.This accords with the relationship between stress and the FCF in shear-wave echo amplitude spectrum in Eq.(1).Sample A and sample B were employed to obtain the parametersκandγby the uniaxial test as showed in Fig.1.The two specimens were loaded in compression from zero stress,and each load was held for 10min.Then,the shear-wave echo signals and the corresponding stress data were recorded as illustrated in the second and third step of stress measurement process.The first echo signal of shear wave and corresponding amplitude spectrum were shown in Fig.5.The FCFs corresponding to the stress values were extracted from the amplitude spectrum.U-sing the least squares method,linear relationships between the stresses and the inverse of FCFs were fitted,as shown in Fig.6.TheR-square of the fitting for sample A and sample B are 0.999 1 and 0.998 2,respectively,which are both very close to 1and well demonstrate the ideal linear relationship between the stresses and the inverse of FCFs.Based on these linear relationships,the parametersκandγof sample A and sample B were calibrated.The fitting equations of stress measurement for sample A and sample B are obtained as

    3.3 Absolute stress measurement of steel members

    Based on Eqs.(4),(5)and the calibrated parametersκandγ,the absolute stress of the tested steel member can be calculated via measurement of the FCF.Sample C loaded by the testing machine was chosen as the tested steel member,because the thickness and material of sample A and flange of sample C is equal,and sample A should be the replication member of the H-beam flange plate.Similarly,sample B is the replication member of the H-beam web plate.Therefore,the calculation of absolute stress in flange and web plate should use the parameters calibrated by sample A and B,respectively.

    Under laboratory conditions,a set of random axial loads were applied to sample C in axis direction using the universal testing machine.The first pulse-echo signal was collected and the FCF was extracted from the amplitude spectrum under each loading condition.The applied stress was measured using the proposed method and the measurement results are listed in Table 1.

    3.4 Validation of the proposed method

    To verify the stress measured by the proposed method,traditional strain gauge method was employed to verify the measured absolute stress values.Before the load was applied to sample C,strain gauges were attached on the surface of sample C,as shown in Fig.7.The stresses of the steel members are calculated based on the product of Young′s modulus and the measured strain,which is listed in Table 1.The results measured by both methods are compared and listed in Fig.8.

    Fig.5 Extraction of time domain signal and first echo signal of shear wave

    Fig.6 Fitting line between stress and the inverse of FCF for Sample A and B

    Table 1 Comparison between the ultrasonic method and the strain gauge method of sample C

    Fig.7 Position of strain gauge for sample C

    Fig.8 Comparison between the ultrasonic method and the strain gauge method of sample C

    4 Results and Discussions

    Fig.6shows that the inverse of FCF and its corresponding stress in the samples A and B exhibits an almost perfect linear relationship with a fitting error of less than 1%.The fitting results verify the correctness of Eq.(1).The absolutestress measurement results for sample C and the strain gauge measurement values are listed in Table 1.The results show that the difference between the stresses measured by the two methods is less than 5%for every single test,which demonstrates the reliability and accuracy of the proposed method.

    To facilitate validation of the proposed method,the loaded specimen was taken as the test object.In many cases,the structural steel members are mainly subjected to axial force with their both ends fixed.The loading method used in this study can ensure that the samples is under uniaxial stress condition.

    It should be pointed out that there are some characteristics of proposed method.First,this method focuses on the change of the FCF in amplitude spectrum and the variation of ultrasound TOF is not taken into account.Second,the whole process of measurement is non-destructive.Third,the measurement system is consisted of portable equipment,and the equipment is low cost.All these advantages make it convenient for field stress evaluation,from pre-operation stage to the service operation.

    5 Conclusions

    This paper confirms the potential of the ultrasonic shear-wave spectroscopy method in measurement of the absolute stress of steel members.The relationship between the stress and the FCF in shear-wave echo amplitude spectrum is studied by two steel members.The absolute stresses of H-beam loaded by the universal testing machine are evaluated by the proposed method and verified by the strain gauge method.According to the achieved results,the conclusions are summarized as follows:

    (1)Absolute stress causes the amplitude spectrum to change.When steel member stresses increase,the change in the amplitude-spectrum value corresponding to the FCF is increasingly obvious.

    (2)The FCF values decrease with stress.The inverse of FCF and its corresponding stress exhibits an almost perfect linear relationship.

    (3)The calibration of the parameters should be implemented on replication member with same thickness and materials to the tested object.

    (4)The ultrasonic shear-wave spectroscopy method has logically evaluated the stress quantity of the loaded H-beam.Its validity is confirmed with the strain gauge method.

    Acknowledgements

    This study is financially supported by the National Key Research and Development Program of China (No.2016YFC0701102);the National Nature Science Foundation of China(No.51538003);and the Shenzhen Technology Innovation Program (No.JSGG20150330103937411).

    [1] LI J,HAO H,F(xiàn)AN K Q.Development and application of a relative displacement sensor for structural health monitoring of composite bridges[J].Structural Control & Health Monitoring,2015,22(4):726-742.

    [2] ROSSINI N S,DASSISTI M,BENYOUNIS K Y.Methods of measuring residual stresses in components[J].Materials & Design,2012,35:572-588.

    [3] CRECRAFT D I.Measurement of applied and residual stresses in metals using ultrasonic waves[J].Journal of Sound and Vibration,1967,5(1):173.

    [4] LI Z H,HE J B,TENG J.Internal stress monitoring of in-service structural steel members with ultrasonic method[J].Materials,2016,9(4):223-192.

    [5] WITHERS P J,TURSKI M,EDWARDS L.Recent advances in residual stress measurement[J].International Journal of Pressure Vessels and Piping,2008,85(3):118-127.

    [6] CHAKI S,KE W,DEMOUVEAU H.Numerical and experimental analysis of the critically refracted longitudinal beam[J].Ultrasonics,2013,53(1):65-69.

    [7] JAVADI Y,PIRZAMAN H S,RAEISI M H.Ultrasonic inspection of a welded stainless steel pipe to evaluate residual stresses through thickness[J].Materials & Design,2013,49:591-601.

    [8] JAVADI Y,AKHLAGHI M,NAJAFABADI M A.Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates[J].Materials & Design,2013,45:628-642.

    [9]EGLE D M,BRAY D E.Measurement of acoustoelastic and 3rd-order elastic-constants for rail steel[J].Journal of the Acoustical Society of America,1976,60(3):741-744.

    [10]BRAY D E,JUNGHANS P.Application of the L(cr)ultrasonic technique for evaluation of post-weld heat-treatment in steel plates[J].NDT & E International,1995,28(4):235-242.

    [11]SANTOS A A D,BRAY D E.Comparison of acoustoelastic methods to evaluate stresses in steel plates and bars[J].Journal of Pressure Vessel Technologytransactions of the ASME,2002,124(3):354-358.

    [12]JAVADI Y,AZARI K,GHALEHBANDI S M.Comparison between using longitudinal and shear waves in ultrasonic stress measurement to investigate the effect of post-weld heat-treatment on welding residual stresses[J].Research in Nondestructive Evaluation,2017,28(2):101-122.

    [13]PALANICHAMY P,VASUDEVAN M,JAYAKUMAR T.Measurement of residual stresses in austenitic stainless steel weld joints using ultrasonic technique[J].Science and Technology of Welding and Joining,2009,14(2):166-171.

    [14]JHANG K Y,QUAN H H,HA J.Estimation of clamping force in high-tension bolts through ultrasonic velocity measurement[J].Ultrasonics,2006,441:E1339-E1342.

    [15]PALANICHAMY P,JOSEPH A,JAYAKUMAR T.Ultrasonic velocity-measurements for estimation of grain-size in austenitic stainless-steel[J].NDT &E International,1995,28(3):179-185.

    [16]JAVADI Y,AKHLAGHI M,NAJAFABADI M A.Nondestructive evaluation of welding residual stresses in austenitic stainless steel plates[J].Research in Nondestructive Evaluation,2014,25(1):30-43.

    [17]LHéMERY A,CALMON P,CHATILLON S.Modeling of ultrasonic fields radiated by contact transducer in a component of irregular surface[J].Ultrasonics,2002,40(1-8):231-236.

    [18]LIPELES R,KIVELSON D.Theory of ultrasonically induced birefringence[J].Journal of Chemical Physics,1977,67(10):4564-4570.

    [19]BLINKA J,SACHSE W.Application of ultrasonicpulse-spectroscopy measurements to experimental stress analysis[J].Experimental Mechanics,1976,16(12):448-453.

    [20]SONG W T,XU C G,PAN Q X.Nondestructive testing and characterization of residual stress field using an ultrasonic method[J].Chinese Journal of Mechanical Engineering,2016,29(2):365-371.

    [21]HASEGAWA M,SASAKI Y.Acoustoelastic birefringence effect in wood.I.Effect of applied stresses on the velocities of ultrasonic shear waves propagating transversely to the stress direction.[J].Journal of Wood Science,2004,50(1):47-52.

    狠狠狠狠99中文字幕| 青春草亚洲视频在线观看| 亚洲成av人片在线播放无| 精品一区二区三区视频在线| 激情 狠狠 欧美| 欧美日韩综合久久久久久| 亚洲欧美精品综合久久99| 国产精品久久久久久久久免| 国产精品久久久久久精品电影| 大又大粗又爽又黄少妇毛片口| 国产高清三级在线| 丝袜美腿在线中文| 亚洲欧美日韩无卡精品| 欧美日本亚洲视频在线播放| 日韩视频在线欧美| 99久国产av精品国产电影| 一二三四中文在线观看免费高清| 精品人妻偷拍中文字幕| 欧美变态另类bdsm刘玥| av在线老鸭窝| 男女视频在线观看网站免费| 亚洲欧美成人综合另类久久久 | 亚洲自偷自拍三级| 99热网站在线观看| 国产精品99久久久久久久久| 99热全是精品| 韩国高清视频一区二区三区| 床上黄色一级片| 人妻夜夜爽99麻豆av| 久久热精品热| 久久久精品大字幕| 少妇熟女欧美另类| 大香蕉97超碰在线| 亚洲欧洲国产日韩| 免费av不卡在线播放| 欧美+日韩+精品| 少妇熟女欧美另类| 成年av动漫网址| 久久精品久久精品一区二区三区| 美女大奶头视频| 国产三级在线视频| 麻豆一二三区av精品| 亚洲人与动物交配视频| 在线免费十八禁| 亚州av有码| 97人妻精品一区二区三区麻豆| 高清午夜精品一区二区三区| 亚洲国产精品国产精品| 亚洲精品456在线播放app| 亚洲欧美日韩卡通动漫| 久久国产乱子免费精品| 精品一区二区三区人妻视频| 久久久欧美国产精品| 熟女人妻精品中文字幕| 国模一区二区三区四区视频| 亚洲综合色惰| 日本-黄色视频高清免费观看| 18+在线观看网站| 一卡2卡三卡四卡精品乱码亚洲| 国产黄片视频在线免费观看| 91在线精品国自产拍蜜月| 精品人妻视频免费看| 伦理电影大哥的女人| 三级经典国产精品| 欧美另类亚洲清纯唯美| 丰满少妇做爰视频| 欧美成人a在线观看| 日韩精品有码人妻一区| 国产免费一级a男人的天堂| 免费无遮挡裸体视频| 久久久久久久国产电影| 又爽又黄无遮挡网站| av国产久精品久网站免费入址| 久久久久精品久久久久真实原创| av免费观看日本| 99热网站在线观看| 日本色播在线视频| 97人妻精品一区二区三区麻豆| 欧美激情国产日韩精品一区| 中文字幕免费在线视频6| 国产精品蜜桃在线观看| av在线播放精品| 成人国产麻豆网| av免费观看日本| 国产高清视频在线观看网站| .国产精品久久| 欧美激情久久久久久爽电影| 欧美极品一区二区三区四区| 婷婷色av中文字幕| 亚洲欧美清纯卡通| 床上黄色一级片| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩无卡精品| 人体艺术视频欧美日本| 插逼视频在线观看| 国产精品野战在线观看| 中文资源天堂在线| 久久草成人影院| 插阴视频在线观看视频| 国模一区二区三区四区视频| 高清日韩中文字幕在线| 欧美精品一区二区大全| 1000部很黄的大片| 秋霞伦理黄片| 别揉我奶头 嗯啊视频| 久久久国产成人精品二区| av视频在线观看入口| 99国产精品一区二区蜜桃av| 精品一区二区免费观看| 国内少妇人妻偷人精品xxx网站| 国产午夜精品久久久久久一区二区三区| 精品少妇黑人巨大在线播放 | 欧美日韩在线观看h| 菩萨蛮人人尽说江南好唐韦庄 | 日本爱情动作片www.在线观看| 26uuu在线亚洲综合色| 中文天堂在线官网| 人妻夜夜爽99麻豆av| 久久亚洲国产成人精品v| 特级一级黄色大片| av线在线观看网站| 三级毛片av免费| 免费看日本二区| 欧美成人一区二区免费高清观看| 一级毛片我不卡| 亚洲国产欧美人成| 精品国产三级普通话版| 美女黄网站色视频| 国内少妇人妻偷人精品xxx网站| 欧美又色又爽又黄视频| 国产精品一区二区三区四区免费观看| 国产日韩欧美在线精品| 国产又色又爽无遮挡免| 亚洲av不卡在线观看| 免费观看精品视频网站| 麻豆精品久久久久久蜜桃| 日韩高清综合在线| 亚洲最大成人手机在线| 免费观看人在逋| 99久国产av精品国产电影| 99九九线精品视频在线观看视频| 毛片一级片免费看久久久久| 九色成人免费人妻av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 高清av免费在线| 在线观看一区二区三区| 国产av不卡久久| 日韩中字成人| 中文欧美无线码| 日韩av在线免费看完整版不卡| 在线观看66精品国产| 一区二区三区高清视频在线| 熟妇人妻久久中文字幕3abv| 夫妻性生交免费视频一级片| 成人一区二区视频在线观看| 亚洲国产精品久久男人天堂| 午夜久久久久精精品| 少妇熟女欧美另类| 18禁动态无遮挡网站| 禁无遮挡网站| 天天躁日日操中文字幕| 国产精品久久久久久av不卡| or卡值多少钱| 99久久精品国产国产毛片| 美女xxoo啪啪120秒动态图| 国产在视频线精品| 蜜桃亚洲精品一区二区三区| 国产欧美日韩精品一区二区| 中文字幕制服av| 老女人水多毛片| 中文字幕制服av| 精品久久久久久久人妻蜜臀av| 中文字幕亚洲精品专区| 久久精品熟女亚洲av麻豆精品 | or卡值多少钱| 国产黄a三级三级三级人| 黄片wwwwww| 亚洲av电影在线观看一区二区三区 | 99久久中文字幕三级久久日本| 免费观看a级毛片全部| 日本wwww免费看| 亚洲欧美日韩无卡精品| 一边亲一边摸免费视频| 婷婷六月久久综合丁香| 亚洲内射少妇av| 精品一区二区免费观看| 日日撸夜夜添| 免费av毛片视频| 国产不卡一卡二| 国产成人福利小说| 国产精品,欧美在线| 国产高清有码在线观看视频| 少妇的逼好多水| 亚洲婷婷狠狠爱综合网| 深爱激情五月婷婷| 青春草亚洲视频在线观看| 成年女人永久免费观看视频| 国产精品国产三级国产av玫瑰| 最近视频中文字幕2019在线8| 精品一区二区免费观看| 日韩成人av中文字幕在线观看| 精品久久国产蜜桃| 女人十人毛片免费观看3o分钟| 成人漫画全彩无遮挡| 我要看日韩黄色一级片| 免费观看人在逋| 久久久精品欧美日韩精品| 国产精华一区二区三区| 亚洲高清免费不卡视频| 欧美成人精品欧美一级黄| 99热6这里只有精品| 欧美97在线视频| videos熟女内射| 日韩国内少妇激情av| 日韩成人伦理影院| 亚洲第一区二区三区不卡| 伦理电影大哥的女人| 亚洲av二区三区四区| 欧美最新免费一区二区三区| 日韩,欧美,国产一区二区三区 | 麻豆国产97在线/欧美| 欧美性猛交╳xxx乱大交人| 色综合站精品国产| 丰满少妇做爰视频| 精品久久久久久久末码| 嘟嘟电影网在线观看| 国产亚洲一区二区精品| 看片在线看免费视频| 成人综合一区亚洲| 亚洲成色77777| 黄色配什么色好看| 天天躁夜夜躁狠狠久久av| 国产午夜福利久久久久久| eeuss影院久久| 亚洲精品日韩av片在线观看| 免费电影在线观看免费观看| 草草在线视频免费看| 久久亚洲精品不卡| 在线免费观看的www视频| 高清日韩中文字幕在线| 少妇裸体淫交视频免费看高清| 最近视频中文字幕2019在线8| 国产麻豆成人av免费视频| 亚洲欧美日韩高清专用| 国产一区有黄有色的免费视频 | 日韩欧美精品免费久久| av国产久精品久网站免费入址| 日韩亚洲欧美综合| 水蜜桃什么品种好| 一级黄片播放器| 亚洲av不卡在线观看| 高清毛片免费看| 久久久久久久久中文| 中国美白少妇内射xxxbb| 欧美三级亚洲精品| 寂寞人妻少妇视频99o| 亚洲美女视频黄频| 久久亚洲精品不卡| 天美传媒精品一区二区| 一级二级三级毛片免费看| 国产精品一二三区在线看| 欧美3d第一页| 国产精品99久久久久久久久| 久久精品国产亚洲av涩爱| 国产午夜精品久久久久久一区二区三区| 亚洲美女视频黄频| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区免费毛片| 麻豆成人午夜福利视频| 最近2019中文字幕mv第一页| 如何舔出高潮| 在线播放国产精品三级| 国产精品电影一区二区三区| 国产午夜精品一二区理论片| 天天一区二区日本电影三级| 精品国产露脸久久av麻豆 | 超碰97精品在线观看| 久久99热6这里只有精品| 亚洲国产日韩欧美精品在线观看| 尾随美女入室| 亚洲国产精品sss在线观看| av免费观看日本| 视频中文字幕在线观看| 99久久无色码亚洲精品果冻| 亚洲欧美精品综合久久99| 别揉我奶头 嗯啊视频| 国内精品一区二区在线观看| 小说图片视频综合网站| 亚洲乱码一区二区免费版| eeuss影院久久| 男女国产视频网站| 欧美zozozo另类| 午夜激情福利司机影院| 成人二区视频| 久久这里有精品视频免费| av在线亚洲专区| 国产高潮美女av| 日韩欧美精品v在线| 精品午夜福利在线看| 高清av免费在线| 最近手机中文字幕大全| 国产黄色视频一区二区在线观看 | 最新中文字幕久久久久| av免费在线看不卡| 日本欧美国产在线视频| 99热全是精品| 内射极品少妇av片p| 黄色日韩在线| 欧美bdsm另类| 在线免费观看的www视频| 久久韩国三级中文字幕| 在现免费观看毛片| 久久精品国产亚洲av天美| 日韩一区二区视频免费看| .国产精品久久| 汤姆久久久久久久影院中文字幕 | 两性午夜刺激爽爽歪歪视频在线观看| 亚洲成人中文字幕在线播放| 亚洲一级一片aⅴ在线观看| 国产精品久久视频播放| 国产麻豆成人av免费视频| 亚洲国产成人一精品久久久| 99热这里只有是精品50| 中文字幕制服av| 成人午夜精彩视频在线观看| 国产亚洲av片在线观看秒播厂 | 女人被狂操c到高潮| videos熟女内射| 亚洲av二区三区四区| 久久久午夜欧美精品| 亚洲综合色惰| av在线播放精品| 久久久国产成人免费| 亚洲精品乱码久久久v下载方式| 啦啦啦观看免费观看视频高清| 成人亚洲欧美一区二区av| 亚洲精品乱码久久久久久按摩| 免费不卡的大黄色大毛片视频在线观看 | 99久久九九国产精品国产免费| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧洲日产国产| 老司机影院成人| 国产av一区在线观看免费| 波多野结衣巨乳人妻| 国产成人精品久久久久久| 欧美日韩在线观看h| 岛国在线免费视频观看| 人妻少妇偷人精品九色| 久久精品国产亚洲av涩爱| 三级国产精品欧美在线观看| 丰满人妻一区二区三区视频av| 我要看日韩黄色一级片| 久99久视频精品免费| 亚洲天堂国产精品一区在线| 欧美+日韩+精品| 亚洲精品日韩在线中文字幕| 菩萨蛮人人尽说江南好唐韦庄 | 狂野欧美白嫩少妇大欣赏| 中文字幕av在线有码专区| 亚洲成色77777| 国产亚洲午夜精品一区二区久久 | 九草在线视频观看| 日韩一本色道免费dvd| 97在线视频观看| 亚洲精品国产av成人精品| 看片在线看免费视频| 欧美区成人在线视频| 黑人高潮一二区| 日韩欧美精品免费久久| 嘟嘟电影网在线观看| 国产免费一级a男人的天堂| 久久亚洲精品不卡| 日韩欧美精品免费久久| 精品久久久久久成人av| 夫妻性生交免费视频一级片| 亚洲最大成人av| 99久久成人亚洲精品观看| 三级国产精品欧美在线观看| 亚州av有码| 六月丁香七月| 99热这里只有是精品50| 女人久久www免费人成看片 | 2021少妇久久久久久久久久久| 午夜精品国产一区二区电影 | 亚洲18禁久久av| 简卡轻食公司| 中文字幕人妻熟人妻熟丝袜美| 伦理电影大哥的女人| 少妇丰满av| 综合色丁香网| 精品久久久久久成人av| 高清视频免费观看一区二区 | 两个人的视频大全免费| 搡老妇女老女人老熟妇| 美女高潮的动态| 国产伦精品一区二区三区四那| 97人妻精品一区二区三区麻豆| 久久久精品94久久精品| 国产精品久久电影中文字幕| 人人妻人人看人人澡| 久久久久久九九精品二区国产| 亚洲熟妇中文字幕五十中出| 一本久久精品| 久久久久久久久久成人| 国产极品天堂在线| 日本爱情动作片www.在线观看| 午夜激情欧美在线| 大话2 男鬼变身卡| 国产高清视频在线观看网站| 亚洲国产最新在线播放| 中国美白少妇内射xxxbb| 又粗又爽又猛毛片免费看| 99九九线精品视频在线观看视频| 韩国高清视频一区二区三区| 国产精品人妻久久久久久| 久久久久久久久大av| 亚洲aⅴ乱码一区二区在线播放| 丝袜喷水一区| .国产精品久久| 精品一区二区免费观看| 久久精品国产99精品国产亚洲性色| 欧美潮喷喷水| 亚洲乱码一区二区免费版| 午夜亚洲福利在线播放| 成人鲁丝片一二三区免费| av在线蜜桃| 长腿黑丝高跟| 午夜激情福利司机影院| 国产成人一区二区在线| 2021天堂中文幕一二区在线观| 毛片女人毛片| 老师上课跳d突然被开到最大视频| 亚洲欧美精品自产自拍| 国产国拍精品亚洲av在线观看| 好男人在线观看高清免费视频| 三级经典国产精品| 99久久精品热视频| 日韩高清综合在线| 亚洲,欧美,日韩| 哪个播放器可以免费观看大片| 好男人视频免费观看在线| 亚洲精品一区蜜桃| 国产精品久久久久久久电影| 99国产精品一区二区蜜桃av| 精品99又大又爽又粗少妇毛片| 国产精品一区二区在线观看99 | 欧美区成人在线视频| 亚洲精品乱久久久久久| 国产老妇伦熟女老妇高清| 白带黄色成豆腐渣| 精品一区二区免费观看| 亚洲av免费高清在线观看| 97超碰精品成人国产| av播播在线观看一区| 久久久色成人| 久久久久久久久中文| 插阴视频在线观看视频| 国产成人午夜福利电影在线观看| 亚洲精品日韩在线中文字幕| 偷拍熟女少妇极品色| 中文在线观看免费www的网站| 日本-黄色视频高清免费观看| 亚洲av一区综合| av黄色大香蕉| 1000部很黄的大片| videossex国产| 国产淫语在线视频| 日本五十路高清| 中文乱码字字幕精品一区二区三区 | 国产精品女同一区二区软件| 国产v大片淫在线免费观看| 中文字幕av成人在线电影| av在线天堂中文字幕| 日韩一区二区三区影片| 午夜福利在线观看免费完整高清在| 国产亚洲午夜精品一区二区久久 | 波多野结衣高清无吗| 精品一区二区三区视频在线| 亚洲国产日韩欧美精品在线观看| 五月伊人婷婷丁香| 日韩一区二区三区影片| 大香蕉久久网| 亚洲自偷自拍三级| 中文字幕人妻熟人妻熟丝袜美| 纵有疾风起免费观看全集完整版 | 国产精品国产三级专区第一集| 一个人观看的视频www高清免费观看| 国产又色又爽无遮挡免| 色综合站精品国产| 欧美97在线视频| 精品国产三级普通话版| 美女cb高潮喷水在线观看| 99久久九九国产精品国产免费| 日韩三级伦理在线观看| 少妇熟女欧美另类| 午夜福利网站1000一区二区三区| 一级二级三级毛片免费看| 亚洲图色成人| 国产精品av视频在线免费观看| 男人的好看免费观看在线视频| 看片在线看免费视频| 久久久久久国产a免费观看| 女人被狂操c到高潮| 国产av码专区亚洲av| 国产精品一区二区三区四区久久| 中文字幕精品亚洲无线码一区| av.在线天堂| 午夜亚洲福利在线播放| 国产综合懂色| 男人舔女人下体高潮全视频| 最近2019中文字幕mv第一页| 伦理电影大哥的女人| 成人漫画全彩无遮挡| 国产探花在线观看一区二区| 亚洲精品日韩av片在线观看| 好男人在线观看高清免费视频| 亚洲色图av天堂| 亚洲国产欧美人成| 精品人妻一区二区三区麻豆| 免费看a级黄色片| 性色avwww在线观看| 天天一区二区日本电影三级| 色哟哟·www| 色尼玛亚洲综合影院| 村上凉子中文字幕在线| 国内精品宾馆在线| 久久鲁丝午夜福利片| 色综合站精品国产| av黄色大香蕉| 中文欧美无线码| 老司机影院成人| 日本黄大片高清| 女人十人毛片免费观看3o分钟| 美女被艹到高潮喷水动态| 久久精品影院6| 蜜桃久久精品国产亚洲av| 日韩av在线免费看完整版不卡| 狂野欧美白嫩少妇大欣赏| 在线观看66精品国产| 一级二级三级毛片免费看| 国产亚洲精品av在线| 国产欧美另类精品又又久久亚洲欧美| 男人狂女人下面高潮的视频| 深夜a级毛片| 亚洲人与动物交配视频| 国产老妇女一区| 99久久无色码亚洲精品果冻| 久久精品国产亚洲av涩爱| 精品久久国产蜜桃| 日韩欧美国产在线观看| 久久久久久久久大av| 嘟嘟电影网在线观看| 日韩人妻高清精品专区| 中文字幕精品亚洲无线码一区| 插逼视频在线观看| av在线播放精品| 白带黄色成豆腐渣| av在线播放精品| 亚洲欧美成人精品一区二区| 国产精品一区二区三区四区久久| 国产欧美日韩精品一区二区| 久久久久久久久大av| 国产精品久久久久久久久免| 五月伊人婷婷丁香| 韩国高清视频一区二区三区| 成人毛片a级毛片在线播放| 久久国内精品自在自线图片| av福利片在线观看| 日本爱情动作片www.在线观看| 中文字幕av在线有码专区| 18禁在线播放成人免费| 99久久精品一区二区三区| 99久久中文字幕三级久久日本| 男女那种视频在线观看| 国产成人免费观看mmmm| 18禁动态无遮挡网站| 亚洲欧美精品专区久久| 高清毛片免费看| 国产不卡一卡二| 91精品国产九色| 少妇人妻一区二区三区视频| 三级毛片av免费| 永久免费av网站大全| 插阴视频在线观看视频| 1000部很黄的大片| 亚洲四区av| 国产av码专区亚洲av| 亚洲婷婷狠狠爱综合网| 一级黄色大片毛片| 男女视频在线观看网站免费| 亚洲最大成人中文| 午夜福利在线观看吧| 黄色日韩在线| av卡一久久| 三级经典国产精品| 亚洲最大成人手机在线| 国产av码专区亚洲av| 最后的刺客免费高清国语| 中文亚洲av片在线观看爽| 亚洲欧美清纯卡通| 九九在线视频观看精品| 欧美成人一区二区免费高清观看| 三级国产精品欧美在线观看| 国产精品熟女久久久久浪| 国产一级毛片七仙女欲春2| 美女cb高潮喷水在线观看| 久久久亚洲精品成人影院| 成人性生交大片免费视频hd| 欧美三级亚洲精品| 久久久久网色| 日韩人妻高清精品专区| 乱系列少妇在线播放| 在线观看av片永久免费下载| 桃色一区二区三区在线观看| av播播在线观看一区|