• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Segmentation of Thermographic Sequences in Frequency Modulated Thermal Wave Imaging for NDE of GFRP

    2018-05-25 06:39:32,..

    , ..

    1.Narayana Engineering College,Nellore,Andhra Pradesh,India

    2.A.U.College of Engineering(A),Andhra University,Vishakaptanam,Andhra Pradesh,India

    0 Introduction

    Glass fiber reinforced polymers(GFRPs)are attractive materials for aircraft,automotive,electronics and infrastructure applications.In recent times,GFRP composites are becoming more acceptable alternative for carbon fiber reinforced polymers(CFRPs)due to their high resistance to corrosion,high strength to weight ratio,and relatively low cost[1].The basic principle of NDE involves import of energy into the structure to assess(identification of defects,voids,inclusion,etc.)the condition of the material.A wide variety of non-destrutive evaluation (NDE)techniques are found in the literature for damage/defect identification in composite materials.These include radiographic testing[2],ultrasonic testing[3,4],acoustic emission testing[4],infrared thermogra-phy testing[5],electromagnetic testing[6],magnetic particle testing[7],step phase thermography[8]etc.However,among these,infrared thermography has become a more preferred nondestructive inspection method to evaluate subsurface defects in different types of materials.The preference is due to its fast inspection rate,noncontact procedure,portability,and easy to interpret features[9].Several infrared thermography methods have been proposed in the literature to detect delamination defects in composite materials,but only three of them are predominantly used:Pulse Thermography (PT),lock in thermography(LT)and pulse phase thermography(PPT)[10-13].However all these suffer from certain limitations.PT requires high peak power heat sources,and suffers from nonuniform heating and is sensitive to surface emissivity variations.LT suffers from limited depth resolution and long processing time[14,15].PPT requires heat sources with high peak power to effectively detect deeper subsurface defects.Due to this precaution has to be taken to avoid damage of the test sample becauase of high power.In this work,to overcome the mentioned limitations,frequency modulated thermal wave imaging (FMTWI)[16]is employed for identification of the defects in solid material.

    Data processing is an essential step in NDE to visualize the subsurface defects in the sample and to determine the shapes and sizes of the defects.The data processing intends to analyze temporal variations in the contrast of each pixel,relative to defect-free reference point on the sample.For this,several post processing algorithms are applied to the recorded thermograms.In this paper,GFRP sample with 25square shaped Teflon inserts of different dimensions placed at various depths is used .These inserts are examined by means of frequency modulated thermal wave imaging[16].Pulse compression[17,18]is applied over mean removed profiles to ensure better defect detection.Subsequently,the proposed segmentation algorithm is investigated over GFRP sample and results are compared and contrasted with the existing segmentation methods.

    1 Frequency Modulated Thermal Wave Imaging

    The principle of frequency modulated thermal wave imaging consists of introducing frequency modulated heat flux,containing different frequencies,into the object to be tested.Then the resulting temperature field in the transient regime is recorded remotely by capturing its thermal emission(infrared range)using infrared (IR)camera[15].When frequency modulated heat flux is excited into the specimen,the infrared camera controlled by the computer monitors the surface temperature profile of the heated sample.The expression for propagation of thermal wave incident on the solid sample at surface [x=0]is given by[15]

    wherewhereBis band width,τthe duration,xthe space coordinate,tthe time,fthe frequency,αthe thermal diffusivity,B/τthe frequency sweep rate of the chirp,andT0the surface temperature at the sample surface(x=0).

    From Eq.(1)the diffusion length(μfm)can be computed as

    Eq.(2)indicates that the thermal diffusion length is a function of bandwidth(B)of the heat flux.The complete depth of the sample can be scanned in one(fm)cycle as it contains multiple frequencies instead of single frequency.And for the frequency modulated thermal wave imaging,thermal wave length(λ)is given by

    It can be noted from Eq.(3),thatλis varying with time.This implies that resolution for detection of defects varies with depth.

    2 Materials and Experiment

    The experiment is carried on a GFRP sample having 25square Teflon inserts.The Teflons are of various dimensions and situated at different depths(Fig.1).A synchronized IR camera(Model:FLIR IR CAMERA SC6200)having a maximum frame rate of 450Hz,and 0.001Ktemperature resolution with a pixel resolution of 320×256pixels is used to record the image sequences.A frequency modulated chirped thermal wave stimulation of frequencies ranging from 0.01to 0.1Hz in 100s,has been applied to the sample using two halogen lamps of power 1kW each(Fig.2).With the help of mid band infrared camera,temporal thermal response is captured at a frame rate of 20Hz.

    Fig.1 Layout of the experimental GFRP sample

    Fig.2 Experimental set up

    3 Image Segmentation and Quantitative Identification of Defect from Thermogram

    The identification of defective regions from a thermogram has been a common problem in the field of NDE.Image segmentation is a highly promising method that helps to effectively analyze thermogram quantitatively and qualitatively.This helps in finding sizes and depths of defects.Image segmentation involves assignment of each pixel to regions of an image relative to interest.That is,it separates regions of deviant temperature from the image.Several segmentation methods have been proposed in the past,and are broadly classified into three categories thresholding,clustering and edge detection.However,from the literature it is observed that image segmentation techniques are strongly application dependent. Sezgin and Sankur[20]presented an extensive survey on automated image thresholding techniques and quantitative performance evaluation.They classified thresholding techniques into six categories:(1)Histogram shape-based methods,(2)local methods,(3)object attributed-based methods,(4)entropy-based methods,(5)spatial methods,and(6)clustering-based methods.Among these meth-ods clustering and entropy based threshold methods are preferred for NDE images.Thresholding based segmentation is not only simple but also appropriate,because it separates objects from the background,making it appropriate for NDE purposes[19].The performance of thresholding algorithms is strongly influenced by image content and method of thresholding.However,thresholding approach for NDE applications is complex due to the following reasons:High noise,insufficient illumination,variance of gray levels inside the object,inadequate contrast in the background.Also the object shape and size are not commensurate with the scene.Various thresholding based segmentation algorithms have been proposed in literature namely,Otsu′s method[21],Contrast Otsu method[22],adaptive threshold[23],K-means clustering[24],and Fuzzy C-means clustering[19,25].

    4 The Proposed Segmentation Method

    In the present work,clustering based segmentation approach is employed.The approach begins with considering dominant component in FMTWI,where frequency modulations are used as segmentation features.In this,the regions/defects in the image are organized into clusters based on relationship between them.The flow chart of the proposed segmentation method is shown in Figs.3,4.The segmentation method involves three stages.

    (1)Finding the centroids of the regions

    Fig.3 Flow chart of thermal image processing

    Fig.4 Proposed segmentation approach

    Step 1 Apply adaptive thresholding method for the fused image.

    Here the fused image is having non-uniform texture as shown in Fig.5(a).Adaptive thresholding is capable of segmenting segments into two types of regions,i.e,white region in the dark background and dark region in the white background.

    Fig.5 Fused image and corresponding centroids

    Step 2 The centroid for each and every region is identified using″regionprops″function of MATLAB(shown in Fig.5(b)).

    Step 3 The false centroids(white regions in the dark back ground)is removed by using connectivity with the pixels as shown in Fig.5(c).

    (2)Formation of clusters around each centroid

    Each pixel including the centroid pixel is assigned to one of the centroids depending on the euclidean distance between the pixel and the centroid.For example if the pixelI(i,j)making the shortest distance with centroid 2then this pixelI(i,j)is assigned to the centroid 2.Algorithm is used for clustering as shown in Fig.6.

    (3)Application of thresholds

    The line intensity profiles at each defect is il-

    Fig.6 Algorithm for clustering

    lustrated in Fig.7.To improve the accuracy of segmentation,it is proposed to adapt dual threshold method instead of single local adaptive threshold for segmentation.The procedure for finding the dual thresholds(T1&T2)for the second defect in first row is illustrated in Fig.8.The thresholdT2value is calculated using

    whereNis the number of pixels considered around each centroid.

    The mean value of the pixels below the threshold lineT2is considered as a line and it intersects the intensity profile atX1andX2.The thresholdT1value is calculated as

    However,T1andT2values for all defects are tabulated in Table 1.The threshold valueT1is applied to the cluster corresponding to the centriod for first level segmentation .The segmented cluster is subject to second level segmentation withT2,resulting in final segmented output.The seg-mented image after application ofT1andT2is shown in Fig.9and Fig.10(h),respectively.

    Table 1 Threshold values(T1and T2)of each defect

    Fig.7 Line intensity profiles at each defect

    Fig.8 The computation thresholds T1and T2

    Fig.9 Segmented image after application of T1

    5 Pre-processing of Raw Image

    In general,thermal responses from deeper subsurface anomalies are more contaminated with noise.The result is low signal to noise ratio(SNR),which makes it necessary to preprocess the raw image.The overview of preprocessing flow is shown in Fig.3.In order to reveal subsurface features,the offset in temporal thermal profiles of each pixel is removed by a linear fit.Further processing is carried over these mean removed profiles of each pixel in view.Processing methods are applied over these profiles to reduce noise influence thereby improving SNR.This results in enhanced detection performance in revealing deeper subsurface features pulse compression applied over these noise contaminated profiles enhances the SNR and provides better defect detec-tion.In correlation based pulse compression,mean removed thermal profiles of each pixel are cross correlated with a reference profile.The correlation coefficient contrast due to depth dependent delay is used for detection[9].In order to further improve SNR,discrete wavelet transform(DWT)based image fusion algorithm is applied to pulse compressed images at different time instances.More details of image fusion of GFRP sample can be referred in Ref.[26].The discrete wavelet transform (DWT)is an implementation of the wavelet transform using a discrete set of the wavelet scales and translations obeying some defined rules.In other words,this transform decomposes the signal into mutually orthogonal set of wavelets.By using DWT,the image is first divided into sub-bands under different resolutions.The resulting two-dimensional array of coefficients contains four bands of data,each labelled as LL (low-low),HL (high-low),LH (lowhigh)and HH (high-h(huán)igh)as shown in Fig.11.The LL band can be decomposed once again in the same manner,thereby producing even more subbands.This can be done upto any level,thereby resulting in a pyramidal decomposition as shown in Fig.11.Each and every sub-bands of the Image-I and Image-II are going to be fused with different fusing algorithms.The basic idea of image fusion using DWT shown in Fig.12.

    Fig.10 Pulse compressed image after segmentation

    Fig.11 Wavelet decompositions

    Fig.12 Image fusion using DWT

    Image-I is having the focus at one area and Image-II is having the focus at another area.When we combine these two images then we get an image having both focused areas in single scene.

    The procedure for fusion is as follows:

    (1)Apply DWT for Image-I;

    (2)Apply DWT for Image-II;

    (3)Combine LL components of Image-I and Image-II;

    (4)Combine LH components of Image-I and Image-II;

    (5)Combine HL components of Image-I and Image-II;

    (6)Apply IDWT and obtain the output image.

    6 Results and Discussion

    The proposed segmentation algorithm is investigated over fused image (31)of on a GFRP specimen including 25Teflon inserts of different dimensions placed at various depths.The results indicate that the proposed method showed better performance in both qualitative and quantitative aspects.Compared with thermal image,the segmented image provides visualized information about true defects and false alarms.Analyzing the binary images after segmentation would be obviously easier for the inspector.A segmentation procedure based on the use of the clustering based instead of the conventional,this allows removing the fluctuation in values of pixels corresponding to defect.It is compared with state of the art segmentation methods based on thresholding and clustering including Otsu′s method[21],Contrast Otsu method[22],adaptive threshold[23],K-means clustering[24]and Fuzzy C-means clustering[19,27]as shown in Fig.10.In this context it is felt necessary to apply and performance evaluate the NDE problem using proven methods in literature.The results clearly brought out the uniqueness of the proposed method over other thresholding methods(global and local).It is observed from the literature,also as emphasized by Wang Zhenzhou[28],that the global thresholding methods are more suitable for processing of uniform image(30).In the present research,the image is non uniform,hence it is pertinent to consider local thresholding methods.However,the overall comparison is made for both local and global methods considering the end application involved in the research.The results emphasize that the proposed method could segment almost all the defective regions from the background,whereas the other segmentation methods are able to segment the brighter objects only.The quantitative quantification of different sizes of defects is also compared by counting number of defects segmented.The number of defects observed is 24out of 25with 96%accuracy rate by the proposed method.The accuracy rate of state of the art segmentation methods is 56%,92%and 52%with K-means,adaptive thresholding and FCM methods,respectively.It is clearly found that the segmentation accuracy is better in the proposed method.

    7 Quantitative Analysis

    The performance of proposed method is evaluated quantitatively,using relative foreground area error(RAE)[20,29].RAE parameter is pertinent since area and shape of an object are essential parameters for quantitative analysis in the case of NDE applications.RAE can be expressed in terms of feature area[20].The value of RAE measures the quantity of segmentation.That is zero value indicates an optimal segmentation,where as zero overlap of object areas gives maximum one

    whereATis the true value,andAMthe measured value.

    The results obtained after applying various thesholding methods to NDE images in terms of threshold value,number of defects detected and RAE are tabulated in Table 2.The results are also displayed through bar charts in Fig.13.RAE is equal to zero for an optimal segmentation i.e.a(chǎn) perfect match of the segmented regions,while it is one,if there is zero overlap of the object areas.The results are evaluated by measuring RAE for various segmentation techniques viz: Otsu′s method,contrast Otsu method,adaptive threshold,K-means clustering and Fuzzy C-means clustering.It is concluded that using the proposed method a better performance observed in both qualitative and quantitative aspects in terms of area/shape and density of defects.However,it is observed that image segmentation techniques are strongly application dependent.The proposed tech-nique is well-suited for scenes with strong spatial changes in illumination.Temporal variations in illumination are also handled automatically,which is not the case with other thresholding methods.It is observed that the proposed method has higher value for number of defects detected and lower value for RAE.That means the proposed method showed better performance in both qualitative and quantitative aspects as compared to other methods.

    Fig.13 RAE v.s.segmentation methods

    Table 2 Comparison of area and RAE value of each defect

    8 Conclusions

    Segmentation is one of the promising methods to extract defective regions from thermographic sequence.Traditional clustering algorithms could not correctly classify defects with respect to shape,size and number.In this paper a novel approach is proposed and evaluated for segmentation of NDE images.The method involved clustering based segmentation in which patterns are organized into clusters or groups considering the relationship between these.The double thresholding is used to retrieve the shape of defect;it improves the possible diagnosis capabilities of system for NDE applications.The results are evaluated by measuring RAE for various segmentation techniques viz:Otsu′s method,contrast Otsu method,adaptive threshold,K-means clustering and Fuzzy C-means clustering.It is concluded that using the proposed method a better performance is observed in both qualitative and quantitative aspects in terms of defect shape,size and number.However,it is observed that image segmentation techniques are strongly application dependent.

    [1] XU B,LI H Y.Advanced composite materials and manufacturing engineering:International conference on advanced composite materials and manufacturing engineering[C]//2012International Conference on Advanced Composite Materials and Manufacturing Engineering.Beijing,China:Trans Tech Publications,2012.

    [2] RIQUE A M,MACHADO A C,OLIVEIRA D F,et al.X-ray imaging inspection of fiberglass reinforced by epoxy composite[J].Nuclear Instruments and Methods in Physics Research,2015,349:184-191.

    [3] KATUNIN A,DANCZAK M,KOSTKA P.Automated identification and classification of internal defects in composite structures using computed tomography and 3Dwavelet analysis[J].Archives of Civil and Mechanical Engineering,2015,15(2):436-448.

    [4] BERGANT Z,JANEZ J,GRUM J.Ultrasonic testing of glass fiber reinforced Composite with processing defects[C]//The 12th International Conference of the Slovenian Society for Non-Destructive Testing.Portoro,Slovenia:[s.n.],2013.

    [5] SARASINI F,SANTULLI C.Natural fiber composites[M].U.K.:Woodhead Publishing,2014:273-302.

    [6] MEOLA C,CARLOMAGNO G M.Infrared thermography to evaluate impact damage in glass/epoxy with manufacturing defects[J].International Journal of Impact Engineering,2014,67(5):1-11.

    [7] YANG S H,KIM K B,OH H G,et al.Non-contact detection of impact damage in CFRP composites using millimeter-wave reflection and considering carbon fiber direction[J].NDT & E International,2013,57(6):45-51.

    [8] LU Z Y,ZHANG Q L,LIU X.New magnetic particle cassette NDT intelligent detection device[C]//ISDEA′13Proceedings of the 2013Fourth International Conference on Intelligent Systems Design and Engineering Applications.Washington,DC,USA:IEEE,2013:403-406.

    [9] GHADERMAZI K,KHOZEIMEH M A,TAHERIBEHROOZ F,et al.Delimitation detection in glassepoxy composites using step-phase thermography[J].Infrared Physics & Technology,2015,72:204-209.

    [10]MALDAGUE X.Theory and practice of infrared technology for non destructive testing[M].U.K.:John-Wiley &Sons,2001.

    [11]SHEPARD S M.Advances in pulsed thermography[J].Thermosense XXIII,2001,4360(10):511-515.

    [12]WU D,BUSSE C.Lock-in thermography for nondestructive evaluation of materials[J].Revue Générale De Thermique,1998,37(8):693-703.

    [13]MALDAGUEA X,GALMICHEA F,ZIADIA A.Advances in pulsed phase thermography[J].Infrared Physics & Technology,2001,43(3):175-181.

    [14] MULAVEESALA R,PAL P,TULI S.Interface study of bonded wafers by digitized linear frequency modulated thermal wave imaging[J].Sensors & Actuators A Physical,2006,128(1):209-216.

    [15]MULAVEESALA R,TULI S.Theory of frequency modulated thermal wave imaging for nondestructive sub-surface defect detection[J].Applied Physics Letters,2006,89(19):492.

    [16]MULAVEESALA R,TULI S.Applications frequency modulated thermal wave imaging for non-destructive characterization[C]//Thermophysical Properties of Materials and Devices:Ⅳth National Conference on Thermophysical Properties-NCTP′07.India:AIP,2007:15-22.

    [17]TULI S,MULAVEESALA R.Defect detection by pulse compression in frequency modulated thermal wave imaging[J].Quantitative Infrared Thermography Journal,2005,2(1):41-54.

    [18]MURALI K,MULAVEESALA R,RAMA KOTI REDDY D V.Non-destructive testing by means of frequency modulated infrared imaging[J].International Journal of Computer and Communication Engineering,2013,2(6):635-638.

    [19]OMAR M A,ZHOU Y.A quantitative review of three flash thermography processing routines[J].Infrared Physics & Technology,2008,51(4):300-306.

    [20]SEZGIN M,SANKUR B.Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electronic Imaging,2004,13(1):146-168.

    [21]OTSU N.A threshold selection method from graylevel histogram[J].IEEE Trans Syst,1979,9(1):62-66.

    [22]WIN M,BUSHROA A R,HASSAN M A,et al.A contrast adjustment thresholding method for surface defect detection based on mesoscopy[J].IEEE Transactions on Industrial Informatics,2017,11(3):642-649.

    [23] KAUSHAL M,SINGH A,SINGH B.Adaptive thresholding for edge detection in gray scale images[J].International Journal of Engineering Science and Technology,2010,2(6):2077.

    [24]TATIRAJ S,MEHATA A.Image segmentation using k-means clustering,EM and normalized cuts[J].Department of EECS,2008(1):1-7.

    [25]EL-MELEGY M,ZANATY E,ABD-ELHAFIEZ W M,et al.On cluster validity indexes in fuzzy and hard clustering algorithms for image segmentation[C]//Image Processing,ICIP,IEEE International Conference.San Antonio,USA:IEEE,2007:5-8.

    [26]MURALI K,REDDY D V R K,MULAVEESALA R.Application of image fusion for the IR images in frequency modulated thermal wave imaging for non destructive testing(NDT)[J].Materials Today Proceedings,2018,5(1):544-549.

    [27]DUNN J C.A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters[J].Journal of Cybernetics,3(3):32-57.

    [28] WANG Z.A new approach for segmentation and quantification of cells or nanoparticles[J].IEEE Transactions On Industrial Informatics,2016,12(3):962-971.

    [29]ZHANG Y.A survey of evaluation methods for image segmentation[J].Pattern Recogn,1996,29:1335.

    看非洲黑人一级黄片| 欧美日本中文国产一区发布| 一区二区三区乱码不卡18| 18禁裸乳无遮挡动漫免费视频| 亚洲av日韩在线播放| 乱码一卡2卡4卡精品| 一级毛片我不卡| 中文精品一卡2卡3卡4更新| 99久久人妻综合| videosex国产| 久久99一区二区三区| 欧美精品人与动牲交sv欧美| 亚洲精品国产av成人精品| 国产成人免费观看mmmm| 一级,二级,三级黄色视频| 女性生殖器流出的白浆| 青春草视频在线免费观看| 少妇人妻精品综合一区二区| 啦啦啦视频在线资源免费观看| 夫妻午夜视频| 欧美人与性动交α欧美精品济南到 | 黄色毛片三级朝国网站| 我的女老师完整版在线观看| 欧美亚洲 丝袜 人妻 在线| 黄色一级大片看看| 中文字幕久久专区| 香蕉精品网在线| 久久久久网色| 在线观看免费高清a一片| 亚洲欧洲日产国产| 人人妻人人澡人人看| 狠狠婷婷综合久久久久久88av| 80岁老熟妇乱子伦牲交| 18禁动态无遮挡网站| 日韩一区二区三区影片| 嫩草影院入口| 高清av免费在线| 国产 一区精品| 成人毛片60女人毛片免费| 十八禁网站网址无遮挡| 国产色爽女视频免费观看| 韩国高清视频一区二区三区| 能在线免费看毛片的网站| 黑人欧美特级aaaaaa片| 精品午夜福利在线看| 又大又黄又爽视频免费| 亚洲精品乱码久久久久久按摩| 久久久久国产网址| 青春草视频在线免费观看| 欧美3d第一页| 精品少妇内射三级| 欧美国产精品一级二级三级| 久久99热这里只频精品6学生| 色吧在线观看| 男女啪啪激烈高潮av片| 国产精品一区二区三区四区免费观看| 久久婷婷青草| 高清在线视频一区二区三区| 三级国产精品片| 午夜福利影视在线免费观看| 啦啦啦中文免费视频观看日本| 男女高潮啪啪啪动态图| xxx大片免费视频| 精品一区二区免费观看| av免费观看日本| 午夜日本视频在线| 天堂中文最新版在线下载| 黄色配什么色好看| 国产av一区二区精品久久| 国产亚洲av片在线观看秒播厂| 在线免费观看不下载黄p国产| 欧美日韩国产mv在线观看视频| 成人18禁高潮啪啪吃奶动态图 | 搡女人真爽免费视频火全软件| 亚洲精品视频女| 欧美激情极品国产一区二区三区 | 99久久人妻综合| 国产精品一二三区在线看| 午夜老司机福利剧场| 美女xxoo啪啪120秒动态图| 一边亲一边摸免费视频| 亚洲伊人久久精品综合| 最黄视频免费看| 国产精品偷伦视频观看了| 午夜福利网站1000一区二区三区| 国产av码专区亚洲av| 国产毛片在线视频| av视频免费观看在线观看| 涩涩av久久男人的天堂| 国产欧美日韩一区二区三区在线 | 久久鲁丝午夜福利片| 男女无遮挡免费网站观看| 久热久热在线精品观看| 免费黄色在线免费观看| 丰满少妇做爰视频| 天堂8中文在线网| 91久久精品国产一区二区三区| 黑人高潮一二区| 搡女人真爽免费视频火全软件| 亚洲av日韩在线播放| 久久国产精品大桥未久av| 尾随美女入室| 男人添女人高潮全过程视频| 亚洲不卡免费看| 成人二区视频| 午夜激情福利司机影院| 我要看黄色一级片免费的| 国产成人免费无遮挡视频| 国产精品一区二区在线不卡| 97在线视频观看| 五月玫瑰六月丁香| 亚洲国产av影院在线观看| 婷婷色综合大香蕉| 亚洲精品乱码久久久久久按摩| 亚洲av日韩在线播放| 人体艺术视频欧美日本| 伊人久久精品亚洲午夜| 国产成人一区二区在线| 80岁老熟妇乱子伦牲交| 日韩电影二区| 中文字幕久久专区| 又黄又爽又刺激的免费视频.| 极品少妇高潮喷水抽搐| 亚洲人成网站在线播| 三上悠亚av全集在线观看| 老司机影院毛片| 美女中出高潮动态图| 久久久久久久国产电影| 熟妇人妻不卡中文字幕| 亚洲av不卡在线观看| 内地一区二区视频在线| 内地一区二区视频在线| 国产乱人偷精品视频| 国产深夜福利视频在线观看| 熟妇人妻不卡中文字幕| 十八禁高潮呻吟视频| 新久久久久国产一级毛片| 国产亚洲精品第一综合不卡 | 欧美日韩av久久| 色婷婷久久久亚洲欧美| 一二三四中文在线观看免费高清| 亚洲国产精品一区三区| 大片电影免费在线观看免费| 国产欧美另类精品又又久久亚洲欧美| 色婷婷av一区二区三区视频| av福利片在线| 男人操女人黄网站| 欧美日韩视频精品一区| 欧美日韩成人在线一区二区| 亚洲激情五月婷婷啪啪| 狠狠婷婷综合久久久久久88av| 免费大片黄手机在线观看| 欧美人与善性xxx| 亚洲无线观看免费| 国产精品国产av在线观看| h视频一区二区三区| 日韩视频在线欧美| 国产色婷婷99| 久久狼人影院| 成人午夜精彩视频在线观看| 精品视频人人做人人爽| 欧美97在线视频| 亚洲丝袜综合中文字幕| 99久久精品一区二区三区| 午夜免费观看性视频| 伊人久久精品亚洲午夜| 亚洲国产日韩一区二区| 伦理电影大哥的女人| 久久鲁丝午夜福利片| 日本黄色日本黄色录像| 老司机影院毛片| 人体艺术视频欧美日本| 免费观看av网站的网址| 99国产综合亚洲精品| 中文字幕人妻丝袜制服| 日韩熟女老妇一区二区性免费视频| 亚洲久久久国产精品| 一个人看视频在线观看www免费| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久av网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产伦理片在线播放av一区| 日韩欧美一区视频在线观看| 国产成人午夜福利电影在线观看| 中国美白少妇内射xxxbb| 99国产精品免费福利视频| 精品少妇黑人巨大在线播放| 久久鲁丝午夜福利片| 久久精品国产亚洲av涩爱| 成人免费观看视频高清| 亚洲av二区三区四区| 一个人看视频在线观看www免费| 国产精品女同一区二区软件| 91精品三级在线观看| 国产视频首页在线观看| 特大巨黑吊av在线直播| 日韩强制内射视频| 啦啦啦在线观看免费高清www| 丰满乱子伦码专区| 日本av手机在线免费观看| 中文字幕av电影在线播放| 精品久久久精品久久久| 简卡轻食公司| 久久99热6这里只有精品| 中文字幕免费在线视频6| 国产亚洲精品第一综合不卡 | 精品亚洲乱码少妇综合久久| 美女xxoo啪啪120秒动态图| 97超视频在线观看视频| 日本猛色少妇xxxxx猛交久久| av天堂久久9| 在线 av 中文字幕| 精品亚洲成国产av| 男人添女人高潮全过程视频| 中文字幕久久专区| 人妻一区二区av| 亚洲av二区三区四区| 在线看a的网站| 超色免费av| 日本wwww免费看| av免费在线看不卡| 亚洲欧洲精品一区二区精品久久久 | 亚洲av成人精品一区久久| 日韩精品免费视频一区二区三区 | 国内精品宾馆在线| 欧美xxxx性猛交bbbb| 性色av一级| 老熟女久久久| h视频一区二区三区| 99re6热这里在线精品视频| 免费大片黄手机在线观看| 中文字幕人妻丝袜制服| 久久久久久久久久久久大奶| 日产精品乱码卡一卡2卡三| 国产欧美日韩综合在线一区二区| 国产一区二区在线观看av| 国产男女内射视频| 久久97久久精品| 一级毛片我不卡| 欧美日韩av久久| 亚洲精品456在线播放app| 日本91视频免费播放| 久热这里只有精品99| 国产在线视频一区二区| 男女免费视频国产| 黄片无遮挡物在线观看| 黑人高潮一二区| 91久久精品国产一区二区三区| 免费观看性生交大片5| 热99国产精品久久久久久7| 飞空精品影院首页| 99久久精品一区二区三区| 欧美日本中文国产一区发布| av网站免费在线观看视频| 99热国产这里只有精品6| 91久久精品国产一区二区三区| 婷婷色综合www| 亚洲精品456在线播放app| av专区在线播放| 亚洲经典国产精华液单| 国产精品偷伦视频观看了| 在线观看三级黄色| 国产精品久久久久久av不卡| 久久人人爽人人片av| 国产亚洲精品第一综合不卡 | 免费看不卡的av| 国产有黄有色有爽视频| 欧美精品一区二区免费开放| 一级毛片 在线播放| 91在线精品国自产拍蜜月| 国产成人aa在线观看| 精品亚洲成a人片在线观看| 国产毛片在线视频| .国产精品久久| 日本av免费视频播放| 日本猛色少妇xxxxx猛交久久| 亚洲国产最新在线播放| 热re99久久精品国产66热6| 在线观看一区二区三区激情| 国产欧美亚洲国产| 欧美日韩成人在线一区二区| 国产成人精品婷婷| 午夜91福利影院| 丝袜在线中文字幕| 99久久精品一区二区三区| 亚洲成人av在线免费| 欧美精品一区二区免费开放| 国产精品欧美亚洲77777| 日韩欧美精品免费久久| 在线亚洲精品国产二区图片欧美 | 久久久国产一区二区| 国模一区二区三区四区视频| 欧美成人精品欧美一级黄| 97超碰精品成人国产| 天天操日日干夜夜撸| 亚洲av男天堂| av国产精品久久久久影院| 秋霞在线观看毛片| 午夜福利视频在线观看免费| 成年人免费黄色播放视频| 一区二区三区精品91| 国产国拍精品亚洲av在线观看| 精品国产国语对白av| 在线亚洲精品国产二区图片欧美 | 男女边吃奶边做爰视频| 在现免费观看毛片| 国产在线一区二区三区精| 成年人免费黄色播放视频| 只有这里有精品99| 91久久精品国产一区二区三区| 日韩亚洲欧美综合| 久久久国产欧美日韩av| 亚洲av二区三区四区| 黄片无遮挡物在线观看| 一级毛片电影观看| 美女国产高潮福利片在线看| 欧美精品高潮呻吟av久久| 欧美精品人与动牲交sv欧美| 日韩一本色道免费dvd| av福利片在线| 国产亚洲欧美精品永久| 夜夜骑夜夜射夜夜干| av在线老鸭窝| 99精国产麻豆久久婷婷| 黄片无遮挡物在线观看| 午夜久久久在线观看| 精品国产国语对白av| 欧美成人精品欧美一级黄| 秋霞伦理黄片| 成人毛片60女人毛片免费| 国产伦精品一区二区三区视频9| 精品少妇久久久久久888优播| 麻豆乱淫一区二区| 男人添女人高潮全过程视频| 欧美日韩综合久久久久久| 亚洲av成人精品一二三区| 日韩成人av中文字幕在线观看| 最近2019中文字幕mv第一页| 久久国产精品男人的天堂亚洲 | kizo精华| 91久久精品电影网| 国产亚洲欧美精品永久| 老司机亚洲免费影院| 亚洲少妇的诱惑av| 亚洲av二区三区四区| 午夜av观看不卡| 免费大片18禁| 三级国产精品片| 免费看不卡的av| 最新的欧美精品一区二区| 久久久精品94久久精品| 亚洲av免费高清在线观看| tube8黄色片| 国产精品一区二区在线观看99| 国产极品粉嫩免费观看在线 | 建设人人有责人人尽责人人享有的| 精品久久久噜噜| 人妻夜夜爽99麻豆av| 桃花免费在线播放| 美女内射精品一级片tv| a级毛色黄片| 赤兔流量卡办理| 亚洲av中文av极速乱| av一本久久久久| 亚洲五月色婷婷综合| 午夜免费观看性视频| 国产黄色免费在线视频| 97在线视频观看| 国产 精品1| 成年女人在线观看亚洲视频| 国产成人精品久久久久久| 精品久久蜜臀av无| 免费日韩欧美在线观看| 免费人成在线观看视频色| 大香蕉久久成人网| 国产在视频线精品| 亚洲精品美女久久av网站| 色哟哟·www| 成年人午夜在线观看视频| 国产色爽女视频免费观看| 国产成人精品久久久久久| 亚洲一级一片aⅴ在线观看| 插阴视频在线观看视频| 欧美成人午夜免费资源| 精品少妇黑人巨大在线播放| 日本色播在线视频| 校园人妻丝袜中文字幕| 欧美成人精品欧美一级黄| 亚洲久久久国产精品| 视频在线观看一区二区三区| 狂野欧美激情性xxxx在线观看| 嘟嘟电影网在线观看| 看免费成人av毛片| 少妇人妻久久综合中文| 色婷婷久久久亚洲欧美| 青春草视频在线免费观看| 两个人的视频大全免费| 视频中文字幕在线观看| 国产爽快片一区二区三区| 免费av不卡在线播放| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产色片| 午夜免费男女啪啪视频观看| 午夜av观看不卡| 91精品伊人久久大香线蕉| 天天影视国产精品| 18在线观看网站| 日韩成人av中文字幕在线观看| 国产深夜福利视频在线观看| 免费观看av网站的网址| 国产亚洲最大av| 特大巨黑吊av在线直播| 黑丝袜美女国产一区| 国产亚洲欧美精品永久| 丝袜脚勾引网站| 国产探花极品一区二区| 99热网站在线观看| 在线 av 中文字幕| 午夜福利,免费看| 精品久久久久久久久亚洲| 欧美日韩国产mv在线观看视频| 精品视频人人做人人爽| 成人手机av| 亚洲高清免费不卡视频| 亚洲三级黄色毛片| 欧美日韩成人在线一区二区| 少妇猛男粗大的猛烈进出视频| 国产一区有黄有色的免费视频| 这个男人来自地球电影免费观看 | 亚洲情色 制服丝袜| 特大巨黑吊av在线直播| 国产熟女欧美一区二区| 日韩av免费高清视频| 超碰97精品在线观看| 成人亚洲欧美一区二区av| 一级a做视频免费观看| 欧美3d第一页| 99视频精品全部免费 在线| 中国三级夫妇交换| 97精品久久久久久久久久精品| 久久鲁丝午夜福利片| 黑人高潮一二区| 麻豆乱淫一区二区| 成人亚洲精品一区在线观看| 日韩中文字幕视频在线看片| 麻豆精品久久久久久蜜桃| 久久久国产精品麻豆| 精品久久久久久久久av| 国产精品一二三区在线看| 久久精品人人爽人人爽视色| 国产免费现黄频在线看| 午夜激情久久久久久久| 香蕉精品网在线| 永久网站在线| 国产高清国产精品国产三级| 午夜精品国产一区二区电影| 大香蕉久久成人网| 日韩欧美精品免费久久| 另类亚洲欧美激情| 亚洲欧美成人综合另类久久久| 综合色丁香网| 亚洲精品中文字幕在线视频| 一级毛片黄色毛片免费观看视频| 91久久精品国产一区二区三区| av线在线观看网站| 亚洲av国产av综合av卡| videossex国产| 人妻 亚洲 视频| av免费观看日本| videossex国产| 999精品在线视频| 欧美一级a爱片免费观看看| 亚洲人成网站在线播| 中文字幕人妻熟人妻熟丝袜美| 人妻 亚洲 视频| 永久网站在线| 国产精品欧美亚洲77777| 99热这里只有是精品在线观看| 国产成人精品在线电影| 免费av中文字幕在线| 99久久人妻综合| 亚洲精品久久久久久婷婷小说| 插阴视频在线观看视频| 一个人看视频在线观看www免费| av又黄又爽大尺度在线免费看| 飞空精品影院首页| 人成视频在线观看免费观看| av在线播放精品| av视频免费观看在线观看| 九九久久精品国产亚洲av麻豆| 人妻系列 视频| 日本免费在线观看一区| 最近中文字幕高清免费大全6| 夜夜爽夜夜爽视频| 一区二区av电影网| 性色av一级| 成人毛片a级毛片在线播放| 99久久综合免费| 熟女av电影| 各种免费的搞黄视频| 中文字幕亚洲精品专区| 久久免费观看电影| 王馨瑶露胸无遮挡在线观看| 国产伦理片在线播放av一区| 一级片'在线观看视频| 丝瓜视频免费看黄片| 国产精品国产三级专区第一集| 中文字幕精品免费在线观看视频 | 精品人妻在线不人妻| 99热网站在线观看| 另类精品久久| 天天躁夜夜躁狠狠久久av| 一区二区三区乱码不卡18| 国产毛片在线视频| 午夜激情久久久久久久| 蜜桃久久精品国产亚洲av| 久久99蜜桃精品久久| 丝袜脚勾引网站| 熟女电影av网| 日本av手机在线免费观看| 日韩欧美一区视频在线观看| 亚洲av福利一区| 精品亚洲成a人片在线观看| 观看av在线不卡| 99热这里只有是精品在线观看| 边亲边吃奶的免费视频| 日韩免费高清中文字幕av| 伦理电影大哥的女人| 天堂8中文在线网| 久久久欧美国产精品| 久久人人爽人人爽人人片va| 精品亚洲成国产av| 国产精品秋霞免费鲁丝片| 久久久久久久大尺度免费视频| 日本与韩国留学比较| 99热6这里只有精品| 精品人妻偷拍中文字幕| 久久国内精品自在自线图片| 亚洲人成77777在线视频| 91在线精品国自产拍蜜月| 亚洲欧美成人精品一区二区| 久久人人爽人人爽人人片va| 免费黄频网站在线观看国产| 极品人妻少妇av视频| 午夜精品国产一区二区电影| 如日韩欧美国产精品一区二区三区 | 一二三四中文在线观看免费高清| 色5月婷婷丁香| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品aⅴ在线观看| 亚洲国产最新在线播放| videosex国产| 国产av国产精品国产| 亚洲精品美女久久av网站| 久久人人爽av亚洲精品天堂| 在线播放无遮挡| 91久久精品国产一区二区三区| 久久精品熟女亚洲av麻豆精品| 五月玫瑰六月丁香| 精品亚洲成国产av| 国产成人免费观看mmmm| 高清在线视频一区二区三区| 免费播放大片免费观看视频在线观看| 亚洲国产欧美日韩在线播放| 亚洲熟女精品中文字幕| 亚洲成人一二三区av| 国产精品无大码| 999精品在线视频| 亚洲天堂av无毛| 99热这里只有精品一区| 美女主播在线视频| 美女视频免费永久观看网站| 亚洲精品日韩av片在线观看| 香蕉精品网在线| 国产一区二区三区av在线| 日本黄色片子视频| 久久99蜜桃精品久久| a级毛色黄片| 久久久午夜欧美精品| 亚洲欧美日韩另类电影网站| 亚洲激情五月婷婷啪啪| 久久精品夜色国产| 久久热精品热| 久久久久国产精品人妻一区二区| 伊人亚洲综合成人网| 丝袜脚勾引网站| 国产永久视频网站| 狂野欧美白嫩少妇大欣赏| 日韩av在线免费看完整版不卡| 97精品久久久久久久久久精品| 成人毛片a级毛片在线播放| 日韩 亚洲 欧美在线| 天天躁夜夜躁狠狠久久av| 丝袜脚勾引网站| 亚洲精品乱码久久久久久按摩| 最近的中文字幕免费完整| 日韩一本色道免费dvd| 51国产日韩欧美| 日产精品乱码卡一卡2卡三| 久久精品久久久久久久性| 如日韩欧美国产精品一区二区三区 | 亚洲综合精品二区| 欧美xxⅹ黑人| 简卡轻食公司| 国产黄色免费在线视频| 99热全是精品| 满18在线观看网站| 亚洲国产色片| 亚洲一区二区三区欧美精品| 建设人人有责人人尽责人人享有的| 在线观看免费日韩欧美大片 | 我的老师免费观看完整版| a 毛片基地| 中文欧美无线码| av线在线观看网站|