• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation Tools for a Fiber-Optic Based Structural Health Monitoring System

    2018-05-25 06:39:32AlfredoemesAntonioFernandezLopezJaimeGarcaRamrezMariaEugeniaReyesPerezFlorCriadoZurita

    Alfredo Güemes ,Antonio FernandezLopez,Jaime GarcíaRamírez,Maria Eugenia ReyesPerez,F(xiàn)lor Criado Zurita

    Laboratory for Composites &Smart Structures,Department of Aeronautics,Polytechnic University of Madrid,Spain

    0 Introduction

    Structural health monitoring (SHM)is defined[1]as″the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure″.The three elements of an SHM system are listed as follows.

    (1)A network of sensors,permanently attached to the structure.which is a main differentiation with conventional non-destructive testing(NDT)procedures.

    (2)On-board data handling and computing facilities.Due to the high number of sensors,data have to be processed on real time.SHM was feasible when large capacity portable computers were available in the mid-1980′s.

    (3)Algorithms that collect data from sensors,clean data from environmental effects,compare to former data from the pristine structure and inform about occurrence,localization and damage type.

    The concept of including sensors to detect failures in mechanical systems was applied with great success during the 1990′s to the power transmission mechanisms of the main and tail rotor of helicopters,significantly reducing the number of incidents and accidents.The helicopter drive train is a complex system operating in highly variable and adverse conditions;and any imperfections in gears and bearings are quickly amplified,threatening the safety of the helicopter.But it was enough to place accelerometers at the bearing supports,and to perform the fast Fourier transform(FFT)of the acquired signals,to obtain a reliable early warning system.The signal is very intense at the rotation frequency,any imperfection is manifested as a distortion of the frequency spectrum.Thresholds have to be set to warn for the anomaly before it becomes a threat.The same concept works equally well in any other rotating machinery,such as power plants,wind turbines,and it is a mature technology widely applied today,known as″condition monitoring″.Why it was so easy for rotating machines and so difficult for conventional structures is an enlightening discussion but out of the scope of this paper.Nevertheless,technologies for conventional structures are quickly maturing,and as pointed out by,″the SHM market is estimated to grow from701.4million in 2015to3 407.7million by 2022,at a growth rate of 25%between 2016and 2022″[2].It looks like we may witness new developments and many commercial SHM systems in the near future.

    The comparison of similarities and differences between NDT and SHM gives some insight into SHM main characteristics (Table 1).Both are aiming to check the structural integrity,by a-lerting of the occurrence of imperfections that may jeopardize the strength of the structure.

    Table 1 Comparison of NDT and SHM photonic system

    An aspect of common interest,widely developed for NDT and recently recognized for SHM,is the need for each technology to quantify the damage detection capability,expressed as the POD curve (probability of detection vs crack size).It is the most basic information supplied by the NDE equipment manufacturers,and required by the structural engineers to calculate the damage tolerance of each structure,and the schedule of maintenance tasks.POD was initially obtained through tests in 1973,when the concept was established,but since 2004the interest has shifted to model assisted POD(MAPOD).The advantage of using simulation tools is that they are easy to use,and faster and cheaper for running tests.Simulation becomes even more essential in the case of SHM,because sensors are permanently fixed to the structure[3].Several software tools were available for ultrasonic/guided waves systems,but none for fiber optic sensors (FOS)-based SHM systems,to our knowledge.

    1 Fiber Optic Sensors

    Fiber optic sensors offer a very low size,the standard optical fiber has a diameter of 125mm,so it can be embedded within a ply into the composite material during manufacturing.Other benefits for FOS are electromagnetic interference/radio frequencies interference(EMI/RFI)immunity,wide temperature range,very long cabling if needed,because of the low attenuation,and the multiplexing capability (several sensors on the same optical fiber).As sketched in Fig.1,three topologies are possible.

    Fig.1 Fiber optic sensor morphology

    (1)Point sensor:Detect measurand variation only in the vicinity of the sensor.Example:Micromirror at fiber tip.This is mostly used for chemical sensors

    (2)Multiplexed sensor:Multiple localized sensors are placed at intervals along the fiber length,i.e.FBG (sensor length 10mm typical).About 10sensors/fiber if multiplexed by wavelength,to 1 000sensors by using OFDR.Ref.[4]provides a wide discussion about fiber optic sensors,and particularly FBGs.

    (3)Distributed sensor:Sensing is distributed along the length of the fiber,the optical fiber works simultaneously for transmitting the information and for sensing the local external variables(temperature,strain)[5].

    Fiber optic sensors have built a confidence at their performances as strain/temperature sensors,equaling conventional sensors,and their reliability is now fully proven and accepted.As damage sensors,the following considerations must be taken into account:

    (1)Strain changes caused by damage are very small a few centimeters away from the crack tip,and may be masked by temperature drifting,load changes or any other environmental factor.

    (2)Getting information about damage occurrence from strain measurements is then a difficult task.The larger the damage and the proximity to some sensor,the higher the probability to be detected.It drives to the need to include a large number of sensors into the structure,which is feasible when using optical fiber sensors.

    SHM techniques are classified as″local″or″global″,according to the area under surveillance.comparative vacuum monitoring (CVM)is the most classical example of a local technique,only the area under the elastic patch is monitored.It is also the only SHM system currently certified by aeronautic authorities.Vibration monitoring,or operational modal analysis,is the best example of aglobal technique,the most widely used for civil engineering.The only issue is that damage size needs to be large enough to be detectable,larger than detection thresholds needed for aeronautics applications.

    The usage of distributed fiber optic sensing as a local damage detection method to detect cracks and delaminations that occur at the path of the optical fiber has already been reported[6].The method is based on detecting the residual strains caused by the damage,and it has a high sensitivity,of a few micrometers.,the same resolution as the optical interrogation equipment.It may be useful to survey high-risk areas,like the doors surroundings and laminate edges,but it is unfeasible to cover large surfaces because it would require optical fibers closely spaced.

    The method proposed at this article is a″global method″,able to detect damage anywhere in the structure.

    It is based on submitting the structure to known loads,register the strain at different positions,and compare the data with those obtained formerly on the pristine structure.Any local damage must change the local stiffness,and conse-quently promote different load paths,like the strain field changes,even when sensors are noncoincident with damages.Changes will be very slight,but detectable with appropriate algorithms,as will be demonstrated.

    2 Algorithm for Strain-Based SHM System

    The algorithm is sketched in Fig.2.By using aproven finite element model(FEM)code (we used NASTRAN)on a model of the structure.The strains map is obtained,and data may be reduced to simulate the readings at the sensors positions.Same analysis is done on the structure with a predefined crack.A detailed FEM analysis at the crack tip is not needed,and we are only interested in the far-field.The numerical results will be always different,but after adding simulated noise(typically four microstrains of standard deviation,with a normal distribution),the differences may be faded out,at least under a baresight comparison. Multivariate analysis techniques are able of extracting relevant information from confusing data sets,revealing some hidden patterns. Many mathematical techniques are available,and we were using the simplest one,principal component analysis (PCA).Usually PCA is used for reducing the dimensionality of large data sets,by re-expressing the original data in a new orthogonal basis where the data are arranged along directions of maximal variance and minimal redundancy.For SHM purposes,it is enough to calculate how new data set fits inside original data baseline,which is done by the Q-index,or Damage Index.

    Fig.2 Algorithm for a strain-based SHM

    These calculations may be repeated as many times as needed,by changing the damage position and size,and also the sensors positions,until a desired damage detection capability is attained.

    3 Application to Structure of a UAV

    Fig.3is a picture of LIBIS,an all-composite UAV designed at UPM,with VTOL and hovering capabilities,combining the benefits of fixed and rotary wings.Its main mission is the surveillance of utilities networks.

    Fig.3 LIBIS UAV view

    Due to its rugged operating conditions,impacts may occur to the vehicle,potentially damaging the structure.It is required to have tools able to locate and quantify the damages,so the residual strength of the structure can be calculated and compared to the mission requirements (prognosis).Conventional NDE methods,like ultrasonic inspections(US),may afford this information,but are time consuming and require trained personnel.It is said that more than 90%of the inspections are done just to verify the good condition of the structure,without any other significant findings,so it would be highly desirable to have some faster procedure that may reliably ascertain about the damage occurrence,and in case of positive risk,proceed with the full US inspection.This fast first check may be done by the Fiber-Optic SHM method.

    Each half-wing has been done in graphite/epoxy tape material by out of autoclave(OoA )procedures.As two skins for extrados and intrados,its lay up is changing to optimize weight,which is slightly less than 1kg.Wing is clamped at the root,and design requirements establish a max tip displacement of 5mm under a tip load of 100kg,with an adequate margin for static strength and buckling.A FEM model of nearly 4 000elements was built,and it has been used for the purpose of this paper.

    Optical fibers are integrated with the structure,either embedded into the laminate or during assembly,as sketched in Fig.4 (red lines).An optical fiber is running at the top and bottom of the main spar,and along the bonding line of the first rib.The simulated damages(blue lines)are:

    (1)Debonding at the leading edge,of increasing length,from 20to 100mm (D1).

    (2)Debonding of the lower skin from the main spar;again several lengths are simulated(D2).

    (3)Partial debonding of the first rib(D3).

    (4)Crack at the lower skin,starting at the trailing edge and perpendicular to it(D4).

    Fig.4 Test set up(left)and damage positions(right)

    In Fig.5,the strains on the skin along the optical fibers lines are represented,for both the pristine structure and after the damage case 2,with a debonding length of 40mm (from the wing span 360to 400mm).It is worthy to comment.

    Fig.5 Strains on the skin along one optical fibers

    (1)The strain at the intrados and extrados are not symmetrical because the layup of the skins is not identical(layup at the extrados includes some local reinforcements to avoid some early buckling conditions).Also it is worthy to mention that strains are rather low for the design loads,because buckling is critical due to the low thickness of the skins.

    (2)A local debonding does not change the global pattern of the strains.Only just when the sensor is coincident with the damage(for the D2 case,at the intrados skin,at the wing span 360—400mm),distinguishable changes can be seen.Even for this case,the change is small,from 142 to 154microstrains(roughly 10%).At the extrados,for the same damage the numerical change was less than 1%,as a maximum.For the other damages cases,the numerical changes are also quite low.

    (3)To simulate the experimental conditions,noise has to be added to these numerical results,because the opto-electronic equipment always introduces noise on the measurements.Noise is dependent from many factors,like the length of the optical fibers,time for measurements,and other setting parameters,but typically is about 5microstrains.

    From the former comments,it looks like damage detection from strain measurements would not be a feasible task,unless the sensors were located coincident to damage,or damage size is large enough to promote larger changes,or higher proof loads may be applied to improve the signal/noise ratio.Nevertheless,by using multivariate data analysis procedures,a noise reduction is achieved,and a distinction may be obtained from apparently similar data sets.

    4 Principal Component Analysis

    As mentioned at the introduction,PCA is a statistical tool to analyze large experimental data sets,reduce all the redundant information and identify which are the independent factors influencing on the problem.Also,it can identify if a new set of data follows the general data trends.Very briefly,the steps follows below list:

    (1)Organize the data set as matrixX=[nx m],wherenis the number of experiments andmthe number of measured variables (strains points).

    (2)Normalize the data to get zero mean and unity variance.

    (3)Calculate the eigenvectors-eigenvalues of the covariance matrix:C=XXT.

    (4)Keep only the first eigenvectors as the principal components baseline.

    (5)Project any new collected data into the former baseline.

    (6)Identify if new data follow global trends(Calculate damage index)Qi=(I-PPT)xi.

    Fig.6 Q-Index for different debonding lengths

    Fig.6represents the Q-index for the four damages cases under increasing crack lengths.On-ce the baseline was obtained on the undamaged structure,new sets of data were generated by adding random noise to the numerical results of the strains afforded by the FEM,and each of these set of data is a new experiment.To get a statistical significance,we repeat the process 8 times for each damage case and crack length,so 8 experiments are calculated for each condition.From these graphics,the following conclusion may be drawn:

    (1)Even for the undamaged structure,the Q value(damage index)is not null,but a number ranging from 1.4to 1.9.It is a consequence of the random noise introduced on the signals.

    (2)As expected,the case more easily identified is Damage 2,debonding of the skin from the main spar,because the sensors were located coincident with damage,even for the shorter length of the crack (20mm).

    (3)The debonding of shells at the leading edge(D1)are also well identified.This is not the case of D4(damage at the trailing edge),suggesting that another sensor line running by the trailing edge would be needed to detect reliably this damage.

    5 Conclusions

    A simulation tool for a SHM system based on fiber optic sensors have been proposed and demonstrated.By using proven software packages,like FEM codes,it is able to reproduce and compare the strain data that would be obtained experimentally from a fiber optic sensor network,and to calculate the damage detectability,as expressed by the damage index,for each damage condition.

    The damage detectability is dependent on the distance of the damage to the closest sensor,and also on the damage size and loading conditions.The highest detectability is achieved when the damage crosses the optical fiber path,but even when damage occurs at some distance,and the change in the strain data is quite small,in the order of the measurement noise,PCA is able to resolve it and afford information about damage oc-currence.

    The computational tool serves not only to define the sensor network,according to the damage detection requirements,but also to compare different multivariate analysis algorithms,which that will later be used with the real experimental data.

    This approach affords only information about damage occurrence,that is,SHM level 1.Once the damage is detected,the position (Level 2)may be identified by a careful analysis of the strain deviations.It has been fund that damage index is not directly proportional to damage size,so Level 3information is not straightforward.

    Acknowledgement

    This project has been supported by the project TRA2014-58263-C2-2-R funded by the National Research program of Spain.

    [1] SAE.ARP6461-2013:Guidelines for implementation of structural health monitoring on fixed wing aircraft[S].USA:SAE Standard,2013.

    [2] Reportlinker.Structural health monitoring market by solutions:Global forecast to 2022[EB/OL].(2017-1-1)[2018-1-5].https://www.reportlinker.com/p04603859/Structural-Health-Monitoring-Market-by-Solutions-Technology-End-Users-and-Geography-Global-Forecast-to.html.

    [3] BOLLER C,MAHAPATRA D R ,VENKAT R S,et al.INDEUS:A mean for simulation in SHM[J].Structural Health Monitoring,2017,16(5):611-629.

    [4] GEMES A.Fiber optic strain sensors.NATO Lecture Series,DOI:10.14339/STO-EN-AVT-220-03(2014)

    [5] GEMES A,F(xiàn)ERNANDEZ-LOPEZ A,SOLLER B.Optical fiber distributed sensing-physical principles and applications[J].Structural Health Monitoring,2010,9(3):233-245.

    [6] DAZ-MAROTO P F,F(xiàn)ERNNDEZ A, LARR

    AAGA B,et al.Free-edge delamination location and growth monitoring with an embedded distributed fiber optic network[C]//8th European Workshop On Structural Health Monitoring.Bilbao,Spain:Archivo Digital UPM,2016.

    99国产综合亚洲精品| 黄网站色视频无遮挡免费观看| 老女人水多毛片| 人妻一区二区av| 寂寞人妻少妇视频99o| 亚洲第一区二区三区不卡| 一级,二级,三级黄色视频| 午夜福利在线观看免费完整高清在| 一区二区三区精品91| 亚洲国产欧美在线一区| 欧美 亚洲 国产 日韩一| 欧美成人午夜免费资源| 十八禁网站网址无遮挡| 中文字幕人妻熟女乱码| 国产免费视频播放在线视频| 日韩制服丝袜自拍偷拍| 人人妻人人澡人人爽人人夜夜| 男人操女人黄网站| 亚洲精品av麻豆狂野| 国产一级毛片在线| 国产毛片在线视频| 国产精品偷伦视频观看了| 国产精品欧美亚洲77777| 性色avwww在线观看| 丝袜脚勾引网站| 人妻系列 视频| 另类精品久久| 91精品三级在线观看| 亚洲av中文av极速乱| 亚洲精品国产一区二区精华液| 中文字幕精品免费在线观看视频| 精品亚洲乱码少妇综合久久| 90打野战视频偷拍视频| 桃花免费在线播放| av不卡在线播放| 高清在线视频一区二区三区| 狠狠婷婷综合久久久久久88av| 菩萨蛮人人尽说江南好唐韦庄| 国产1区2区3区精品| 国产精品久久久久久精品古装| a级片在线免费高清观看视频| 婷婷色麻豆天堂久久| 久久精品久久久久久噜噜老黄| 日本猛色少妇xxxxx猛交久久| 久久国内精品自在自线图片| 国产野战对白在线观看| 大话2 男鬼变身卡| 久久久国产一区二区| av不卡在线播放| 国产日韩欧美在线精品| 久久人妻熟女aⅴ| 十分钟在线观看高清视频www| 天天躁日日躁夜夜躁夜夜| 久久精品国产a三级三级三级| 精品酒店卫生间| 精品国产乱码久久久久久小说| 一区二区三区四区激情视频| 黑人巨大精品欧美一区二区蜜桃| 国产有黄有色有爽视频| 欧美日韩亚洲国产一区二区在线观看 | 一级片'在线观看视频| 丰满少妇做爰视频| 国产一区有黄有色的免费视频| 国产av精品麻豆| 99热网站在线观看| 高清欧美精品videossex| 免费黄频网站在线观看国产| 欧美日韩一区二区视频在线观看视频在线| 2018国产大陆天天弄谢| 国产日韩欧美视频二区| 日韩,欧美,国产一区二区三区| 亚洲天堂av无毛| 亚洲 欧美一区二区三区| 女的被弄到高潮叫床怎么办| 久久女婷五月综合色啪小说| 观看av在线不卡| 亚洲 欧美一区二区三区| 亚洲成人一二三区av| 中文字幕人妻丝袜一区二区 | 国产精品女同一区二区软件| www.自偷自拍.com| 国产成人精品久久久久久| 在线观看三级黄色| 在线 av 中文字幕| 日韩欧美一区视频在线观看| 两性夫妻黄色片| 青青草视频在线视频观看| 亚洲av综合色区一区| 久久久久精品人妻al黑| 国产极品粉嫩免费观看在线| 不卡av一区二区三区| 精品视频人人做人人爽| 这个男人来自地球电影免费观看 | 日韩中文字幕欧美一区二区 | 国产av一区二区精品久久| freevideosex欧美| av国产精品久久久久影院| 狠狠精品人妻久久久久久综合| 国产精品.久久久| 菩萨蛮人人尽说江南好唐韦庄| av电影中文网址| 在线观看一区二区三区激情| 丝袜人妻中文字幕| 久久99热这里只频精品6学生| 亚洲国产成人一精品久久久| 国产有黄有色有爽视频| 久久ye,这里只有精品| 超碰97精品在线观看| 免费大片黄手机在线观看| 国产麻豆69| 咕卡用的链子| 另类亚洲欧美激情| 久久精品国产自在天天线| 国产成人a∨麻豆精品| 日日啪夜夜爽| 久久免费观看电影| 亚洲情色 制服丝袜| 国产精品蜜桃在线观看| 99国产综合亚洲精品| 亚洲伊人久久精品综合| 亚洲一区中文字幕在线| 亚洲精品一二三| 亚洲天堂av无毛| 好男人视频免费观看在线| 在线观看人妻少妇| 这个男人来自地球电影免费观看 | 国产成人aa在线观看| 亚洲精品一二三| 观看av在线不卡| 久久精品国产综合久久久| 久久精品国产亚洲av天美| 香蕉丝袜av| 国产亚洲欧美精品永久| 亚洲精品中文字幕在线视频| 黄频高清免费视频| 国产视频首页在线观看| 国产乱人偷精品视频| 寂寞人妻少妇视频99o| 男女国产视频网站| 精品亚洲乱码少妇综合久久| 亚洲人成电影观看| 午夜免费鲁丝| 国产一区有黄有色的免费视频| 成人毛片60女人毛片免费| 欧美精品av麻豆av| 国产在线一区二区三区精| 永久网站在线| 最近中文字幕高清免费大全6| 99久久人妻综合| 亚洲一码二码三码区别大吗| 黑人欧美特级aaaaaa片| 国产一区有黄有色的免费视频| 久久久亚洲精品成人影院| 综合色丁香网| 亚洲图色成人| a级毛片在线看网站| 黑人欧美特级aaaaaa片| 黑人巨大精品欧美一区二区蜜桃| 大话2 男鬼变身卡| 亚洲国产精品一区三区| 在线观看一区二区三区激情| 国产精品一国产av| 丰满少妇做爰视频| 赤兔流量卡办理| 中文字幕人妻熟女乱码| 亚洲av免费高清在线观看| 国产不卡av网站在线观看| 婷婷色综合大香蕉| 亚洲精品日本国产第一区| 人妻一区二区av| 亚洲国产av影院在线观看| av女优亚洲男人天堂| 人人妻人人爽人人添夜夜欢视频| 精品一区二区三区四区五区乱码 | 夫妻午夜视频| 国产在线一区二区三区精| 男的添女的下面高潮视频| 日韩成人av中文字幕在线观看| 亚洲精品一区蜜桃| 91国产中文字幕| 国语对白做爰xxxⅹ性视频网站| 久久这里有精品视频免费| 欧美日韩视频精品一区| 午夜91福利影院| 精品人妻在线不人妻| 一区在线观看完整版| 又黄又粗又硬又大视频| 蜜桃在线观看..| 亚洲国产av影院在线观看| 黄色视频在线播放观看不卡| 免费大片黄手机在线观看| 亚洲av福利一区| 精品国产超薄肉色丝袜足j| 人体艺术视频欧美日本| 久久久精品94久久精品| 天天躁夜夜躁狠狠躁躁| 18在线观看网站| 黄色配什么色好看| 大码成人一级视频| 免费黄网站久久成人精品| 满18在线观看网站| 亚洲色图综合在线观看| 久久久精品免费免费高清| 又大又黄又爽视频免费| 亚洲欧美中文字幕日韩二区| 亚洲欧美成人精品一区二区| 亚洲国产欧美在线一区| 丝瓜视频免费看黄片| 欧美精品人与动牲交sv欧美| 性色avwww在线观看| 国产精品不卡视频一区二区| 啦啦啦在线观看免费高清www| 啦啦啦啦在线视频资源| 伊人亚洲综合成人网| 在线观看美女被高潮喷水网站| 新久久久久国产一级毛片| 最新的欧美精品一区二区| 日日爽夜夜爽网站| 欧美老熟妇乱子伦牲交| av又黄又爽大尺度在线免费看| 少妇人妻精品综合一区二区| 五月开心婷婷网| 欧美日韩视频精品一区| 在现免费观看毛片| 熟女av电影| 汤姆久久久久久久影院中文字幕| 老司机亚洲免费影院| 成年人免费黄色播放视频| xxx大片免费视频| 欧美亚洲日本最大视频资源| 亚洲精品自拍成人| 亚洲精品日本国产第一区| 在线天堂中文资源库| 国产亚洲午夜精品一区二区久久| 国产亚洲精品第一综合不卡| 亚洲第一区二区三区不卡| 国产片内射在线| 国产一级毛片在线| 永久免费av网站大全| 毛片一级片免费看久久久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线免费观看不下载黄p国产| 90打野战视频偷拍视频| 久久99热这里只频精品6学生| 日韩电影二区| 亚洲综合色惰| 久久久久久久大尺度免费视频| 天天操日日干夜夜撸| 黄色毛片三级朝国网站| 免费看不卡的av| 亚洲av.av天堂| 成人二区视频| 汤姆久久久久久久影院中文字幕| 久久午夜福利片| 国产午夜精品一二区理论片| 777米奇影视久久| 中文字幕亚洲精品专区| 超色免费av| 亚洲av免费高清在线观看| 亚洲中文av在线| av天堂久久9| 亚洲欧美色中文字幕在线| 99香蕉大伊视频| 日韩 亚洲 欧美在线| 老司机影院毛片| 精品第一国产精品| 18+在线观看网站| 少妇的丰满在线观看| 男人舔女人的私密视频| 亚洲天堂av无毛| 国产精品免费视频内射| 国产av精品麻豆| 久久久国产一区二区| 国产乱来视频区| 精品国产露脸久久av麻豆| 看免费av毛片| 欧美+日韩+精品| 自拍欧美九色日韩亚洲蝌蚪91| 青春草国产在线视频| 男女免费视频国产| av不卡在线播放| 久久女婷五月综合色啪小说| 国产免费视频播放在线视频| 成年人免费黄色播放视频| 男女国产视频网站| 久久久精品免费免费高清| 亚洲成国产人片在线观看| 精品99又大又爽又粗少妇毛片| 丝袜人妻中文字幕| 侵犯人妻中文字幕一二三四区| 国产有黄有色有爽视频| 精品久久久精品久久久| 90打野战视频偷拍视频| 国产成人a∨麻豆精品| 人妻一区二区av| 男女边吃奶边做爰视频| 精品一区二区三卡| 中文字幕色久视频| 777久久人妻少妇嫩草av网站| 日本免费在线观看一区| 咕卡用的链子| 国产免费现黄频在线看| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 国产综合精华液| 国产av一区二区精品久久| av又黄又爽大尺度在线免费看| 亚洲av在线观看美女高潮| 国产一区二区三区av在线| 在线免费观看不下载黄p国产| 亚洲一码二码三码区别大吗| 国产老妇伦熟女老妇高清| 最近中文字幕2019免费版| 久久青草综合色| 免费看不卡的av| 大片电影免费在线观看免费| 免费少妇av软件| 国产一区二区在线观看av| 丝袜在线中文字幕| 欧美日韩精品成人综合77777| 欧美成人午夜精品| 国产黄色免费在线视频| 国产 精品1| 精品国产乱码久久久久久男人| 亚洲,一卡二卡三卡| 免费看不卡的av| √禁漫天堂资源中文www| 精品人妻一区二区三区麻豆| 欧美bdsm另类| 欧美成人精品欧美一级黄| 汤姆久久久久久久影院中文字幕| 少妇人妻精品综合一区二区| 最新的欧美精品一区二区| 午夜激情av网站| 满18在线观看网站| a 毛片基地| 男女免费视频国产| 亚洲国产精品成人久久小说| 一级片免费观看大全| 五月天丁香电影| 狠狠婷婷综合久久久久久88av| 丰满少妇做爰视频| 你懂的网址亚洲精品在线观看| 欧美日韩国产mv在线观看视频| 成人亚洲精品一区在线观看| 午夜日韩欧美国产| 国产精品av久久久久免费| 男男h啪啪无遮挡| 国产在线视频一区二区| 国产成人免费无遮挡视频| 在线天堂中文资源库| 日本av手机在线免费观看| 国产成人一区二区在线| 日韩成人av中文字幕在线观看| 国产成人一区二区在线| 免费观看性生交大片5| 在线精品无人区一区二区三| 国产av国产精品国产| 精品人妻熟女毛片av久久网站| 综合色丁香网| 精品酒店卫生间| 高清不卡的av网站| 国产免费现黄频在线看| 一级毛片我不卡| 久久久久久久久久人人人人人人| 久久精品国产综合久久久| 成人亚洲欧美一区二区av| 毛片一级片免费看久久久久| 最近中文字幕2019免费版| 丰满少妇做爰视频| 亚洲欧美一区二区三区黑人 | av在线观看视频网站免费| 精品少妇一区二区三区视频日本电影 | 自线自在国产av| 看非洲黑人一级黄片| 国产欧美日韩一区二区三区在线| 久久这里只有精品19| 久久人人97超碰香蕉20202| 亚洲欧美成人综合另类久久久| 久久精品久久久久久久性| 国产精品成人在线| 美女视频免费永久观看网站| 久久精品国产自在天天线| 天天躁夜夜躁狠狠躁躁| 性少妇av在线| av在线老鸭窝| 午夜久久久在线观看| 一区福利在线观看| 国产人伦9x9x在线观看 | 精品少妇内射三级| 你懂的网址亚洲精品在线观看| 99久久精品国产国产毛片| 亚洲欧美精品自产自拍| 亚洲欧美精品综合一区二区三区 | 亚洲国产最新在线播放| 狠狠婷婷综合久久久久久88av| 超碰成人久久| 精品福利永久在线观看| 侵犯人妻中文字幕一二三四区| 最新的欧美精品一区二区| 国产亚洲一区二区精品| 欧美人与性动交α欧美精品济南到 | 亚洲精品美女久久久久99蜜臀 | 成人18禁高潮啪啪吃奶动态图| 国产精品不卡视频一区二区| 免费观看性生交大片5| 亚洲中文av在线| 精品国产国语对白av| 香蕉丝袜av| 女性被躁到高潮视频| 边亲边吃奶的免费视频| 麻豆精品久久久久久蜜桃| 国产精品一国产av| av线在线观看网站| 中文精品一卡2卡3卡4更新| 亚洲三级黄色毛片| 久久影院123| 99国产精品免费福利视频| 中文字幕av电影在线播放| 成人亚洲精品一区在线观看| 99久国产av精品国产电影| 亚洲精品aⅴ在线观看| 午夜激情av网站| 超色免费av| 欧美日韩亚洲高清精品| 亚洲伊人久久精品综合| 美女中出高潮动态图| av一本久久久久| 人妻一区二区av| 免费观看无遮挡的男女| 精品国产一区二区三区久久久樱花| 一本大道久久a久久精品| 亚洲一码二码三码区别大吗| 青春草国产在线视频| 一区在线观看完整版| av线在线观看网站| 一级片'在线观看视频| 午夜免费男女啪啪视频观看| 久久精品久久精品一区二区三区| 美女脱内裤让男人舔精品视频| 老司机影院成人| 亚洲激情五月婷婷啪啪| 女人被躁到高潮嗷嗷叫费观| 最近最新中文字幕免费大全7| 国产色婷婷99| 成人漫画全彩无遮挡| 亚洲国产日韩一区二区| 日韩免费高清中文字幕av| 人妻一区二区av| 黄色怎么调成土黄色| 久久久久久久久久久免费av| 国产精品嫩草影院av在线观看| 母亲3免费完整高清在线观看 | 欧美精品一区二区大全| 另类精品久久| 国产成人免费观看mmmm| 一区福利在线观看| xxxhd国产人妻xxx| 熟女电影av网| 精品少妇一区二区三区视频日本电影 | 成人毛片60女人毛片免费| 亚洲欧美日韩另类电影网站| 哪个播放器可以免费观看大片| 欧美成人午夜免费资源| 欧美日韩亚洲国产一区二区在线观看 | 久久国产亚洲av麻豆专区| 久久久久久久久久人人人人人人| 9热在线视频观看99| 国产黄频视频在线观看| 老熟女久久久| 国产激情久久老熟女| 国产成人一区二区在线| 午夜91福利影院| 欧美精品人与动牲交sv欧美| 国产精品久久久久久久久免| 免费不卡的大黄色大毛片视频在线观看| 久久这里有精品视频免费| 天美传媒精品一区二区| 丝袜美腿诱惑在线| 亚洲精品成人av观看孕妇| 日韩中字成人| 日本欧美视频一区| 成人18禁高潮啪啪吃奶动态图| 国产一区二区激情短视频 | 只有这里有精品99| 99久久人妻综合| 免费久久久久久久精品成人欧美视频| 国产探花极品一区二区| 免费在线观看视频国产中文字幕亚洲 | 午夜91福利影院| 精品福利永久在线观看| 久热久热在线精品观看| 国产精品人妻久久久影院| 久久亚洲国产成人精品v| 毛片一级片免费看久久久久| 久久久久久久久久久久大奶| 中文字幕制服av| 亚洲久久久国产精品| 欧美日韩视频高清一区二区三区二| 久久国产精品大桥未久av| 777久久人妻少妇嫩草av网站| av免费观看日本| 国产野战对白在线观看| 亚洲av电影在线观看一区二区三区| 久久鲁丝午夜福利片| 亚洲综合精品二区| 交换朋友夫妻互换小说| 亚洲欧美精品综合一区二区三区 | 精品第一国产精品| 欧美黄色片欧美黄色片| 亚洲情色 制服丝袜| 亚洲婷婷狠狠爱综合网| 国产探花极品一区二区| 在线观看免费高清a一片| 黑丝袜美女国产一区| 国语对白做爰xxxⅹ性视频网站| 日韩,欧美,国产一区二区三区| 久久青草综合色| 老汉色av国产亚洲站长工具| 啦啦啦在线观看免费高清www| 日韩视频在线欧美| 国产精品免费大片| 亚洲人成网站在线观看播放| 9色porny在线观看| 亚洲精品美女久久av网站| av国产精品久久久久影院| 亚洲av电影在线进入| 精品国产国语对白av| 亚洲人成77777在线视频| 99久久综合免费| 精品人妻熟女毛片av久久网站| 综合色丁香网| 亚洲精品美女久久av网站| 一二三四中文在线观看免费高清| 国产白丝娇喘喷水9色精品| 亚洲国产最新在线播放| 国产精品av久久久久免费| 久久国内精品自在自线图片| 久久精品国产亚洲av高清一级| 9热在线视频观看99| 午夜日本视频在线| 天堂俺去俺来也www色官网| 亚洲天堂av无毛| 久久久久久人妻| av片东京热男人的天堂| 巨乳人妻的诱惑在线观看| 亚洲内射少妇av| 1024香蕉在线观看| 久久久久久久久免费视频了| 精品少妇黑人巨大在线播放| 卡戴珊不雅视频在线播放| 国产成人精品在线电影| 精品久久久精品久久久| 久久99一区二区三区| 97精品久久久久久久久久精品| 2022亚洲国产成人精品| 午夜福利视频在线观看免费| 国产成人av激情在线播放| 免费观看在线日韩| 晚上一个人看的免费电影| 午夜久久久在线观看| 我要看黄色一级片免费的| 91国产中文字幕| 一级爰片在线观看| av国产精品久久久久影院| 纵有疾风起免费观看全集完整版| 国产欧美日韩一区二区三区在线| 国产精品三级大全| 夫妻性生交免费视频一级片| 一边摸一边做爽爽视频免费| 日韩一卡2卡3卡4卡2021年| 18禁国产床啪视频网站| 日韩免费高清中文字幕av| 如日韩欧美国产精品一区二区三区| 极品少妇高潮喷水抽搐| 人人澡人人妻人| 高清黄色对白视频在线免费看| 在线亚洲精品国产二区图片欧美| 色哟哟·www| 久久国产精品大桥未久av| 国产精品一二三区在线看| 日韩中文字幕视频在线看片| 老汉色av国产亚洲站长工具| 丝袜脚勾引网站| 国产一区二区在线观看av| 黄片小视频在线播放| 国产精品久久久久成人av| 欧美日韩视频精品一区| 亚洲精品久久成人aⅴ小说| 午夜福利视频精品| 丝袜人妻中文字幕| 亚洲国产毛片av蜜桃av| 亚洲色图综合在线观看| 日韩人妻精品一区2区三区| 九九爱精品视频在线观看| 精品一区在线观看国产| 国产精品av久久久久免费| 亚洲精品中文字幕在线视频| 国产男女内射视频| 国产精品一区二区在线观看99| 欧美成人午夜精品| 午夜激情久久久久久久| 亚洲人成77777在线视频| 婷婷色av中文字幕| 免费av中文字幕在线| 人体艺术视频欧美日本| 18禁动态无遮挡网站| av天堂久久9| 成人毛片60女人毛片免费| 亚洲少妇的诱惑av| 一区二区三区四区激情视频| 最新的欧美精品一区二区| 欧美97在线视频| 久久精品国产综合久久久| 69精品国产乱码久久久|