• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Study of ρ-ω Mixing in Resonance Chiral Theory?

    2018-05-05 09:13:33YunHuaChen陳云華DeLiangYao姚德良andHanQingZheng鄭漢青
    Communications in Theoretical Physics 2018年1期
    關(guān)鍵詞:陳云

    Yun-Hua Chen(陳云華) De-Liang Yao(姚德良) and Han-Qing Zheng(鄭漢青)§

    1School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China

    2Instituto de F′?sica Corpuscular(Centro Mixto CSIC-UV),Institutos de Investigaci′on de Paterna,Apartado 22085,46071,Valencia,Spain

    3Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871,China

    4Collaborative Innovation Center of Quantum Matter,Beijing 100871,China

    1 Introduction

    The study ofρ-ωmixing is a very interesting subject in hadron physics both theoretically and experimentally.The inclusion ofρ-ωmixing effect is crucial for a good description of the pion vector form factor ine+e?→π+π?process,which quanti fies the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon.On the experimental side,several experimental collaborations,such as KLOE[1?2]and BESIII,[3]have recently launched measurements of thee+e?→π+π?with high statistics and high precision.

    Theρ-ωmixing amplitude was assumed to be a constant or momentum-independent in the early stage of previous studies.[4?5]The authors of Ref.[6]suspected the validity of the constant assumption and,based on a quark loop mechanism ofρ-ωmixing,they found that the mixing amplitude is signi ficantly momentum-dependent.Since then,the use of various loop mechanisms forρ-ωmixing is triggered in different models such as extended Nambu-Jona-Lasinio(NJL)model,[7]the global color model,[8]the hidden local symmetry model,[9?11]and the chiral constituent quark model.[12?13]

    In this work,we aim at studyingρ-ωmixing in a model independent way by invoking Resonance Chiral Theory(RχT).[14]It provides a reliable tool to study physics in the intermediate energy region.[15?20]The tree-level calculation ofρ-ωmixing in the framework of RχT has been given in Refs.[21–22],however,the tree-level mixing amplitude turns out to be momentum-independent.In order to implement the momentum dependence,here we will calculate the one-loop contributions as shown in Fig.1.Theρ-ωmixing can be induced either by strong isospinviolating or by electromagnetic effects.The former is proportional to the mass difference bewteen theu,dquarks,i.e.,?ud=mu?mdand the latter is accompanied by the fine structure constantα.In the present study,only the mixing effects linear in ?udorαare under our consideration.Apart from the overall factors ?udorα,the large-NCcounting rule proposed in Ref.[23]is imposed to truncate our perturbative calculation.Speci fically,our calculations are truncated at next-to-leading order in the 1/NCexpansion for the strong and electromagnetic contributions.The ultraviolet(UV)divergence from the loops is cancelled by introducing counterterms with sufficient derivatives and the involved couplings are assumed to be beyond the leading order in 1/NCexpansion as claimed in Ref.[24].

    We assess the impact of momentum-dependentρ-ωmixing amplitude on the pion vector form factor by fitting to the experimental data extracted from thee+e?→π+π?process andτ→ντ2πdecay in the energy region of(650–850)MeV.Besides,the decay width ofω→π+π?is implemented as a constraint in the fit.It is known that,provided isospin invariance holds,the isovector part of the pion form factor in thee+e?annihilation is related to the one inτdecays theoretically,via the conserved vector current assumption.[25?26]Different effects of isospin breaking have been studied to describe thee+e?annihilation data andτdecays data simultaneously,[26?34]such as the short distance and long distance corrections in theτpartial decay width to two pions,charged and neutralρmass and width difference,andρ-ωmixing.In our study we will take into account all the above isospin breaking effects.Our fit result shows that theρ-ωmixing amplitude is signi ficantly momentum-dependent and its imaginary part is much smaller than real part.Based on the fitted values of the parameters,we also analyze the decay width ofω→π+π?by including the effect of theρ-ωmixing.It is found that the decay width is dominated by theρ-ωmixing effect while the contribution from the direct coupling ofωI→π+π?is negligible.

    This paper is organized as follows.In Sec.2,we introduce the description ofρ-ωmixing.In Sec.3,we present the theoretical framework and elaborate on the calculation of the tree-level and loop contribution ofρ-ωmixing.In Sec.4,the fit result is shown and the related phenomenology is dicussed.A summary is given in Sec.5.

    2 Generic Description of ρ-ω Mixing

    In the isospin basis|I,I3>,we de fine|ρI>≡|1,0>and|ωI>≡|0,0>for convenience.The mixing between the isospin states of|ρI>and|ωI>can be implemented by considering the self-energy matrix

    In above the vector-current conservation has been used to eliminate the longitudinal part proportional topμ.Furthermore,we have also neglected terms ofsince they correspond to contributions at two-loop order and are beyond our accuracy.mρa(bǔ)ndmωare bare masses of theρa(bǔ)ndωmesons,respectively.

    Theρ-ωmixing,i.e.,mixing between the physical states ofρ0andω,is obtainable by introducing the following relation

    with?being the mixing parameter.The matrix of dressed propagators corresponding to physical states is diagonal.Moreover,it can be connected to the matrixDI(s)in Eq.(2)through

    The two mixing parameters should be just different with each other slightly,see Ref.[35]for more details.

    3 Calculations in Resonance Chiral Theory

    In this section we will calculate the mixing amplitude Πρω(s)using RχT so as to study its momentum dependence.The information ofρ-ωmixing is encoded in the o ff-diagonal element of the self-energy matrix,which can be decomposed as

    where?ud=mu?mdis the mass difference betweenu,dquarks,andαdenotes the fine-structure constant.In above,Sρω(s)andEρω(s)stand for the structure functions of strong and electromagnetic interactions,respectively.In the present work,the diagrams in Fig.1 are needed for a calculation in RχT up to NLO in 1/NCexpansion.As will be seen below,the LO contributions ofSρω(s)andEρω(s)are different:the former starts atwhile the latter does atTherefore,their corresponding NLO contributions are ofand,respectively.In what follows,all the diagrams in Fig.1 will be calculated by using effective Lagrangians constructed in the framework of RχT.

    3.1 Resonance Chiral Theory and Tree-Level Amplitudes

    In RχT,the vector resonances are described in terms of antisymmetry tensor fields with the normalization

    with?μbeing the polarization vector.The kinetic Lagrangian of vector resonances takes the form[14]

    ?Without loss of generality,here we use the Proca formalism for the vector fields andTμνis the transverse projector.In the antisymmetric tensor formalism,the corresponding transverse projector is

    whereMVis the mass of the vector resonances in the chiral limit.Here the vector mesons are collected in a 2×2 matrix

    Hereare field strength tensors composed of the left and right external sourceslμandrμ,andFV,GVare real couplings.

    The LO isospin-breaking effect is introduced by the Lagrangian

    Fig.1 Feynman diagrams contributing to ρ-ω mixing.

    3.2 Loop Contributions

    The relevant loop diagrams contributing up to our accuracy are shown in the second and third lines of Fig.1.Diagrams(c)and(d)contribute to the strong correction at,which are next-to-leading order compared to diagram(a).Likewise,with respect to diagram(b),diagrams(e)–(h)lead to electromagnetic corrections at nextto-leading order,i.e..In our calculation below,the necessary isospin-breaking vertices are constructed based on the basic chiral building blocks taken fromχPT[36]and RχT.[14]

    (i)Diagram(c):ππ Loop

    The vertex ofρI→π+π?can be read from the Lagrangian in Eq.(13).For the isospin-violating vertex ofωI→π+π?,we construct the following Lagrangian

    For convenience,we de fine the combinationTheππ-loop contribution can be obtained by calculating the integral

    wherepandkdenote the momenta of the external vector meson and either of the exchanged pions,respectively.After integrating,the structure function can be extracted,which reads

    (ii)Diagram(d):π-Tadpole Loop

    According to the Lorentz,PandCinvariances,the Lagrangian corresponding to the interaction ofωIρIππcan be written down as follows:

    Note that thev8?VμνVμνχ+>term,which contributes to the contact interaction ofρ-ωmixing,also yieldsωIρIππvertex.Though in Eq.(21)there are many terms with a large number of free couplings,the final result only depends on combinations of these couplings.For simplicity,the following two combinations are necessary,i.e.,

    Furthermore,one can neglect the mass difference between the charged and neutral pions in the internal lines of loops,since the resultant difference is of higher orders beyond our consideration.As a result,the expanded form of Lagrangian(21)can be reduced simply to

    With the above Lagrangian,theπ-tadpole contribution to theρ-ωmixing can be derived:

    Eventually,the explicit expression of the strong structure function has the form of

    (iii)Diagrams(e)–(h):π0γLoops

    In the loop diagrams(e)–(h),there are two types of vertices.The coupling of vector meson(V)as well as vector external source(J)to pseudoscalar(P)is labeled by VJP vertex for short.The interaction of two vector mesons and one pseudoscalar is called VVP vertex.The operators of VJP type are given in Ref.[37]:

    The involved couplings or their combinations can be estimated by matching the leading operator product expansion of?VVP>Green function to the result calculted within RχT.Such a procedure leads to high energy constraints on the resonance couplings as follows:[37]

    The mass of vectors in the chiral limit,MV,can be estimated by the mass ofρ(770)meson.[38]

    The loops diagrams(e)–(h)can be calculated simultanously if the effective vertices ofandω?are used,where a “?” stands for an o ff-shell particle.The explicit expression forreads

    It should be stressed that there are two terms in each effective vertex.One corresponds to the case that the virtual photon is coupled to the VP system directly,while the other to the case that it is interacted through an intermediate vector meson.Note also that,throughout this work we only account for the corrections proportional either to?udor 4πα,which implies the calculation of electromagnetic contribution can be carried out in the isospin limit,i.e.,mu=md.

    With the help of the effective vertices,theπγloop contribution,i.e.,the sum of the loops diagrams(e)–(h),can be expressed as:

    The further calculation is straightforward but the result of the extracted electromagnetic structure functionis too lengthy to be shown here.It is worthy noting that in our numerical computation we will use the high energy constraints in Eq.(28)together with the fitted parameters given in Ref.[18],therefore,all the parameters involved inare known.

    (iv)Counterterms and Renormalized Amplitude

    Up to now,the total contribution ofρ-ωmixing can be expressed as

    which is still unrenormalized.The resonance chiral theory is unrenormalizable in the sense that the amplitude has to be renormalized order by order with increasing number of counterterms when the accuracy of the calculation is improved.In our case,the tree amplitudes,can only absorb the ultraviolet divergence proportional top0.In order to cancel thestemming from the loop contributionSadditional counterterms are needed.For this purpose,we construct

    where a bar indicates the divergences are subtracted.As discussed in Ref.[35],there is an important constraint on the mixing amplitude,namely,it should vanish asp2→0.Thus the final expression of the renormalized mixing amplitude should be

    where an additional finite shift is imposed so as to guarantee that the constraint Πρω(0)=0 is satis fied.

    In our numerical computation,the scaleμwill be set toMρa(bǔ)nd we use(mu?md)=?2.49 MeV provided by particle data group(PDG).[39]Furthermore,we can de fine

    and in principle the unknown parameters in Eq.(35)area,

    4 The Effect of ρ-ω Mixing on Pion Vector Form Factor

    The mass and width ofρmeson are conventionally determined by fitting to the data ofe+e?→π+π?andwhere various mechanisms are introduced to describe theρ-ωmixing effect.To avoid intervening by theirρ-ωmixing mechanisms,we do not employ their extracted values for the mass and width,rather,we set the massMρ,the relevant couplingsGρa(bǔ)ndFρto be free parameters in our fit.As for the width,an energy-dependent form will be imposed,which is supposed to be dominated by the twoπdecay channel:[40]

    and get138 MeV.With the decay widths given above,sρa(bǔ)ndsωin Eq.(3)now can be rewritten as

    The experimental data considered in this work are the pion form factorof theprocess[1?3,41?45]anddecay[25,46]in the energy region of(650–850)MeV,and the decay width of

    The Feynman amplitude for the processproceeding via virtual intermediate hadrons,i.e.,ρ,ωand their mixing,is described by[35]

    Here the fourth term corresponds to higher-order contribution of isospin breaking,e.g.,proportional to(mu?md)2,which is beyond our accuracy and hence can be neglected.Including the contribution from the direct coupling of photon to the pion pair,the pion form-factor ine+e?annihilation reads

    which is irrelevant toρ-ωmixing effect.To take into account the isospin breaking effects,one way is to multi-by the factor of,whereSEW=1.0233 corresponding to the short distance correction.[26]Furthermore,GEM(s)is responsible for the long distance radiative correction whose expression is provided in Ref.[47].To be speci fic,in our fit we make the following substitution

    Our best- fitted parameters and the correspondingχ2/d.o.f.are compiled in Table 1.Our determination of the mass ofρmeson is in good agreement with the value reported in PDG.[39]The fit results are plotted in the Fig.2.One can see that the experimental data of pion form factor,especially the kink around the mass ofωin theprocess,is well described.

    Fig.2 (Color online)Fit results for the pion form factor in the e+e? → π+π? process(a)and τ→ ντ2π process(b).The data of e+e? annihilation are taken from the OLYA and CMD,[41]CMD2,[42?43]DM1,[44]SND,[45]KLOE,[1?2]BESIII[3]collaborations.The τ decay data are taken from the ALEPH[46]and CLEO[25]collaborations.The solid lines are our theoretical predictions.

    Table 1 The fit results of the parameters.

    In Fig.3,contributions at different orders to the real and imaginary parts of the pion form factorare displayed.The leading-order contribution(mixing-effect irrelevant)includes the contact interaction and theρmediated mechanism,namely the first two terms on the right side of Eq.(41).The next-to-leading-order contribution includes theρ-ωmixing term and the directωIππcoupling,namely the third term plus the forth term on the right side of Eq.(41).As expected,the isospin-breaking effects mainly affects the energy region around the masses ofρa(bǔ)ndω.It is found that the dominant contribution is from the imaginary part in that region.The isospinbreaking effects increase the absolute value of imaginary part around theρpeak,and accounts for that thee+e?data are higher than theτdata in that region as shown in Fig.2.Similar behavior has also been observed in Ref.[11]where theρ-ωmixing was treated in hidden local symmetry model.

    Fig.3 (Color online)The real and imaginary parts of the fitted form factor Feeπ(s).The black solid and red dashed lines represent our best results of the real and imaginary parts,respectively.The blue dotted and cyan dash-dot-dotted lines correspond to the leading order and the second order contributions of the real parts,respectively.The magenta dash-dotted and green short dashdash-dotted lines denote the leading order and second order contributions of the imaginary parts.

    In Fig.4,we plot the real and imaginary parts of the mixing amplitude Πρω(s).It is found that the real part is dominant almost in all the region and its momentumdependence is signi ficant.Compared to the real part,the imaginary part is rather small.For the imaginary part,the contributions fromππl(wèi)oop andπγloop are of the same order,but with opposite sign.Note that theπ-tadpole is real ands-independent as can be seen from Eq.(25).The smallness of the imaginary part is consistent with the observation in Refs.[5,48],though therein the effect of directωI→π+π?was not taken into account and even in Ref.[5]the isospin breaking is considered to be purely electromagnetic origin.We also note that larger imaginary part is obtained in Refs.[8,13]by using global color model and a chiral constituent quark model,respectively.

    However,our finding is more reliable in the sense that it is based on a model-independent description of theρ-ωmixing and,moreover,constraint from experimental data is imposed by means of fitting.

    The values of Πρωat physical masses ofρorωare interesting since they are related to the mixing parameters given in Eq.(6).To that end,we obtain:MeV2,and?2=0.21;MeV2and?1=0.24.As expected,?1and?2come out to be almost the same.Note that,in the numerical calculation of?i,we have neglected the small imaginary part of the mixing amplitude as well as the widths of theρa(bǔ)ndωresonances.This leads to a real number of?iand hence a probability interpretation can be assigned.

    Fig.4(Color online)The real part(a)and imaginary part(b)of the mixing amplitude Πphysicalρω(s).The black solid lines represent our best fitted results.For the imaginary part,the red dashed and blue dotted lines correspond to the contribution of ππ loop and πγ loop,respectively.

    Using the central values of the fitted parameters in Table 1,we calculate the decay width of

    From Eq.(44),we can find that the first term due to the directis less than the second term due to theρ-ωmixing by two orders.In other words,the directcoupling only affects the decay width less than one percent.Within 1σuncertainties,our theoretical value of the branching fraction is(1.53±0.10)×10?2,which agrees with the values given in PDG[39]and by the recent dispersive analysis.[49]

    5 Summary

    We have analyzed theρ-ωmixing within the framework of resonance chiral theory.Based on the effective Lagrangians constructed under the guidance of various symmetries,we calculate theρ-ωmixing amplitude up to next-to-leading order in large 1/NCexpansion.Importantly,the momentum-dependent effect is implemented due to the inclusion of loops in our calculation.The values of the resonance couplings are determined by fitting to the data of the pion vector form factor extracted from theprocess anddecay.The decay width ofis served an additional constraint in the fit as well.It is found that the imaginary part of the pion form factoris enhanced largely around theρpeak.Theρ-ωmixing amplitude is dominated by its real part almost in all the region,which is signi ficantly momentum-dependent.On the contrary,its imaginary part is relatively small.We also find thatρ-ωmixing plays a major role in the decay width of,and its contribution is two orders of magnitude larger than that from the directωIππcoupling.

    We would like to thank A.Hosaka and J.J.Sanz-Cillero for helpful discussions.

    [1]KLOE Collaboration,F.Ambrosino,et al.,Phys.Lett.B700(2011)102.

    [2]KLOE Collaboration,D.Babusci,et al.,Phys.Lett.B720(2013)336.

    [3]BESIII Collaboration,M.Ablikim,et al.,Phys.Lett.B753(2016)629.

    [4]S.L.Glashow,Phys.Rev.Lett.7(1961)469.

    [5]F.M.Renard,Springer Tracts in Modern Physics,6398-120,Springer-Verlag,Berlin(1972).

    [6]T.Goldman,J.A.Henderson,and A.W.Thomas,Few Body Systems12(1992)123.

    [7]C.M.Shakin and W.D.Sun,Phys.Rev.D55(1997)2874.

    [8]K.L.Mitchell and P.C.Tandy,Phys.Rev.C55(1997)1477.

    [9]M.Benayoun,et al.,Eur.Phys.J.C17(2000)303.

    [10]M.Benayoun,et al.,Eur.Phys.J.C22(2001)503.

    [11]M.Benayoun,et al.,Eur.Phys.J.C55(2008)199.

    [12]D.N.Gao and M.L.Yan,Eur.Phys.J.A3(1998)293.

    [13]X.J.Wang and M.L.Yan,Phys.Rev.D62(2000)094013.

    [14]G.Ecker,J.Gasser,A.Pich,and E.de Rafael,Nucl.Phys.B321(1989)311.

    [15]Z.H.Guo and J.A.Oller,Phys.Rev.D84(2011)034005.

    [16]M.Jamin,A.Pich,and J.Portoles,Phys.Lett.B640(2006)176.

    [17]P.Roig and J.J.Sanz-Cillero,Phys.Lett.B733(2014)158.

    [18]Y.H.Chen,Z.H.Guo,and H.Q.Zheng,Phys.Rev.D85(2012)054018.

    [19]Y.H.Chen,Z.H.Guo,and H.Q.Zheng,Phys.Rev.D90(2014)034013.

    [20]Y.H.Chen,Z.H.Guo,and B.S.Zou,Phys.Rev.D91(2015)014010.

    [21]Res Urech,Phys.Lett.B355(1995)308.

    [22]A.Kucukarslan and Ulf-G.Mei?ner,Mod.Rev.Lett.A21(2006)1423.

    [23]G.t’Hooft,Nucl.Phys.B72(1974);ibid.75(1974)461.

    [24]I.Rosell,J.J.Sanz-Cillero,and A.Pich,JHEP0408(2004)042.

    [25]CLEO Collaboration,S.Anderson,et al.,Phys.Rev.D61(2000)112002.

    [26]M.Davier,et al.,Eur.Phys.J.C27(2003)497.

    [27]R.Alemany,et al.,Eur.Phys.J.C2(1998)123.

    [28]J.A.Oller,E.Oset and J.E.Palomar,Phys.Rev.D63(2001)114009.

    [29]V.Cirigliano,et al.,Phys.Lett.B513(2001)361.

    [30]V.Cirigliano,et al.,Eur.Phys.J.C23(2002)121.

    [31]S.Ghozzi and F.Jegerlehner,Phys.Lett.B583(2004)222.

    [32]K.Maltman and C.E.Wolfe,Phys.Rev.D73(2006)013004.

    [33]L.Y.Dai,J.Portoles,and O.Shekhovtsova,Phys.Rev.D88(2013)056001.

    [34]D.Djukanovic,J.Gegelia,A.Keller,S.Scherer,and L.Tiator,Phys.Lett.B742(2015)55.

    [35]H.B.O’Connell,B.C.Pearce,A.W.Thomas,and A.G.Williams,Prog.Nucl.Part.Phys.39(1997)201.

    [36]J.Gasser and H.Leutwyler,Annals Phys.158(1984)142;J.Gasser and H.Leutwyler,Nucl.Phys.B250(1985)465.

    [37]P.D.Ruiz-Femenia,A.Pich,and J.Portoles,JHEP0307(2003)003.

    [38]V.Mateu and J.Portoles,Eur.Phys.J.C52(2007)325.

    [39]C.Patrignani,et al.,[Particle Data Group Collaboration],Chin.Phys.C40(2016)100001.

    [40]D.Gomez-Dumm,A.Pich,and J.Portoles,Phys.Rev.D62(2000)054014.

    [41]L.M.Barkov,et al.,Nucl.Phys.B256(1985)365.

    [42]CMD-2 Collaboration,R.R.Akhmetshin,et al.,Phys.Lett.B578(2004)285.

    [43]CMD-2 Collaboration,R.R.Akhmetshin,et al.,JETP Lett.84(2006)413.

    [44]A.Quenzer,et al.,Phys.Lett.B76(1978)512.

    [45]M.N.‘Achasov,et al.,J.Exp.Theor.Phys.103(2006)380.

    [46]ALEPH Collaboration,S.Schael,et al.,Phys.Rep.421(2005)191.

    [47]F.Flores-Baez,et al.,Phys.Rev.D74(2006)071301.

    [48]S.Gardner and H.B.O’Connell,Phys.Rev.D57(1998)2716.

    [49]C.Hanhart,S.Holz,B.Kubis,et al.,Eur.Phys.J.C77(2017)98.

    猜你喜歡
    陳云
    加快構(gòu)建旅游產(chǎn)業(yè)創(chuàng)新生態(tài)系統(tǒng)
    Biased random walk with restart for essential proteins prediction
    Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
    基于大數(shù)據(jù)分析與審計(jì)的關(guān)系研究
    My plan for new term
    向陳云學(xué)習(xí)錘煉“筆力”
    陳云:我黨干部的楷模
    陳云貴:你是泥土你是光
    海峽姐妹(2016年2期)2016-02-27 15:15:59
    TransitivityandCharacterization:AnalysisonDickinTenderisTheNight
    略論陳云執(zhí)政黨黨風(fēng)建設(shè)的思想
    丰满人妻熟妇乱又伦精品不卡| 午夜福利影视在线免费观看| 成年av动漫网址| 成年动漫av网址| 你懂的网址亚洲精品在线观看| 黄色片一级片一级黄色片| 男女高潮啪啪啪动态图| 一级a爱视频在线免费观看| 国产日韩欧美亚洲二区| 欧美激情高清一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 久久人人爽av亚洲精品天堂| 蜜桃国产av成人99| 九草在线视频观看| 亚洲国产av新网站| 久久 成人 亚洲| 亚洲国产精品成人久久小说| 又大又爽又粗| 美女脱内裤让男人舔精品视频| 婷婷色麻豆天堂久久| 日本色播在线视频| 美女主播在线视频| 最新在线观看一区二区三区 | 777米奇影视久久| 两个人看的免费小视频| 亚洲精品国产一区二区精华液| 国产人伦9x9x在线观看| 麻豆乱淫一区二区| 男女床上黄色一级片免费看| 后天国语完整版免费观看| 在线观看国产h片| 久久精品亚洲熟妇少妇任你| 搡老岳熟女国产| 久久女婷五月综合色啪小说| 一本色道久久久久久精品综合| 欧美日韩国产mv在线观看视频| 久久人人97超碰香蕉20202| 成年人免费黄色播放视频| 香蕉国产在线看| 久久人人爽av亚洲精品天堂| 日韩中文字幕欧美一区二区 | 在线观看免费高清a一片| 少妇粗大呻吟视频| 精品久久久久久久毛片微露脸 | 又粗又硬又长又爽又黄的视频| 老司机深夜福利视频在线观看 | 国产伦人伦偷精品视频| 国产精品亚洲av一区麻豆| 美国免费a级毛片| 精品亚洲成a人片在线观看| 亚洲av电影在线进入| 亚洲国产av新网站| 中文乱码字字幕精品一区二区三区| 青春草视频在线免费观看| 亚洲欧美精品自产自拍| 国产高清videossex| 狂野欧美激情性bbbbbb| 久热这里只有精品99| 欧美精品一区二区大全| 久久国产精品人妻蜜桃| 国产亚洲一区二区精品| 精品人妻熟女毛片av久久网站| 青草久久国产| 国产成人免费无遮挡视频| 欧美日韩亚洲高清精品| 国产一区二区激情短视频 | 9191精品国产免费久久| 久久国产精品男人的天堂亚洲| 国产av精品麻豆| 亚洲av男天堂| 亚洲精品一卡2卡三卡4卡5卡 | 五月开心婷婷网| 人人妻人人澡人人看| 在线观看免费高清a一片| 乱人伦中国视频| 色网站视频免费| 国产成人一区二区三区免费视频网站 | 亚洲欧美一区二区三区久久| 精品亚洲成国产av| 1024视频免费在线观看| 亚洲,一卡二卡三卡| 在线亚洲精品国产二区图片欧美| 免费观看人在逋| 中文字幕色久视频| 国产亚洲av高清不卡| 免费在线观看完整版高清| 久久九九热精品免费| 50天的宝宝边吃奶边哭怎么回事| 精品人妻1区二区| 中文字幕另类日韩欧美亚洲嫩草| 国产视频首页在线观看| 欧美+亚洲+日韩+国产| 亚洲av电影在线进入| 在线av久久热| 国产精品久久久久久精品电影小说| 两个人免费观看高清视频| 免费在线观看黄色视频的| 亚洲欧美日韩高清在线视频 | 亚洲中文字幕日韩| 欧美激情极品国产一区二区三区| av又黄又爽大尺度在线免费看| 老司机影院成人| 日韩欧美一区视频在线观看| 亚洲美女黄色视频免费看| 一区二区三区四区激情视频| 国产精品久久久av美女十八| 又大又爽又粗| 91精品伊人久久大香线蕉| 十八禁高潮呻吟视频| 男女之事视频高清在线观看 | tube8黄色片| 亚洲国产精品一区二区三区在线| 久久久久久久久免费视频了| 97在线人人人人妻| 交换朋友夫妻互换小说| 黄色a级毛片大全视频| 18禁观看日本| 国产福利在线免费观看视频| 91老司机精品| 国产一区有黄有色的免费视频| 欧美精品人与动牲交sv欧美| 丁香六月欧美| 国产xxxxx性猛交| 男女边摸边吃奶| 黄片播放在线免费| 日本五十路高清| 亚洲国产精品一区二区三区在线| 成人影院久久| 97在线人人人人妻| 欧美精品一区二区大全| 丁香六月欧美| 午夜免费观看性视频| 亚洲人成电影观看| 欧美乱码精品一区二区三区| 亚洲国产精品999| 欧美日韩福利视频一区二区| 久久久久网色| 久久久久精品人妻al黑| 又粗又硬又长又爽又黄的视频| 国产视频一区二区在线看| 久久鲁丝午夜福利片| 国产精品秋霞免费鲁丝片| 亚洲欧美清纯卡通| 午夜福利,免费看| 久久精品久久久久久噜噜老黄| 国产在视频线精品| 午夜免费男女啪啪视频观看| 两人在一起打扑克的视频| a级毛片黄视频| 国产一卡二卡三卡精品| 少妇人妻 视频| 日本欧美国产在线视频| 日韩,欧美,国产一区二区三区| 精品一区二区三区四区五区乱码 | 国产av精品麻豆| 大码成人一级视频| 中文字幕精品免费在线观看视频| 不卡av一区二区三区| 国产国语露脸激情在线看| 可以免费在线观看a视频的电影网站| 亚洲精品久久午夜乱码| 亚洲欧美中文字幕日韩二区| av在线老鸭窝| 熟女av电影| 1024视频免费在线观看| 亚洲国产欧美在线一区| 夜夜骑夜夜射夜夜干| 韩国精品一区二区三区| 19禁男女啪啪无遮挡网站| 青草久久国产| 在线观看国产h片| 侵犯人妻中文字幕一二三四区| 国产精品香港三级国产av潘金莲 | 久久午夜综合久久蜜桃| 亚洲精品成人av观看孕妇| 精品视频人人做人人爽| 欧美成狂野欧美在线观看| 一区二区三区乱码不卡18| 成人午夜精彩视频在线观看| 国产一区二区在线观看av| 老司机在亚洲福利影院| 亚洲av电影在线进入| 婷婷丁香在线五月| 亚洲专区中文字幕在线| 久久99精品国语久久久| 2021少妇久久久久久久久久久| 亚洲精品一二三| 精品久久久久久电影网| 欧美日韩黄片免| 丝袜美腿诱惑在线| 校园人妻丝袜中文字幕| 午夜福利一区二区在线看| 99香蕉大伊视频| www日本在线高清视频| 久久精品国产亚洲av涩爱| 日韩大片免费观看网站| 欧美日韩亚洲高清精品| 满18在线观看网站| 亚洲av片天天在线观看| 中文字幕人妻丝袜一区二区| 欧美黄色淫秽网站| 中文字幕亚洲精品专区| 丝袜人妻中文字幕| 在线 av 中文字幕| 欧美激情极品国产一区二区三区| 久久影院123| 亚洲国产精品国产精品| 欧美日韩视频精品一区| 一二三四在线观看免费中文在| 亚洲av日韩精品久久久久久密 | 免费黄频网站在线观看国产| 久久精品久久久久久噜噜老黄| 老司机在亚洲福利影院| 国产伦人伦偷精品视频| 50天的宝宝边吃奶边哭怎么回事| 搡老岳熟女国产| 69精品国产乱码久久久| 侵犯人妻中文字幕一二三四区| 成人亚洲精品一区在线观看| 91老司机精品| 久久毛片免费看一区二区三区| 亚洲av成人精品一二三区| 欧美日韩av久久| 美女扒开内裤让男人捅视频| 丁香六月天网| 亚洲欧美成人综合另类久久久| 成年人午夜在线观看视频| 在线天堂中文资源库| 日本猛色少妇xxxxx猛交久久| 嫩草影视91久久| 视频在线观看一区二区三区| 五月天丁香电影| 岛国毛片在线播放| 夫妻午夜视频| 国产日韩欧美在线精品| 99热网站在线观看| 18禁观看日本| 亚洲熟女精品中文字幕| 侵犯人妻中文字幕一二三四区| 大陆偷拍与自拍| 精品久久蜜臀av无| 纯流量卡能插随身wifi吗| 国产精品 国内视频| 亚洲国产最新在线播放| 欧美激情极品国产一区二区三区| 黄片播放在线免费| 久久天堂一区二区三区四区| 免费久久久久久久精品成人欧美视频| 日本91视频免费播放| 亚洲天堂av无毛| 国产精品久久久久久精品电影小说| 看十八女毛片水多多多| 一区二区三区四区激情视频| 男女床上黄色一级片免费看| 制服人妻中文乱码| 午夜免费观看性视频| 操美女的视频在线观看| 亚洲专区中文字幕在线| 观看av在线不卡| 国产精品免费视频内射| 亚洲av欧美aⅴ国产| 欧美日韩国产mv在线观看视频| 国产精品二区激情视频| 久久久久精品国产欧美久久久 | 宅男免费午夜| 丰满人妻熟妇乱又伦精品不卡| 精品亚洲成a人片在线观看| 久9热在线精品视频| 久热爱精品视频在线9| 亚洲成色77777| 我的亚洲天堂| 亚洲第一青青草原| 欧美精品av麻豆av| 欧美精品高潮呻吟av久久| 日本一区二区免费在线视频| 欧美 日韩 精品 国产| 免费看十八禁软件| 777久久人妻少妇嫩草av网站| 久久国产精品大桥未久av| 人人妻人人添人人爽欧美一区卜| 熟女av电影| 国产男女内射视频| 欧美av亚洲av综合av国产av| 精品国产乱码久久久久久小说| 一级黄片播放器| 99国产精品一区二区蜜桃av | 超色免费av| 国产精品久久久久久精品电影小说| 99国产综合亚洲精品| 高清不卡的av网站| 老汉色av国产亚洲站长工具| 我的亚洲天堂| 99re6热这里在线精品视频| 男女边吃奶边做爰视频| avwww免费| 首页视频小说图片口味搜索 | 2018国产大陆天天弄谢| 国产在线观看jvid| 亚洲成国产人片在线观看| 亚洲 国产 在线| 亚洲熟女精品中文字幕| 国产成人欧美| 1024视频免费在线观看| 亚洲精品第二区| 国产精品久久久久久人妻精品电影 | 日本av免费视频播放| 亚洲欧美精品综合一区二区三区| 日韩人妻精品一区2区三区| 国产精品久久久久成人av| 亚洲av日韩精品久久久久久密 | 国产欧美日韩一区二区三 | 亚洲 欧美一区二区三区| 熟女av电影| 黑人猛操日本美女一级片| 欧美在线黄色| 日韩av免费高清视频| 国产成人系列免费观看| 精品久久蜜臀av无| 欧美在线黄色| 国产男女内射视频| 成人午夜精彩视频在线观看| www.熟女人妻精品国产| 1024香蕉在线观看| 亚洲av电影在线观看一区二区三区| 国产主播在线观看一区二区 | 99re6热这里在线精品视频| 国产人伦9x9x在线观看| 熟女av电影| 欧美精品av麻豆av| 亚洲,欧美精品.| 欧美精品av麻豆av| 国产伦理片在线播放av一区| 两个人看的免费小视频| 精品少妇黑人巨大在线播放| 黄色a级毛片大全视频| 黄片小视频在线播放| 中文字幕最新亚洲高清| 亚洲av美国av| 午夜免费鲁丝| 看免费成人av毛片| 在线观看免费高清a一片| 看免费成人av毛片| 91精品伊人久久大香线蕉| 国产在线免费精品| 中文字幕高清在线视频| 亚洲av日韩精品久久久久久密 | 亚洲,欧美精品.| 国产高清国产精品国产三级| 成人午夜精彩视频在线观看| 成人影院久久| 男女床上黄色一级片免费看| 脱女人内裤的视频| 国产精品.久久久| 亚洲,一卡二卡三卡| 成年人免费黄色播放视频| xxxhd国产人妻xxx| 国产在线免费精品| 午夜日韩欧美国产| 欧美激情高清一区二区三区| 老司机影院成人| 亚洲七黄色美女视频| 超碰成人久久| 亚洲一码二码三码区别大吗| 欧美日韩av久久| 久久久久久久久久久久大奶| 一二三四在线观看免费中文在| 天天躁夜夜躁狠狠久久av| 九色亚洲精品在线播放| 欧美日韩成人在线一区二区| 久久精品久久久久久久性| 青草久久国产| 国产欧美日韩一区二区三区在线| 久久久精品国产亚洲av高清涩受| 精品人妻1区二区| av片东京热男人的天堂| 免费少妇av软件| 最新在线观看一区二区三区 | 亚洲九九香蕉| 又黄又粗又硬又大视频| 岛国毛片在线播放| 中国国产av一级| 亚洲人成网站在线观看播放| 青青草视频在线视频观看| 亚洲精品美女久久久久99蜜臀 | 国产成人精品久久久久久| 色婷婷久久久亚洲欧美| 亚洲精品自拍成人| 丰满饥渴人妻一区二区三| 亚洲激情五月婷婷啪啪| 在线观看www视频免费| 国产色视频综合| 在线观看www视频免费| 如日韩欧美国产精品一区二区三区| 妹子高潮喷水视频| 人人妻人人澡人人看| 精品亚洲乱码少妇综合久久| 爱豆传媒免费全集在线观看| 男女无遮挡免费网站观看| 国产男女内射视频| 黄片小视频在线播放| 校园人妻丝袜中文字幕| 久久女婷五月综合色啪小说| 美国免费a级毛片| 国产免费福利视频在线观看| 久久国产精品影院| 午夜av观看不卡| 飞空精品影院首页| 老司机午夜十八禁免费视频| 国产成人系列免费观看| 午夜久久久在线观看| 少妇被粗大的猛进出69影院| 久久人人爽av亚洲精品天堂| 成人免费观看视频高清| 中文字幕精品免费在线观看视频| 老鸭窝网址在线观看| 国产日韩欧美视频二区| 亚洲人成电影免费在线| 在线观看人妻少妇| 国产激情久久老熟女| 国产欧美日韩一区二区三 | 免费在线观看视频国产中文字幕亚洲 | 国产无遮挡羞羞视频在线观看| 亚洲美女黄色视频免费看| 纯流量卡能插随身wifi吗| 菩萨蛮人人尽说江南好唐韦庄| 少妇精品久久久久久久| www.熟女人妻精品国产| 久久鲁丝午夜福利片| 99久久综合免费| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品亚洲一区二区| 成年人黄色毛片网站| 亚洲精品国产av蜜桃| 亚洲免费av在线视频| 久久国产精品男人的天堂亚洲| 一级毛片电影观看| 成年人免费黄色播放视频| 9191精品国产免费久久| 精品福利永久在线观看| 天堂俺去俺来也www色官网| 观看av在线不卡| 人人妻,人人澡人人爽秒播 | 一个人免费看片子| 激情五月婷婷亚洲| 日韩,欧美,国产一区二区三区| 9191精品国产免费久久| av网站免费在线观看视频| 国产日韩欧美视频二区| 人人妻人人澡人人看| 国产精品麻豆人妻色哟哟久久| 多毛熟女@视频| 国产成人一区二区在线| 亚洲国产欧美网| 国产免费福利视频在线观看| 欧美成人午夜精品| 亚洲五月婷婷丁香| 视频区欧美日本亚洲| 婷婷色麻豆天堂久久| 老司机靠b影院| 99精品久久久久人妻精品| videos熟女内射| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品999| 在线观看免费高清a一片| 久久人妻熟女aⅴ| 久久国产精品影院| bbb黄色大片| 国产日韩欧美在线精品| 国产一区二区 视频在线| 视频区欧美日本亚洲| 欧美精品啪啪一区二区三区 | 少妇人妻 视频| 久久国产精品男人的天堂亚洲| 成人影院久久| 国产精品一区二区在线观看99| 成年人午夜在线观看视频| 久久精品亚洲av国产电影网| 亚洲精品一区蜜桃| svipshipincom国产片| 欧美日本中文国产一区发布| 国语对白做爰xxxⅹ性视频网站| 高清黄色对白视频在线免费看| 天堂俺去俺来也www色官网| 久久久精品国产亚洲av高清涩受| 在线观看免费视频网站a站| 我的亚洲天堂| 免费观看人在逋| 久久人人爽人人片av| 免费在线观看黄色视频的| 免费少妇av软件| 9色porny在线观看| 丝袜美腿诱惑在线| 国产精品国产三级国产专区5o| 一区二区av电影网| 精品人妻在线不人妻| 一级毛片女人18水好多 | 国产视频一区二区在线看| bbb黄色大片| 亚洲国产看品久久| 亚洲 欧美一区二区三区| 狠狠婷婷综合久久久久久88av| 欧美成人午夜精品| 国产成人91sexporn| 少妇被粗大的猛进出69影院| 国产成人精品久久二区二区免费| 国产精品 国内视频| 亚洲精品国产av蜜桃| 一级片'在线观看视频| 精品少妇黑人巨大在线播放| 欧美 亚洲 国产 日韩一| 久久99精品国语久久久| 国产野战对白在线观看| 搡老乐熟女国产| 老司机影院毛片| 欧美精品亚洲一区二区| 亚洲欧美成人综合另类久久久| 久久狼人影院| 日日夜夜操网爽| 国产成人精品无人区| 每晚都被弄得嗷嗷叫到高潮| 久久久国产一区二区| 亚洲精品美女久久av网站| 高清欧美精品videossex| 国产黄频视频在线观看| 波多野结衣av一区二区av| 两个人看的免费小视频| 免费女性裸体啪啪无遮挡网站| 韩国高清视频一区二区三区| 最新在线观看一区二区三区 | 夫妻午夜视频| 午夜福利免费观看在线| 老司机在亚洲福利影院| 国产成人一区二区三区免费视频网站 | 国产精品久久久久久人妻精品电影 | 国产av国产精品国产| 欧美xxⅹ黑人| 久久久久久久大尺度免费视频| 久久久久国产一级毛片高清牌| 亚洲av美国av| 欧美国产精品va在线观看不卡| 日本色播在线视频| 国产精品香港三级国产av潘金莲 | 国产福利在线免费观看视频| 午夜视频精品福利| √禁漫天堂资源中文www| 久久精品人人爽人人爽视色| 亚洲精品第二区| av片东京热男人的天堂| 午夜福利,免费看| 免费在线观看视频国产中文字幕亚洲 | 日韩制服骚丝袜av| 免费看不卡的av| 91九色精品人成在线观看| 免费高清在线观看视频在线观看| 丝袜喷水一区| 啦啦啦中文免费视频观看日本| 最近最新中文字幕大全免费视频 | 中文精品一卡2卡3卡4更新| 啦啦啦 在线观看视频| a 毛片基地| 国产成人一区二区三区免费视频网站 | 亚洲精品自拍成人| av在线app专区| 青青草视频在线视频观看| 亚洲av日韩在线播放| 亚洲精品国产av蜜桃| av一本久久久久| 成在线人永久免费视频| 另类精品久久| 18禁裸乳无遮挡动漫免费视频| 一二三四社区在线视频社区8| 在现免费观看毛片| 国产极品粉嫩免费观看在线| 国产不卡av网站在线观看| 无限看片的www在线观看| 国产熟女午夜一区二区三区| 精品一品国产午夜福利视频| 好男人视频免费观看在线| 免费人妻精品一区二区三区视频| 亚洲第一av免费看| 久久国产亚洲av麻豆专区| 天天躁夜夜躁狠狠久久av| 精品人妻一区二区三区麻豆| 人人妻人人添人人爽欧美一区卜| 欧美精品一区二区大全| av天堂在线播放| 高潮久久久久久久久久久不卡| 国产女主播在线喷水免费视频网站| 韩国精品一区二区三区| 9色porny在线观看| 亚洲一码二码三码区别大吗| 韩国精品一区二区三区| 久久综合国产亚洲精品| 精品福利永久在线观看| 新久久久久国产一级毛片| 久久久久久久精品精品| 一级片免费观看大全| 午夜免费成人在线视频| 欧美日韩视频高清一区二区三区二| 精品福利永久在线观看| av在线app专区| 啦啦啦中文免费视频观看日本| 麻豆av在线久日| 午夜影院在线不卡| 热re99久久国产66热| 中文欧美无线码| 一区二区日韩欧美中文字幕| 一本久久精品| 99精品久久久久人妻精品| 国产不卡av网站在线观看| 在现免费观看毛片| 国产麻豆69| 一二三四社区在线视频社区8| 狂野欧美激情性bbbbbb| 国产97色在线日韩免费|