• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Superintegrable Systems with a Cubic Integral of Motion?

    2018-05-05 09:13:23LinShang尚琳andQingHuang黃晴
    Communications in Theoretical Physics 2018年1期

    Lin Shang(尚琳)and Qing Huang(黃晴)

    School of Mathematics,Northwest University,Xi’an 710069,China

    Center for Nonlinear Studies,Northwest University,Xi’an 710069,China

    1 Introduction

    In classical integrable systems,the term complete integrability is well de fined.More precisely inndegrees of freedom,a Hamiltonian system can be integrated up to quadrature if there existninvolutive functions,which are functionally independent.When taking one of these functions as the HamiltonianHand thinking of others as its first integrals,this Hamiltonian is said to be completely integrable in the Liouville sense.Even though the number of independent functions,which are in involution isnat most,maybe additional integrals of the HamiltonianHexist and they will de finitely generate a non-Abelian algebra of integrals ofH.In general,these integrals of motion do not yield finite-dimensional Lie algebras,but more complicated algebraic structures,namely,Possion algebra.These systems,with more integrals,are called super-integrable.The maximal number of further independent integrals isn?1.If there are exactly 2n?1 independent first integrals,we say that the HamiltonianHis maximally superintegrable.The isotropic harmonic oscillator,the Kepler system,and the Calogero-Moser system are the well-known examples.Maximally superintegrable systems have some interesting features.For instance,they can be separable in more than one coordinate system and all bounded classical trajectories are closed.

    There are numerous papers on superintegrable systems,both classical and quantum,see Refs.[1–5]and references therein.In most of these work,it was restricted to quadratic integrals of motion.The quadratic integrals have an intimate connection with the separation of variables in the Hamilton-Jacobi and Schr¨odinger equations and generally they produce so-called quadratic algebras.[6]

    In contrast,much less attention has been devoted to integrable and superintegrable systems with cubic and higher-order integrals of motion.Ten different potentials in a complex Euclidian plane,which admitted a cubic integral of motion are listed in Ref.[7].Among them,seven are reducible for their cubic integrals can be written as the Poisson commutators of two quadratic integrals.[8]Systematic studies for superintegrable systems with at least one cubic integral was initiated in Ref.[9].There the coexistence of first-and third-order integrals of motion in two-dimensional classical and quantum mechanics are considered.Corresponding potentials and integrals are identi fied.The above mentioned paper was followed by a series of publications.In Refs.[10–11],superintegrable systems that are separable in Cartesian coordinates and admit a cubic integral in classical and quantum mechanics are presented.Polynomial Poisson algebras for classical superintegrable systems with a cubic integral are given in Ref.[12].The complete classi fication of quantum and classical superintegrable systems allowing the separation of variables in polar coordinates and admitting an additional integral of motion of order three in the momentum is performed.[13]In Ref.[14],the conditions for superintegrable systems in two-dimensional Euclidean space admitting separation of variables in an orthogonal coordinate system and a functionally independent third-order integral are studied.

    In Ref.[15],families of Hamiltonians of the form

    is considered.There differential Galois theory was utilized to determine necessary conditions for complete integrability.WhenU(φ)=?cosφ,eight integrable systems were isolated,four of which were superintegrable indeed.For each one among the four superintegrable cases,two first integrals,which were quadratic in momenta,were also exhibited.And it means that these systems are separable in two different coordinate systems.Based on this fact,shortly later these superintegrable systems were studied in more detail.[16]These systems were reproduced by change of coordinates.In addition,the identity of these systems was clari fied and the corresponding Poisson algebras were given.Quite recently,superintegrable systems of above form with a position dependent mass were investigated.[17]

    Here we deal with the Hamiltonian functions taking the form of

    and study the superintegrability of Eq.(1)with one quadratic and one cubic integrals of motion.Unless speci fied otherwise,n=2.In Sec.2,three geometric first integrals of the kinetic energy,related to the Killing vectors,are derived.Starting from the Killing vectors,cubic integrals are built and corresponding integrable systems are determined in Sec.3,since the metric implied by the kinetic energy of Eq.(1)is flat.And in Sec.4,further restriction of quadratic integrals yields superintegrable systems where the potentials are given explicitly.Section 5 is devoted to the integrability of Eq.(1)withn=2.And the last section contains some remarks and conclusion.

    2 First Integrals of Kinetic Energy

    Now we recall some known facts on Killing vectors.In a Riemannian manifold(M,g),a Killing vector fieldXis the in finitesimal generator of a symmetry of the metricg.NamelyXis a generator of isometries.In geometric termsXsatis fies the conditionLXg=0 with the Lie derivativeLX.For a manifold of dimensionn,the metric possessesn(n+1)/2 linearly independent Killing vectors at most.Note that when the space is either flat or constant curvature,it admits the maximal group of isometries,which isn(n+1)/2 dimension.

    For a Riemannian manifold(M,g),which corresponds to a 2n-dimensional con figuration space,with coordinates(q,p),of a system,gdetermines a kinetic Lagrangiansuch that the associated motion is just the geodesic motion with kinetic energywheregijis the inverse of the metric tensorgijwhengijis nonsingular.Note that(q1,q2,...,qn)is generalised position(this can be for example Cartesian coordinates,angles,arc lengths along a curve)and(p1,p2,...,pn)is corresponding generalised momentum.For a metric with isometries,the Killing vectors correspond to functions that are linear in momenta(the so-called Noether integrals)and that Poisson commute with the kinetic energyH0.

    Following the standard approach,direct computation shows that the kinetic energy has three first order integrals

    which satisfy the following commutative relations

    In view of the algebraic structure,the quadratic Casimir of the Euclidean algebra(3)is(1/2)And the corresponding Killing vectors can be written as

    andX3=[2/(2?n)]?φ.

    Generally speaking,for the kinetic energy,the introduction of a potentialh(r,φ)will destroy its first integrals.Nevertheless,it is well-known that for a flat metric,the leading-order terms of all second-and higher-order integrals of motion are determined by corresponding Killing tensors built from tensor products of Killing vectors.[18]

    3 Existence of a Cubic Integral

    Applying the canonical transformation governed by the generating function

    By straightforward computation,we find that the terms of odd and even orders of momenta can not exist simultaneously since they will commute independently.For the generality of this form,see Ref.[19].Hence,we only need to search for cubic integrals of the form

    whereAijkare constants.

    And thus,for the Hamiltonian(1),we should consider the cubic integrals

    whereKiare de fined in Eq.(3).Here we restrict ourselves to the case

    and construct corresponding integrable and superintegrable systems.The condition{H,F1}=0 gives rise to three integrable systems with the following potentials

    4 Superintegrable Systems

    With integrable systems(4),(5),and(6)allowing one cubic first integrals in hand,we impose a second independent function,which is the second order of motion and Poisson commutes with its Hamiltonians.Here we consider superintegrability of systems(4),(5),and(6)separately.

    4.1 Superintegrability of System(4)

    (i)Superintegrable Restriction with F2=K2K3+f(r,φ)

    Given the second first integrals,the arbitrary functionψin Eq.(4)is speci fied up to finite parameters.In the case of

    With these potentials,we have{H,F1}=0 and{H,F2}=0.{F1,F2}is a quartic integral and it may be a polynomial combination ofH,F1,andF2.However,it is not the case.We try to close the algebra at lowest dimension possible.Now we add two elementsK2andF3,with

    the integralsH,K2,F1,F2,andF3form a polynomial Poisson algebra.Following the Poisson relations and without using the speci fic representation,the Casimir functionscan be obtained.Inserting the exact forms of the integrals,we find that

    which are the algebraic relations among the five first integralsH,K2,F1,F2,andF3.

    Remark 1According toF1={F2,F3},the cubic integralF1can be expressed as the commutator of two quadratic integralsF2andF3.Consequently,the cubic integral is reducible.And the superintegrable system coincide with system(14)obtained in Ref.[16].

    (ii)Superintegrable Restriction with F2=K1K3+f(r,φ)

    Assuming system(4)allows the following quadratic integral

    which shows that the functionsH,F1,F2,K2generate a Poisson algebra.And of course,they are dependent and satisfy the relation

    (iii)Superintegrable Restriction with F2=K1K2?K1K3+f(r,φ)

    Given a quadratic integral of the form

    And for this algebra,the constraintholds.

    4.2 Superintegrability of System(5)

    Here for the system(5)with

    we preselect a speci fic quadratic integralF2and verify that the system(5)is superintegrable.

    Assume

    hold.As a consequence,H,F1,F2bring about a Poisson algebra.

    4.3 Superintegrability of System(6)

    System(6)is superintegrable if the Hamiltonian there admits another independent first integral.ChoosingF2=K1K2+f(r,φ),we have

    Moreover{F1,F2}=(4c1/3)(F2?H).And thusH,F1,F2generate a Poisson algebra.

    5 Integrability of Eq.(1)Whenn=2

    Providedn=2,the kinetic energy(2)reduces toIts Killing vectors take the forms of

    and solving the equations induced by the involutive relation,we have three integrable systems whose potentials are listed as below:

    We now look for superintegrable systems(8)with the potential given in Eq.(9)and prove that systems(8)corresponding to Eqs.(10)and(11)are superintegrable themselves.

    To setF2=K2K3+f(r,φ)and suppose it is admitted by Eq.(9)give

    Following these relations,the first integralsK2,F1,F2,F3,Hform a Poisson algebra with the algebraic relation.In addition,choosingF2=K1K3+f(r,φ)yields another superintegrable system where

    With above potentials,H,K2,F1,F2give a Poisson algebra where

    For system(10),it also possesses a quadratic first integral

    Since{F1,F2}=(4c1/3)(H+F2),now we have a Poisson algebra spanned byH,F1andF2.

    Analogously,the quadratic integralF2=K1K2?(c1/3)(φ+lnr)is admitted by the Hamiltonian(8)with(11)and the corresponding Poisson algebra is governed byH,F1,F2,which satisfy{F1,F2}=(4c1/3)(F2?H).

    6 Concluding Remarks

    In this paper we dealt with the super integrability of some Hamiltonian systems,namely for 2n-dimensional Hamiltonian equation,there exists more thannfirst integrals.Such a property is stronger compared with“complete integrability”,namely the solution structure of such systems has fewer arbitrary parameters since the motion is more restricted by the extra first integrals.Here we constructed some superintegrable systems with one quadratic and one cubic integrals of motion,and build up Poisson algebra for each superintegrable Hamiltonian system.Moreover,the algebraic dependence relations to each Poisson algebra are also given.

    A generalization of integrable Hamiltonian equations is the study of the integrability of in finite-dimensional equations,namely integrable partial differential equations(also known as soliton equations)including a number of(1+1)-and(2+1)-dimensional equations?Note that here the dimension refers to the number of independent variables,while in this paper by dimension we mean the number of the components.,in which case an in finite number of independent first integrals being in involution is required in order to guarantee the integrability,see e.g.Adler,[20]Gel’fand and Dikii,[21]Magri,[22]Fuchsteiner and Fokas,[23]and TAH,[24]etc.

    The theory of the completely integrability of soliton equations is also applicable to the so-called super soliton equations.We refer the reader to Zhang[25?27]and references therein.

    [1]J.J.Capel and J.M.Kress,J.Phys.A:Math.Theor.47(2014)495202.

    [2]J.J.Capel,J.M.Kress,and S.Post,SIGMA 11(2015)038.

    [3]N.W.Evans,Phys.Rev.A 41(1990)5666.

    [4]E.G.Kalnins,W.Jr.Miller,Ye.M.Hakobyan,and G.S.Pogosyan,J.Math.Phys.40(1999)2291.

    [5]E.G.Kalnins,J.M.Kress,G.S.Pogosyan,and W.Jr.Miller,J.Phys.A:Math.Gen.34(2001)4705.

    [6]P.L′etourneau and L.Vinet,Ann.Phys.243(1995)144.

    [7]J.Drach,Compt.Rend.Acad.Sci.III 200(1935)22.

    [8]M.F.Ra?nada,J.Math.Phys.38(1997)4165.

    [9]S.Gravel and P.Winternitz,J.Math.Phys.43(2002)5902.

    [10]S.Gravel,Theor.Math.Phys.137(2003)1439.

    [11]S.Gravel,J.Math.Phys.45(2004)1003.

    [12]I.Marquette and P.Winternitz,J.Math.Phys.48(2007)012902.

    [13]F.Tremblay and P.Winternitz,J.Phys.A:Math.Theor.43(2010)175206.

    [14]A.Marchesiello,S.Post,and L.ˇSnobl,J.Math.Phys.56(2015)102104.

    [15]W.Szuminski,A.J.Maciejewski,and M.Przbylska,Phys.Lett.A 379(2015)2970.

    [16]A.Fordy,J.Geom.Phys.115(2017)98.

    [17]M.F.Ra?nada,Phys.Lett.A 380(2016)2204.

    [18]R.Gilmore,Lie Groups,Lie Algebras and Some of Their Applications,Wiley,New York(1974).

    [19]S.Post and P.Winternitz,Physics 41(2015)463.

    [20]M.Adler,Invent.Math.50(1979)219.

    [21]I.M.Gel’fand and L.A.Dikii,Collected Works,Springer,New York(1990).

    [22]F.Magri,J.Math.Phys.19(1978)1156.

    [23]B.Fuchssteiner and A.S.Fokas,Physica D 4(1981)47.

    [24]G.Z.Tu,R.I.Andrushkiw,and X.C.Huang,J.Math.Phys.32(1991)1900.

    [25]Y.F.Zhang and W.J.Rui,Rep.On Math.Phys.75(2015)231.

    [26]Y.F.Zhang,H.Tam,and J.Q.Mei,Z.Naturforsch.A 70(2015)791.

    [27]Y.F.Zhang,Y.Bai,and L.X.Wu,Int.J.Theor.Phys.55(2016)2837.

    xxxhd国产人妻xxx| 日本精品一区二区三区蜜桃| 交换朋友夫妻互换小说| 亚洲第一欧美日韩一区二区三区| 热re99久久国产66热| 日韩中文字幕欧美一区二区| 午夜免费观看网址| 国产精品久久视频播放| 级片在线观看| 9热在线视频观看99| 久久久国产欧美日韩av| 久久人妻熟女aⅴ| 午夜老司机福利片| 欧美成人免费av一区二区三区| 一级毛片高清免费大全| 亚洲精品国产区一区二| 黄片小视频在线播放| 色精品久久人妻99蜜桃| 久久伊人香网站| 女性被躁到高潮视频| 国产男靠女视频免费网站| 老汉色av国产亚洲站长工具| 99热国产这里只有精品6| svipshipincom国产片| 亚洲自偷自拍图片 自拍| 97碰自拍视频| 成人亚洲精品一区在线观看| 女人被狂操c到高潮| 99久久99久久久精品蜜桃| 日本免费一区二区三区高清不卡 | 黄片小视频在线播放| 色精品久久人妻99蜜桃| 亚洲情色 制服丝袜| 久热爱精品视频在线9| av欧美777| 亚洲一码二码三码区别大吗| 国产精品久久电影中文字幕| 97人妻天天添夜夜摸| 国产一区在线观看成人免费| 免费人成视频x8x8入口观看| 亚洲avbb在线观看| 亚洲五月色婷婷综合| 日本 av在线| 久久99一区二区三区| 精品久久蜜臀av无| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久,| 日韩视频一区二区在线观看| 中出人妻视频一区二区| 变态另类成人亚洲欧美熟女 | 人成视频在线观看免费观看| 丰满人妻熟妇乱又伦精品不卡| 777久久人妻少妇嫩草av网站| 国产又色又爽无遮挡免费看| 日韩大码丰满熟妇| 淫妇啪啪啪对白视频| 激情视频va一区二区三区| 欧美老熟妇乱子伦牲交| 日韩大码丰满熟妇| 黄色毛片三级朝国网站| 色在线成人网| 丝袜美腿诱惑在线| 免费久久久久久久精品成人欧美视频| av免费在线观看网站| 亚洲精品久久成人aⅴ小说| 日韩av在线大香蕉| 狂野欧美激情性xxxx| 中文字幕高清在线视频| av中文乱码字幕在线| 天天添夜夜摸| 首页视频小说图片口味搜索| av免费在线观看网站| 久久天堂一区二区三区四区| 国产欧美日韩一区二区精品| 黑人操中国人逼视频| 婷婷精品国产亚洲av在线| 亚洲人成77777在线视频| 国产精品秋霞免费鲁丝片| 国产精品野战在线观看 | 成人三级做爰电影| 欧美成人午夜精品| 日韩欧美三级三区| 麻豆国产av国片精品| 窝窝影院91人妻| 天天躁夜夜躁狠狠躁躁| 国产一区二区激情短视频| 国产精品美女特级片免费视频播放器 | 午夜久久久在线观看| 欧美精品亚洲一区二区| 国产欧美日韩精品亚洲av| 制服诱惑二区| 丁香六月欧美| 亚洲自拍偷在线| 香蕉丝袜av| 国产成人欧美在线观看| 久久久久国产精品人妻aⅴ院| 国产又色又爽无遮挡免费看| 成年人黄色毛片网站| 黄片播放在线免费| 欧美日韩国产mv在线观看视频| 日韩免费av在线播放| 一区福利在线观看| 欧美日韩乱码在线| 成人亚洲精品av一区二区 | 国产熟女午夜一区二区三区| 好看av亚洲va欧美ⅴa在| 波多野结衣av一区二区av| 一夜夜www| 亚洲男人的天堂狠狠| 国产精品1区2区在线观看.| 久久天堂一区二区三区四区| 波多野结衣一区麻豆| 一级毛片精品| 午夜福利欧美成人| 亚洲五月天丁香| 亚洲精品国产色婷婷电影| 在线观看www视频免费| 老汉色av国产亚洲站长工具| 99久久综合精品五月天人人| 女同久久另类99精品国产91| 韩国精品一区二区三区| 亚洲国产精品一区二区三区在线| 91大片在线观看| 999久久久精品免费观看国产| 国产黄a三级三级三级人| 极品人妻少妇av视频| 女人爽到高潮嗷嗷叫在线视频| 天天影视国产精品| a在线观看视频网站| 人妻丰满熟妇av一区二区三区| 男人舔女人的私密视频| 母亲3免费完整高清在线观看| 黄色丝袜av网址大全| 不卡一级毛片| 日本a在线网址| 国内久久婷婷六月综合欲色啪| 动漫黄色视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 日韩欧美在线二视频| 天堂俺去俺来也www色官网| 一进一出好大好爽视频| 国产av又大| 久久国产亚洲av麻豆专区| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看午夜福利视频| 午夜91福利影院| 国产xxxxx性猛交| 中国美女看黄片| 国产精品电影一区二区三区| 啦啦啦免费观看视频1| 最近最新免费中文字幕在线| 中文字幕av电影在线播放| 91成人精品电影| 交换朋友夫妻互换小说| 看片在线看免费视频| 亚洲自拍偷在线| 一边摸一边抽搐一进一小说| 国产亚洲精品一区二区www| 国产又色又爽无遮挡免费看| 精品熟女少妇八av免费久了| 精品福利观看| 久久久久久大精品| 欧美大码av| 好男人电影高清在线观看| 亚洲七黄色美女视频| 亚洲欧洲精品一区二区精品久久久| 免费在线观看影片大全网站| 日韩av在线大香蕉| 黄色怎么调成土黄色| 91成人精品电影| 久久精品成人免费网站| 成人精品一区二区免费| 国产av一区二区精品久久| 国产av又大| 国产亚洲精品一区二区www| av视频免费观看在线观看| 久久午夜亚洲精品久久| 亚洲欧美一区二区三区久久| 男女床上黄色一级片免费看| 亚洲精品国产一区二区精华液| 在线观看www视频免费| 99精国产麻豆久久婷婷| 人妻丰满熟妇av一区二区三区| 午夜影院日韩av| 麻豆av在线久日| 黄色毛片三级朝国网站| 久久天堂一区二区三区四区| 少妇的丰满在线观看| 中文亚洲av片在线观看爽| 成人免费观看视频高清| av天堂久久9| 乱人伦中国视频| 久久久久久久久久久久大奶| 色播在线永久视频| 91精品三级在线观看| 在线av久久热| 一进一出抽搐gif免费好疼 | 欧美一区二区精品小视频在线| 欧美日韩亚洲综合一区二区三区_| svipshipincom国产片| 每晚都被弄得嗷嗷叫到高潮| 国产午夜精品久久久久久| 欧美激情高清一区二区三区| 夜夜夜夜夜久久久久| 91麻豆av在线| 日日夜夜操网爽| 天堂俺去俺来也www色官网| 1024香蕉在线观看| 老鸭窝网址在线观看| 免费久久久久久久精品成人欧美视频| 日韩国内少妇激情av| 亚洲伊人色综图| 精品久久久久久久毛片微露脸| 女警被强在线播放| 中文字幕av电影在线播放| 精品国产亚洲在线| 亚洲成av片中文字幕在线观看| 超色免费av| 两个人看的免费小视频| 午夜两性在线视频| a级片在线免费高清观看视频| 国内毛片毛片毛片毛片毛片| 午夜成年电影在线免费观看| 亚洲少妇的诱惑av| 高清毛片免费观看视频网站 | 欧美在线黄色| 真人一进一出gif抽搐免费| 亚洲专区字幕在线| 视频区欧美日本亚洲| 国产av一区在线观看免费| 99久久人妻综合| 麻豆av在线久日| 好看av亚洲va欧美ⅴa在| 国产成年人精品一区二区 | 日韩欧美三级三区| 久久伊人香网站| 国产av在哪里看| 十八禁人妻一区二区| 午夜福利影视在线免费观看| videosex国产| 精品国内亚洲2022精品成人| 欧美激情 高清一区二区三区| 久久久国产成人精品二区 | 老司机午夜十八禁免费视频| 999久久久精品免费观看国产| 久久精品国产亚洲av高清一级| 国产激情欧美一区二区| 人人妻人人爽人人添夜夜欢视频| 成人18禁在线播放| 国产野战对白在线观看| 欧美精品一区二区免费开放| 侵犯人妻中文字幕一二三四区| 国产一区二区三区在线臀色熟女 | 免费高清在线观看日韩| 国产精品野战在线观看 | 亚洲中文日韩欧美视频| 另类亚洲欧美激情| 欧美中文综合在线视频| 日韩精品青青久久久久久| 日韩高清综合在线| 亚洲精品一卡2卡三卡4卡5卡| 黄色视频,在线免费观看| 亚洲欧美日韩高清在线视频| 80岁老熟妇乱子伦牲交| 大码成人一级视频| 亚洲美女黄片视频| 精品国产一区二区久久| 亚洲专区中文字幕在线| 后天国语完整版免费观看| 亚洲国产精品一区二区三区在线| 精品高清国产在线一区| 久久香蕉国产精品| 国产99久久九九免费精品| 午夜福利一区二区在线看| 免费在线观看亚洲国产| 12—13女人毛片做爰片一| 久久久久久久久久久久大奶| 欧美激情久久久久久爽电影 | 最新在线观看一区二区三区| 99国产极品粉嫩在线观看| 青草久久国产| 又黄又爽又免费观看的视频| 亚洲欧美一区二区三区黑人| 无限看片的www在线观看| 国产午夜精品久久久久久| 成人影院久久| 80岁老熟妇乱子伦牲交| √禁漫天堂资源中文www| 欧美日本亚洲视频在线播放| aaaaa片日本免费| 不卡一级毛片| 两性夫妻黄色片| 国产精品98久久久久久宅男小说| 免费高清在线观看日韩| 看免费av毛片| 久久精品国产清高在天天线| 午夜成年电影在线免费观看| av欧美777| 国产单亲对白刺激| 久久人人精品亚洲av| 黄色片一级片一级黄色片| 天堂俺去俺来也www色官网| 啪啪无遮挡十八禁网站| 757午夜福利合集在线观看| 国产av精品麻豆| 脱女人内裤的视频| 国产精品一区二区三区四区久久 | www.www免费av| 岛国在线观看网站| 18禁美女被吸乳视频| 色综合婷婷激情| 99国产精品免费福利视频| www.熟女人妻精品国产| 男女做爰动态图高潮gif福利片 | xxx96com| 国产精品免费一区二区三区在线| 成人影院久久| 久久中文看片网| www.熟女人妻精品国产| 精品国产美女av久久久久小说| 91麻豆av在线| 亚洲第一av免费看| 欧美丝袜亚洲另类 | 在线天堂中文资源库| 国产高清国产精品国产三级| 他把我摸到了高潮在线观看| 色尼玛亚洲综合影院| 欧美在线黄色| 熟女少妇亚洲综合色aaa.| 久久久国产欧美日韩av| 狂野欧美激情性xxxx| 新久久久久国产一级毛片| 免费在线观看黄色视频的| 国产99白浆流出| 黄片大片在线免费观看| 天堂俺去俺来也www色官网| a级毛片在线看网站| 亚洲专区字幕在线| 亚洲av第一区精品v没综合| 美国免费a级毛片| 国产精品爽爽va在线观看网站 | 亚洲人成电影观看| 成人18禁高潮啪啪吃奶动态图| 日韩欧美国产一区二区入口| 久久性视频一级片| 老汉色∧v一级毛片| 国产精华一区二区三区| 亚洲精品在线美女| 男人的好看免费观看在线视频 | 无人区码免费观看不卡| 欧美日韩亚洲高清精品| 99久久国产精品久久久| 午夜免费成人在线视频| 成人国语在线视频| 一级a爱片免费观看的视频| 女人精品久久久久毛片| 亚洲欧美日韩无卡精品| 精品日产1卡2卡| 欧美av亚洲av综合av国产av| 人妻久久中文字幕网| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成人免费av一区二区三区| 亚洲国产精品999在线| 国产成人欧美在线观看| 国产不卡一卡二| 色综合欧美亚洲国产小说| 波多野结衣av一区二区av| 国产精品亚洲av一区麻豆| 国产三级在线视频| 老司机午夜福利在线观看视频| 色在线成人网| 人妻久久中文字幕网| 精品国产一区二区三区四区第35| 亚洲男人的天堂狠狠| 久久亚洲精品不卡| 国产aⅴ精品一区二区三区波| 另类亚洲欧美激情| 91老司机精品| 欧美日本中文国产一区发布| 国产精品野战在线观看 | 9热在线视频观看99| 一个人观看的视频www高清免费观看 | 夜夜躁狠狠躁天天躁| 人人妻人人爽人人添夜夜欢视频| 窝窝影院91人妻| 国产精品日韩av在线免费观看 | 国产精品影院久久| 欧美黄色淫秽网站| 国产真人三级小视频在线观看| av网站在线播放免费| 午夜a级毛片| 日本三级黄在线观看| 久热这里只有精品99| 正在播放国产对白刺激| 男女床上黄色一级片免费看| 看片在线看免费视频| 国产精品爽爽va在线观看网站 | www国产在线视频色| 亚洲第一av免费看| 高清在线国产一区| 亚洲熟妇中文字幕五十中出 | 黄频高清免费视频| 老司机在亚洲福利影院| a在线观看视频网站| 久久久久久免费高清国产稀缺| 国产av又大| 三上悠亚av全集在线观看| 在线观看免费午夜福利视频| 国产三级在线视频| 美女扒开内裤让男人捅视频| 丰满的人妻完整版| 人人澡人人妻人| 日韩三级视频一区二区三区| 日日爽夜夜爽网站| 亚洲男人天堂网一区| 亚洲男人的天堂狠狠| 免费av毛片视频| www国产在线视频色| 91字幕亚洲| 精品熟女少妇八av免费久了| 亚洲美女黄片视频| √禁漫天堂资源中文www| 亚洲成人国产一区在线观看| 亚洲色图综合在线观看| 国产精品自产拍在线观看55亚洲| 日韩国内少妇激情av| 久久亚洲真实| 亚洲中文字幕日韩| 69精品国产乱码久久久| 国产男靠女视频免费网站| 亚洲第一欧美日韩一区二区三区| 国产精品国产av在线观看| 最新美女视频免费是黄的| 中文字幕人妻丝袜一区二区| 丝袜美足系列| 18禁美女被吸乳视频| 水蜜桃什么品种好| 国产欧美日韩一区二区精品| 女人高潮潮喷娇喘18禁视频| 欧美另类亚洲清纯唯美| 国产91精品成人一区二区三区| 国产精品 欧美亚洲| 久久国产乱子伦精品免费另类| 亚洲人成电影观看| 超碰成人久久| 天堂动漫精品| 黄片播放在线免费| 88av欧美| 久久久久久久久免费视频了| 免费av毛片视频| 欧美大码av| 亚洲成人国产一区在线观看| svipshipincom国产片| 欧美日本亚洲视频在线播放| 性欧美人与动物交配| 久久亚洲精品不卡| 一级毛片女人18水好多| 国内毛片毛片毛片毛片毛片| 少妇 在线观看| 久9热在线精品视频| 99久久人妻综合| 自拍欧美九色日韩亚洲蝌蚪91| 天天影视国产精品| 精品第一国产精品| 国产精品爽爽va在线观看网站 | 欧美最黄视频在线播放免费 | svipshipincom国产片| 美女高潮喷水抽搐中文字幕| 在线国产一区二区在线| 亚洲黑人精品在线| 黄色 视频免费看| 极品人妻少妇av视频| av在线播放免费不卡| 两个人看的免费小视频| 嫩草影院精品99| 9热在线视频观看99| 成年人黄色毛片网站| 婷婷精品国产亚洲av在线| 亚洲精品国产一区二区精华液| 岛国视频午夜一区免费看| 一级毛片高清免费大全| 交换朋友夫妻互换小说| 亚洲国产欧美日韩在线播放| 欧美丝袜亚洲另类 | 亚洲一区二区三区欧美精品| 日韩免费av在线播放| 精品久久蜜臀av无| 岛国视频午夜一区免费看| 亚洲午夜理论影院| 久久亚洲真实| 午夜精品国产一区二区电影| 成年女人毛片免费观看观看9| 久久天堂一区二区三区四区| 热re99久久国产66热| 欧美在线一区亚洲| 麻豆久久精品国产亚洲av | 久久精品国产清高在天天线| 热re99久久国产66热| 人成视频在线观看免费观看| 99久久久亚洲精品蜜臀av| 成人国语在线视频| 欧美黄色片欧美黄色片| 欧美乱码精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 99久久久亚洲精品蜜臀av| 成年女人毛片免费观看观看9| 亚洲第一青青草原| 91九色精品人成在线观看| av超薄肉色丝袜交足视频| 欧美亚洲日本最大视频资源| 亚洲第一欧美日韩一区二区三区| 男女床上黄色一级片免费看| 国产免费男女视频| 国产精华一区二区三区| 亚洲成人免费av在线播放| 高清在线国产一区| 一个人免费在线观看的高清视频| 亚洲专区国产一区二区| 精品无人区乱码1区二区| 日本 av在线| 久久 成人 亚洲| 久久久久久久精品吃奶| 亚洲国产欧美日韩在线播放| 成人三级做爰电影| 啦啦啦 在线观看视频| 岛国在线观看网站| 在线观看日韩欧美| 久久亚洲精品不卡| 亚洲中文日韩欧美视频| 久久精品91无色码中文字幕| 乱人伦中国视频| 正在播放国产对白刺激| 亚洲性夜色夜夜综合| 变态另类成人亚洲欧美熟女 | 精品久久久精品久久久| 大香蕉久久成人网| 亚洲成人精品中文字幕电影 | 日韩精品免费视频一区二区三区| 欧美最黄视频在线播放免费 | 好看av亚洲va欧美ⅴa在| 国产成人影院久久av| 日本五十路高清| 制服人妻中文乱码| 中文字幕人妻丝袜制服| 老汉色∧v一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 99在线人妻在线中文字幕| 色老头精品视频在线观看| 亚洲人成电影免费在线| 久久精品国产亚洲av香蕉五月| 男男h啪啪无遮挡| 母亲3免费完整高清在线观看| 久久人人97超碰香蕉20202| 夫妻午夜视频| 国产成人精品在线电影| 亚洲熟女毛片儿| e午夜精品久久久久久久| 在线永久观看黄色视频| 精品卡一卡二卡四卡免费| 久久精品成人免费网站| 亚洲精品一区av在线观看| 黑人欧美特级aaaaaa片| 男女之事视频高清在线观看| 少妇粗大呻吟视频| 国产精品永久免费网站| 亚洲人成77777在线视频| 黄网站色视频无遮挡免费观看| 欧美中文日本在线观看视频| 十八禁网站免费在线| 一边摸一边抽搐一进一出视频| 久99久视频精品免费| 日韩欧美一区二区三区在线观看| 女人爽到高潮嗷嗷叫在线视频| 欧美成狂野欧美在线观看| 亚洲国产精品999在线| 亚洲色图综合在线观看| 国产精品久久视频播放| 午夜影院日韩av| 亚洲精品久久午夜乱码| av网站免费在线观看视频| 久久久久亚洲av毛片大全| 欧美久久黑人一区二区| 国产成人精品久久二区二区91| 三上悠亚av全集在线观看| 国产片内射在线| 少妇裸体淫交视频免费看高清 | 久久久久国内视频| 久久人人精品亚洲av| 看免费av毛片| 久久精品91无色码中文字幕| 久久人人精品亚洲av| 一级毛片女人18水好多| 最近最新免费中文字幕在线| 91成人精品电影| av国产精品久久久久影院| 日韩人妻精品一区2区三区| 欧美日本亚洲视频在线播放| xxxhd国产人妻xxx| 一级,二级,三级黄色视频| 亚洲自拍偷在线| 啦啦啦在线免费观看视频4| 麻豆av在线久日| 国产在线观看jvid| 国产激情欧美一区二区| 丝袜人妻中文字幕| 国产精品久久久av美女十八| 一级毛片高清免费大全| 在线观看免费日韩欧美大片| 国产不卡一卡二| 在线观看舔阴道视频| 久久久国产成人免费| av视频免费观看在线观看| 老司机深夜福利视频在线观看| 黄色片一级片一级黄色片| 欧美黄色片欧美黄色片|