• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Proper Conformal Killing Vectors in Kantowski-Sachs Metric

    2018-05-02 01:51:32TahirHussainandMuhammadFarhan
    Communications in Theoretical Physics 2018年4期

    Tahir Hussainand Muhammad Farhan

    Department of Mathematics,University of Peshawar,Khyber Pakhtunkhwa,Pakistan

    1 Introduction

    Let M be a spacetime with Lorentz metric g.A global smooth vector field ξ on M is called a CKV if:[1]

    where ψ :M → R is a smooth real-valued function on M,called the conformal factor and Lξdenotes the Lie derivative operator along ξ.

    The existence of a CKV is connected with the Weyl tensor by the following condition:

    A CKV is called a homothetic vector(HV)if ψ becomes a constant and a Killing vector(KV)if ψ=0.A CKV which is not homothetic is known as proper CKV.A CKV for which ψ;mn=0,in every chart of M,is called a special conformal Killing vector.The set of all CKVs on M constitute a finite-dimensional Lie algebra under the Lie bracket operation,called conformal algebra,such that its dimension is less than or equal to 15.If M is conformally flat,it admits 15-dimensional Lie algebra of CKVs.Conversely,if the dimension of conformal algebra is 15(in fact if greater than 7),then M is conformally flat.The subsets of conformal algebra containing homothetic,Killing and special CKVs form its subalgebras,that are named as homothetic,Killing and special conformal algebras.

    Conformal symmetries help to provide deeper insight at all levels of general relativity,such as geometry,kinematics and dynamics.At geometry level,the CKVs make possible the choice of coordinates so that one of the metric components is singled out and thus the metric is simplified.[2]The CKVs have the geometric property of preserving the structure of the null cone by mapping null geodesics to null geodesics.The CKVs are also helpful at kinematic level as they impose restrictions on the kinematic variables such as rotation,expansion and shear,and produce many interesting results.[3?4]At dynamics level,CKVs can be used for different purposes,the most important of which is to obtain the new exact solutions of Einstein’s field equations with better physical properties.CKVs also play a key role in the classification and categorization of the known solutions of the field equations.

    In recent literature,many researchers have worked on conformal symmetries.Rahaman et al.,[5?6]studied the anisotropic and relativistic stars admitting CKVs.Esculpi and Aloma[7]worked on a charged fluid sphere with a linear equation of state admitting CKVs.The authors have also discussed the dynamical stability analysis of the system.Usmani et al.[8]studied the charged gravastar admitting CKVs.The CKVs in RobertsonWalker spacetimes are investigated by Maartens and Maharaj.[9]The same authors gave a detailed analysis of the existence of CKVs in pp-waves spacetimes.[10]Moopanar and Maharaj[11]studied the conformal geometry of spherically symmetric spacetimes without specifying the form of the matter distribution.Rigidly rotating perfect fluids admitting proper CKVs are explored by Kramer and Carot.[12]Recently,Hussain et al.presented CKVs in locally rotationally symmetric Biachi type V,static and non static plane symmetric spacetimes.[13?15]

    In fluid spacetimes,a CKV need not map fluid flow lines into fluid flow lines.Such an example from a perfectfluid FRW spacetime is presented in Ref.[3].A CKV ξ is said to be inherited by the physical fluid source represented by the energy-momentum tensor if the fluid flow lines are mapped conformally into the fluid flow lines.Such CKVs are usually known as inheriting conformal Killing vectors(ICKVs)and they satisfy the relation:[16]

    where uais the four velocity of the fluid.Like the CKVs,the ICKVs are also studied in some well known fluid spacetimes,for details we refer to Refs.[16–19].

    Inspired by these early work on conformal and inheriting conformal symmetries,we are looking forward to investigate the existence of proper CKVs and ICKVs in Kantowski-Sachs metric.We organize the paper as follows:

    In next section,we solve the set of coupled conformal Killing equations for Kantowski-Sachs metric and find the general form of vector field generating CKVs and the conformal factor,subject to some integrability conditions.These integrability conditions are solved in different cases to get the closed form of CKVs.Section 3 is devoted to the study of ICKVs in Kantowski-Sachs metric.A brief summary of the present work is presented in the last section.

    2 Proper Conformal Killing Vectors

    The Kantowski-Sachs class of metrics represent homogeneous and anisotropically expanding(contracting)cosmologies,which admit a four-parameter continuous isometry group G4acting on homogeneous spacelike hypersurfaces. In spherical polar coordinates(t,r,θ,?),the Kantowski-Sachs metric can be written as:[20]

    where A(t)and B(t)are non-zero functions of t only.The above metric admit a minimal set of four KVs,which are listed below:

    For the Kantowski-Sachs metric given in Eq.(4),the conformal Killing equation(1)gives rise to the following system of ten coupled partial differential equations,known as conformal Killing equations:

    To obtain the explicit form of CKV ξ=(ξ0,ξ1,ξ2,ξ3)in Kantowski-Sachs metric,we need to solve the above system of equations.Using some simple algebra,these equations can be integrated to get the following expressions for ξaand the conformal factor ψ in terms of known functions of θ and ? and unknown functions of t and r:

    where ηi=(η1,η2,η3)=(sinθsin?,?sinθcos?,?cosθ)and Fi(t,r)are unknown functions,which arise in the process of integration.Some of the conformal Killing equations are identically satis fied by the above values of ξa,while by substituting these values in the remaining equations,we get a4=0 and the following integrability conditions are generated:

    where i=1,2,3.If we could solve the above system of equations,we would get the explicit form of CKVs and the conformal factor,given in Eq.(16).Here we discuss some cases in which these equations are completely solved to get the final form of CKVs.

    Case 1In this case,we consider A′≠0,B′≠0 and follow the approach of classifying the conformal symmetry in terms of the Weyl tensor.The non-zero components of the Weyl tensor for the Kantowski-Sachs metric,given in Eq.(4),are:

    where Γ =ABB′′?AB′2?A′′B2+A′BB′?A.If Γ =0,all the components of the Weyl tensor vanish and the spacetime become conformally flat.Applying the formula given in Eq.(2)for the above Weyl tensor components,we obtain:

    Consequently,the linear independence of the trigonometric functions in ηigives:

    The above four equations are the necessary and sufficient conditions for the integrability conditions,Eqs.(17)–(22),to be satis fied.Here we consider two cases according as Γ =0 or ?!?.This separates the spacetimes into conformally flat and nonconformally flat categories.

    Case 1(a)When Γ=0,the spacetime becomes conformally flat and Eqs.(26)–(29)are identically satis fied.Moreover,the condition Γ=0 relates the metric functions A and B asUsing this relation,the integrability conditions(17)–(22)may be integrated to find the unknown functions F0,F4,and Fi.The procedure is explained below.

    Equations(18),(20),and(22)can be easily solved to get

    Putting back the above values in the system(16),we have:

    where i=1,2,3.Thus we can state our results in terms of the following theorem.

    Theorem 1The conformally flat Kantowski-Sachs metric admits a 15-dimensional Lie algebra of conformal Killing vectors,where the metric functions are related by the

    Case 1(b)Here we consider the Kantowski-Sachs metric to be non-conformally flat,that is ?!?,and solve the system of Eqs.(26)–(29)and the integrability conditions(17)–(22).

    It is straightforward to solve Eqs.(26)–(28)and obtain

    where g1(r)and fi(r)are functions of integration.Thus Eq.(29)implies(Γ/A)′g1(r)=0.Considering g1(r)≠0,we have(Γ/A)′=0,which gives Γ =A.Consequently,the metric functions are related by the equation A=and we have Fi=0 and F0=

    As far the integrability conditions(17)–(19)and(22)are concerned,they are identically satis fied by the above obtained values.Using these values in Eq.(20),we get

    where the function g2(t)arises during integration.Finally,differentiating Eq.(21)with respect to r,we getand g2(t) =With all these values,the system(16)becomes:

    Thus we can state our results in terms of the following theorem.

    Theorem 2The non-conformally flat Kantowski-Sachs metric admits a 7-dimensional Lie algebra of CKVs,where the metric functions are related by the equation A=Out of these seven CKVs, five are the KVs,which can be obtained by setting ψ=0 and the remaining two are proper CKVs.

    Case 2Here we assume that A=B and A′≠0.Integrating Eq.(18),we have Fi(t,r)=fi(t)+gi(r),for i=1,2,3.The functions fi(t)and gi(r)arise in the process of integration.Simplifying Eq.(17)using this value of Fi(t,r),we getwhere c1is a separation constant.Integrating the last equation,we obtain

    Thus the value of Fi(t,r)becomes

    where c6=c3+c5.Substituting this value of Fi(t,r)in Eq.(19)and differentiating it twice with respect to r,we get c1=c2=c4=c6=0?Fi(t,r)=0,for i=1,2,3.

    The functions F0(t,r)and F4(t,r)can be determined from Eqs.(20)–(22).Solving Eq.(22),one easily gets F0(t,r)=Af0(r);f0(r)being a function of integration.Using this value in Eq.(21)and integrating it with respect to t,we have F4(t,r)=(r)∫(1/A)dt+f4(r),where f4(r)is a function of integration.If we substitute these values of F0(t,r)and F4(t,r)in Eq.(20)and differentiate it with respect to t,we obtain f0(r)=c7r+c8and f4(r)=c9.Finally,we have F0(t,r)=A(c7r+c8)and F4(t,r)=c7∫(1/A)dt+c9.Thus we have the following CKVs:

    In this case,we get six CKVs out of which four are the Killing vectors as given in Eq.(5)and the remaining two are proper CKVs,which can be expressed as ξ(5)=A ?tand ξ(6)=rA?t+ ∫(1/A)dt?r.

    Case 3In this case,we take A′=B′=0.Solving Eqs.(17)and(22)using the same steps as in case II,we get ψ =0 and the following values of ξaare obtained:

    Thus no proper CKV exist in this case.We have six KVs,out of which four are same as minimum KVs of Kantowski-Sachs metric,given in Eq.(5),and the remaining two KVs can be written as ξ(5)= ?tand ξ(6)=r?t+t?r.

    Case 4 Here we take A′=0 and B′≠0.Solving Eq.(18),we have Fi(t,r)=(1/B)fi(r)+gi(t),where fi(r)and gi(t)are functions of integration. Using this value of Fi(t,r)in Eq.(19)and differentiating it with respect to r,we have(BB′′? B′2? 1)=0,which give rise to two cases depending upon whether BB′′? B′2? 1≠0 or BB′′? B′2? 1=0.Here we discuss both the cases.

    Case 4(a)If BB′′? B′2? 1≠0,the simultaneous solution of Eqs.(17)–(19)yields Fi(t,r)=0.Moreover,solving Eqs.(21)and(22),we obtain F0(t,r)=Bf0(r)and F4(t,r)=(r)∫Bdt+f4(r).Using these values in Eq.(20)and differentiating it twice with respect to t,we get the relation(B′′/B)′f0(r)=0.If(B′′/B)′≠0,then f0(r)=0 and Eq.(20)gives f4(r)=c1.Hence the system(16)becomes:

    which shows that there is no proper CKV in this case and the CKVs are exactly same as the four KVs of Kantowski-Sachs metric,given in Eq.(5).

    In the later case,that is when(B′′/B)′=0,the metric function B gets the value B=c1et+c2e?t,where c1c2≠1/4 and we obtain the final form of the system(16)as:

    In this case,we obtain the set of minimal KVs given in Eq.(5)along with two proper CKVs,which are expressible as ξ(5)=B er?t+B′er?rand ξ(6)=B e?r?t?B′e?r?r.

    Case 4(b)In this case,we have BB′′? B′2? 1=0 ?B=(1/2)(et+e?t)=cosht.In this case,the Weyl tensor for Kantowski-Sachs metric vanishes and we obtain 15-dimensional Lie algebra of CKVs,which is given below:

    where η1,η2and η3are same as defined in Eq.(16).Out of the above 15 CKVs,seven are KVs,which can be obtained by setting ψ=0 in the above system and the remaining eight are proper CKVs.

    Case 5In this case,we solve the integrability conditions by assuming that A′≠0 and B′=0.Solving Eq.(18)using these conditions,we get Fi(t,r)=A fi(r)+gi(t).Substituting this value in Eq.(19)and differentiating it with respect to r,we have=0.Like the previous case,here two sub cases arise depending upon whether A+A′′=0 or A+A′′≠0.Here we discuss both cases.

    Case 5(a)If A+A′′≠0,then using some simple algebraic manipulations,the solution of Eqs.(17)–(19),(21)and(22)gives Fi(t,r)=0,F0(t,r)=f0(r)and F4(t,r)=(r)∫(1/A2)dt+f4(r).Using these values in Eq.(20)and differentiating it twice with respect to t,we get(AA′′? A′2)′f0(r)=0.If we assume that(AA′′? A′2)′≠0,then f0(r)=0 and Eq.(20)gives f4(r)=c1.Hence the system(16)becomes:

    which shows that in this case,the CKVs are exactly same as the four minimal KVs of Kantowski-Sachs metric,given in Eq.(5).There exist no proper CKV.

    In the later case,we have(AA′′? A′2)′=0 ? A=cosht.For this value of A,a complete solution of the integrability conditions(17)–(22)gives:

    Like the above case,there is no proper CKV and the CKVs become KVs,which are six in number. Four KVs are same as given in Eq.(5)and the remaining two can be written as ξ(5)=cosr?t? sinrtanht?rand ξ(6)=sinr?t+cosrtanht?r.

    Case 5(b)In this case,we have A= β1cost+β2sint and the Kantowski-Sachs metric is conformally flat.Considering β1= β2=1 and solving the integrability conditions(17)–(22),we get the following 15-dimensional Lie algebra of CKVs:

    where η1, η2and η3are same as defined in Eq.(16).Out of the above 15 CKVs,six are KVs,which can be obtained by setting ψ=0 in the above system and the remaining nine are proper CKVs.

    3 Inheriting Conformal Killing Vectors

    In this section,we study the inheriting conformal Killing vectors in Kantowski-Sachs metric by choosing thefluid four velocity as ua=From Eq.(3),we obtain:

    which shows that ξ0is dependent on t only.Thus in the system(16),we must have=0 and F0=F0(t).Using Eqs.(19)and(21),we get Fi(t,r)=0 and F4=F4(r).Therefore,we are left with the only two integrability conditions,which are given below:

    It is straightforward to solve the above two equations and get F0(t)=B,F4(r)=c1r+c2and B=c1A∫(1/A)dt+c3A.Hence the system (16)reduces to:

    From above,we can see that the Kantowski-Sachs metric admits six ICKVs,provided that the metric functions satisfy the relation B=c1A∫(1/A)dt+c3A.Out of these six ICKVs,four are the KVs as mentioned in Eq.(5)and the remaining two are proper ICKVs,which can be written as ξ(5)=A?tand ξ(6)=A∫(1/A)dt?t+r?r.

    4 Summary

    In our present work,the CKVs in Kantowski-Sachs metric have been investigated. The conformal Killing equations are solved in different cases and it is concluded that the non-conformally flat Kantowski-Sachs metric admits two proper CKVs(see cases 1(b),2,and 4(a))or otherwise the CKVs reduce to the KVs.Moreover,when the Kantowski-Sachs metric becomes conformally flat,it admits a 15-dimensional Lie algebra of CKVs,which verifies the Hall’s statement[1](see cases 1(a),4(b)and 5(b)).The number of KVs for non-conformally flat Kantowski-Sachs metric turned out to be four, five or six,while for conformally flat Kantowski-Sachs metric this number is either six or seven.

    Interestingly,the classification of the conformal geometry in terms of the Weyl tensor led us to a simple and general relationships between the metric functions A and B.This may enable us to identify the known exact solutions of the Einstein field equations and we may write these equations in terms of a single gravitational potential.Moreover,we may apply the conformal symmetries found in this paper to generate exact solutions of the Einstein field equations.

    The inheriting CKVs are also studied and it is shown that if the metric functions of the Kantowski-Sachs metric are related by B=c1A∫(1/A)dt+c3A,then it admits six ICKVs out of which two are proper ICKVs and four are the basic KVs of Kantowski-Sachs metric.

    The authors are thankful to the unknown referees for their invaluable suggestions because of which the manuscript is significantly improved.

    [1]G.S.Hall,Symmetries and Curvature Structure in General Relativity,World Scientific,London(2004)

    [2]A.Z.Petrov Einstein Spaces,Oxford University Press,Pergamon(1969)

    [3]R.Maartens,D.P.Mason,and M.Tsamparlis,J.Math.Phys.27(1986)2987.

    [4]D.P.Mason and R.Maartens,J.Math.Phys.27(1986)2511.

    [5]F.Rahaman,M.Jamil,R.Sharma,and K.Chakraborty Astrophys.Space Sci.330(2010)249.

    [6]F.Rahaman,M.Jamil,M.Kalam,et al.,Astrophys.Space Sci.325(2010)137.

    [7]M.Esculpi and E.Aloma,Eur.Phys.J.C 67(2010)521.

    [8]A.A.Usmani,F.Rahaman,S.Ray,et al.,Phys.Lett.B 701(2011)388.

    [9]R.Maartens and S.D.Maharaj,Class.Quantum Grav.3(1986)1005.

    [10]R.Maartens and S.D.Maharaj,Class.Quantum Grav.8(1991)503.

    [11]S.Moopanar and S.D.Maharaj,J.Eng.Math.82(2013)125.

    [12]D.Kramer and J.Carot,J.Math.Phys.32(1991)1857.

    [13]T.Hussain,S.Khan,A.H.Bokhari,and G.A.Khan,Theor.Math.Phys.191(2017)620.

    [14]S.Khan,T.Hussain,A.H.Bokhari,and G.A.Khan,Commun.Theor.Phys.65(2016)315.

    [15]S.Khan,T.Hussain,A.H.Bokhari,and G.A.Khan,Eur.Phys.J.C 75(2015)523.

    [16]A.A.Coley and B.O.J.Tupper,Class.Quantum Grav.7(1990)1961.

    [17]A.A.Coley and B.O.J.Tupper,Class.Quantum Grav.7(1990)2195.

    [18]A.A.Coley and B.O.J.Tupper,Class.Quantum Grav.11(1994)2553.

    [19]L.Herrera,J.Jimenez,L.Leal,and J.Ponce de Leon,J.Math.Phys.25(1984)3274.

    [20]R.Kantowski and R.K.Sachs,J.Math.Phys.7(1966)443.

    网址你懂的国产日韩在线| 国产亚洲精品综合一区在线观看| 国内精品一区二区在线观看| 亚洲真实伦在线观看| 亚洲18禁久久av| 国产成人精品久久二区二区91| 国内精品久久久久久久电影| 看免费av毛片| 日韩中文字幕欧美一区二区| 国产精品免费一区二区三区在线| 中国美女看黄片| 99久久精品国产亚洲精品| 国产探花在线观看一区二区| av在线蜜桃| 久久天堂一区二区三区四区| 男插女下体视频免费在线播放| 精品99又大又爽又粗少妇毛片 | 91麻豆精品激情在线观看国产| 两个人视频免费观看高清| 别揉我奶头~嗯~啊~动态视频| 天堂影院成人在线观看| 国内精品一区二区在线观看| 在线观看一区二区三区| 嫩草影院入口| 精品99又大又爽又粗少妇毛片 | 琪琪午夜伦伦电影理论片6080| 男插女下体视频免费在线播放| 高清在线国产一区| 久久精品91蜜桃| 黄色女人牲交| 亚洲精品久久国产高清桃花| 精品日产1卡2卡| 亚洲av片天天在线观看| 欧美av亚洲av综合av国产av| 欧美日韩中文字幕国产精品一区二区三区| 麻豆成人午夜福利视频| 精品久久久久久久久久免费视频| 色哟哟哟哟哟哟| 丰满的人妻完整版| 母亲3免费完整高清在线观看| 性欧美人与动物交配| 波多野结衣高清作品| 老鸭窝网址在线观看| 亚洲精品456在线播放app | 色播亚洲综合网| 成年女人毛片免费观看观看9| 9191精品国产免费久久| 神马国产精品三级电影在线观看| 国产精品爽爽va在线观看网站| 欧美日韩一级在线毛片| 中文字幕高清在线视频| 成人国产一区最新在线观看| 精品久久久久久久毛片微露脸| 女警被强在线播放| 国产亚洲精品综合一区在线观看| 人人妻人人澡欧美一区二区| 色播亚洲综合网| 国产精品久久电影中文字幕| 女同久久另类99精品国产91| 97超视频在线观看视频| 久久久国产成人免费| 午夜精品一区二区三区免费看| 亚洲 欧美 日韩 在线 免费| 国产成人福利小说| 99久久精品国产亚洲精品| 欧美日本视频| 午夜福利欧美成人| 99riav亚洲国产免费| 国内久久婷婷六月综合欲色啪| 成人国产综合亚洲| 91麻豆精品激情在线观看国产| 日韩高清综合在线| 欧美最黄视频在线播放免费| 日本五十路高清| 嫩草影院精品99| 免费在线观看成人毛片| 不卡av一区二区三区| 欧美av亚洲av综合av国产av| 中亚洲国语对白在线视频| www.熟女人妻精品国产| 999精品在线视频| 九色成人免费人妻av| av女优亚洲男人天堂 | 亚洲七黄色美女视频| 99久国产av精品| 在线十欧美十亚洲十日本专区| 一级a爱片免费观看的视频| 午夜亚洲福利在线播放| 级片在线观看| 午夜两性在线视频| 成年女人永久免费观看视频| 中文字幕精品亚洲无线码一区| 人人妻人人看人人澡| 神马国产精品三级电影在线观看| 岛国在线免费视频观看| 蜜桃久久精品国产亚洲av| 免费无遮挡裸体视频| 国产精品av视频在线免费观看| 母亲3免费完整高清在线观看| 亚洲国产中文字幕在线视频| 不卡一级毛片| 观看美女的网站| 精品久久蜜臀av无| 99视频精品全部免费 在线 | 欧美日韩国产亚洲二区| 国产伦精品一区二区三区视频9 | 免费在线观看成人毛片| 又黄又粗又硬又大视频| av欧美777| 久久精品91无色码中文字幕| 丁香六月欧美| 日韩欧美精品v在线| 亚洲九九香蕉| 国产精品美女特级片免费视频播放器 | 国产精品野战在线观看| 国产激情偷乱视频一区二区| 免费看光身美女| 岛国在线观看网站| 亚洲精品在线美女| 中文字幕人成人乱码亚洲影| 亚洲精品粉嫩美女一区| 欧美xxxx黑人xx丫x性爽| 99久久精品国产亚洲精品| 国产成人av激情在线播放| 无限看片的www在线观看| 99久久久亚洲精品蜜臀av| 午夜免费观看网址| 亚洲国产欧美一区二区综合| 可以在线观看毛片的网站| 伊人久久大香线蕉亚洲五| 成在线人永久免费视频| 久久久久精品国产欧美久久久| 麻豆成人av在线观看| 亚洲熟妇熟女久久| 精品午夜福利视频在线观看一区| 麻豆成人av在线观看| 哪里可以看免费的av片| 欧美中文日本在线观看视频| 国产精品久久久久久久电影 | 久99久视频精品免费| 在线国产一区二区在线| 婷婷六月久久综合丁香| bbb黄色大片| 免费看光身美女| 1024香蕉在线观看| 精品一区二区三区视频在线 | 欧美又色又爽又黄视频| 最近最新中文字幕大全免费视频| 亚洲欧美精品综合久久99| 色综合欧美亚洲国产小说| 亚洲专区中文字幕在线| 久久人人精品亚洲av| 国产欧美日韩一区二区三| 免费观看人在逋| 非洲黑人性xxxx精品又粗又长| 99久久成人亚洲精品观看| 国产精品乱码一区二三区的特点| 97碰自拍视频| 国产高清视频在线观看网站| 夜夜爽天天搞| 亚洲欧美精品综合久久99| 无限看片的www在线观看| 日本五十路高清| 亚洲国产欧洲综合997久久,| 99久久无色码亚洲精品果冻| 欧美一级a爱片免费观看看| 黄色丝袜av网址大全| 国产精品1区2区在线观看.| 人人妻人人澡欧美一区二区| 国产黄色小视频在线观看| 精品日产1卡2卡| 九九在线视频观看精品| 国产精品九九99| 在线免费观看不下载黄p国产 | 老汉色av国产亚洲站长工具| 成熟少妇高潮喷水视频| 999久久久国产精品视频| 国产伦人伦偷精品视频| 国内精品久久久久精免费| 亚洲自拍偷在线| a级毛片在线看网站| 久久国产精品人妻蜜桃| 亚洲成人中文字幕在线播放| 国产欧美日韩一区二区精品| 日韩精品中文字幕看吧| 一个人免费在线观看的高清视频| 久久午夜综合久久蜜桃| 亚洲自拍偷在线| 午夜福利视频1000在线观看| 免费在线观看视频国产中文字幕亚洲| 99精品欧美一区二区三区四区| 久久久久性生活片| 欧美三级亚洲精品| 久久中文字幕一级| 中文字幕久久专区| 亚洲片人在线观看| 国产日本99.免费观看| 老司机在亚洲福利影院| 叶爱在线成人免费视频播放| 脱女人内裤的视频| 欧美午夜高清在线| 成人三级做爰电影| www.自偷自拍.com| 日本一二三区视频观看| 欧美精品啪啪一区二区三区| 久久香蕉国产精品| 高清在线国产一区| www日本黄色视频网| 两性夫妻黄色片| 国产熟女xx| 精品国产美女av久久久久小说| 免费在线观看亚洲国产| 两个人的视频大全免费| 最近最新免费中文字幕在线| 国产免费男女视频| 国产亚洲欧美在线一区二区| 天堂影院成人在线观看| 少妇丰满av| 亚洲国产色片| 婷婷精品国产亚洲av| 亚洲中文av在线| 美女扒开内裤让男人捅视频| 2021天堂中文幕一二区在线观| 中国美女看黄片| 国产熟女xx| 88av欧美| 亚洲国产精品久久男人天堂| 国产三级在线视频| 精品熟女少妇八av免费久了| 亚洲人成网站在线播放欧美日韩| 搡老妇女老女人老熟妇| 中文字幕av在线有码专区| 国产精品av视频在线免费观看| 在线免费观看不下载黄p国产 | 黄色片一级片一级黄色片| 亚洲午夜精品一区,二区,三区| 哪里可以看免费的av片| 久久人妻av系列| 村上凉子中文字幕在线| 在线观看免费午夜福利视频| 亚洲中文字幕日韩| 成人午夜高清在线视频| 中文资源天堂在线| 国产精品一区二区三区四区久久| 国内久久婷婷六月综合欲色啪| 亚洲真实伦在线观看| 久久九九热精品免费| 欧美绝顶高潮抽搐喷水| 国产精品自产拍在线观看55亚洲| 免费观看精品视频网站| 免费av毛片视频| 亚洲人成伊人成综合网2020| 色哟哟哟哟哟哟| 夜夜爽天天搞| 欧美激情久久久久久爽电影| 国产一区二区三区在线臀色熟女| 国产欧美日韩精品一区二区| 九九久久精品国产亚洲av麻豆 | 成人特级黄色片久久久久久久| 国产精品女同一区二区软件 | 国产精品一区二区三区四区久久| av黄色大香蕉| 一a级毛片在线观看| 麻豆国产av国片精品| 曰老女人黄片| 国产伦人伦偷精品视频| 99国产精品99久久久久| 国产午夜精品久久久久久| 午夜成年电影在线免费观看| 国产av在哪里看| 青草久久国产| 欧美日韩精品网址| 我要搜黄色片| 欧美乱码精品一区二区三区| 亚洲,欧美精品.| 熟女少妇亚洲综合色aaa.| 精品人妻1区二区| 男插女下体视频免费在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲无线在线观看| 淫妇啪啪啪对白视频| 男女做爰动态图高潮gif福利片| 99久久国产精品久久久| 欧美日韩黄片免| 99国产精品一区二区蜜桃av| 在线十欧美十亚洲十日本专区| 90打野战视频偷拍视频| 欧美一级a爱片免费观看看| 久久婷婷人人爽人人干人人爱| 精品熟女少妇八av免费久了| 成人av一区二区三区在线看| 亚洲五月天丁香| 91九色精品人成在线观看| 国产蜜桃级精品一区二区三区| 国产成人影院久久av| 亚洲男人的天堂狠狠| 国产精品一区二区免费欧美| 亚洲国产高清在线一区二区三| 婷婷六月久久综合丁香| 亚洲五月婷婷丁香| 日日摸夜夜添夜夜添小说| 午夜免费成人在线视频| a级毛片在线看网站| 99精品在免费线老司机午夜| 午夜福利高清视频| 日韩欧美免费精品| 黄色丝袜av网址大全| 国产爱豆传媒在线观看| а√天堂www在线а√下载| 九色国产91popny在线| 此物有八面人人有两片| 精品欧美国产一区二区三| 亚洲精品一卡2卡三卡4卡5卡| а√天堂www在线а√下载| 在线观看舔阴道视频| 日韩三级视频一区二区三区| 脱女人内裤的视频| 国产成人福利小说| 久久久久国产一级毛片高清牌| 网址你懂的国产日韩在线| а√天堂www在线а√下载| 真实男女啪啪啪动态图| 此物有八面人人有两片| 亚洲色图 男人天堂 中文字幕| 黄色成人免费大全| 久久久久久久精品吃奶| 成年版毛片免费区| 亚洲国产精品成人综合色| 成人永久免费在线观看视频| 俄罗斯特黄特色一大片| 天堂av国产一区二区熟女人妻| 一二三四社区在线视频社区8| 国产综合懂色| 他把我摸到了高潮在线观看| 亚洲国产精品久久男人天堂| 免费av毛片视频| svipshipincom国产片| 一级a爱片免费观看的视频| 首页视频小说图片口味搜索| 好男人电影高清在线观看| 亚洲欧美日韩高清专用| 成人av一区二区三区在线看| 可以在线观看的亚洲视频| 不卡一级毛片| 国产淫片久久久久久久久 | 国产 一区 欧美 日韩| 国内揄拍国产精品人妻在线| 丰满人妻熟妇乱又伦精品不卡| 美女午夜性视频免费| 最新在线观看一区二区三区| 午夜福利18| 精品无人区乱码1区二区| 成人国产一区最新在线观看| 在线看三级毛片| 久久久久亚洲av毛片大全| 熟女人妻精品中文字幕| 午夜福利在线在线| 首页视频小说图片口味搜索| 欧美在线黄色| svipshipincom国产片| 久久亚洲精品不卡| 日本在线视频免费播放| 亚洲,欧美精品.| 久久热在线av| 久久久水蜜桃国产精品网| 亚洲人成网站高清观看| 中文字幕人妻丝袜一区二区| 日日摸夜夜添夜夜添小说| 成年女人永久免费观看视频| netflix在线观看网站| 综合色av麻豆| 搡老熟女国产l中国老女人| 亚洲av日韩精品久久久久久密| 成人精品一区二区免费| 国产精品av久久久久免费| 欧美高清成人免费视频www| 欧美性猛交黑人性爽| 免费一级毛片在线播放高清视频| 色综合站精品国产| 国产亚洲精品一区二区www| 舔av片在线| 国产午夜精品论理片| 少妇裸体淫交视频免费看高清| 国产午夜精品论理片| 观看美女的网站| 国产免费男女视频| 久久亚洲真实| 曰老女人黄片| 精品久久久久久久毛片微露脸| av视频在线观看入口| 午夜福利视频1000在线观看| 欧美日韩国产亚洲二区| 中文字幕人成人乱码亚洲影| 亚洲人成电影免费在线| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久视频播放| 国产一级毛片七仙女欲春2| 国产亚洲精品久久久com| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩一区二区精品| 亚洲精品在线观看二区| 精品久久蜜臀av无| 一a级毛片在线观看| 又爽又黄无遮挡网站| 日韩精品青青久久久久久| 18禁黄网站禁片午夜丰满| 身体一侧抽搐| 1024手机看黄色片| 老熟妇仑乱视频hdxx| 可以在线观看的亚洲视频| 亚洲精品在线观看二区| 色av中文字幕| 美女黄网站色视频| 一级毛片女人18水好多| 久久久精品欧美日韩精品| 久久精品国产综合久久久| 国产精品精品国产色婷婷| 好看av亚洲va欧美ⅴa在| 狠狠狠狠99中文字幕| 757午夜福利合集在线观看| 母亲3免费完整高清在线观看| 国产视频一区二区在线看| 精品欧美国产一区二区三| 男人舔女人的私密视频| 成年女人毛片免费观看观看9| 在线观看一区二区三区| 亚洲人成网站高清观看| 久久香蕉国产精品| 老司机深夜福利视频在线观看| 狠狠狠狠99中文字幕| 一二三四在线观看免费中文在| 欧美中文日本在线观看视频| 老熟妇仑乱视频hdxx| 老司机午夜十八禁免费视频| 久久人人精品亚洲av| 欧美另类亚洲清纯唯美| 深夜精品福利| 99久久精品一区二区三区| 一个人免费在线观看的高清视频| 老司机深夜福利视频在线观看| 欧美zozozo另类| 熟女电影av网| 美女 人体艺术 gogo| 91av网一区二区| 亚洲精品乱码久久久v下载方式 | 十八禁网站免费在线| 99精品在免费线老司机午夜| 免费大片18禁| 一个人看的www免费观看视频| 青草久久国产| 日韩精品青青久久久久久| www国产在线视频色| 欧美日本亚洲视频在线播放| 精品午夜福利视频在线观看一区| 久久这里只有精品中国| 久久久精品大字幕| 亚洲av电影在线进入| 韩国av一区二区三区四区| 日韩av在线大香蕉| 色哟哟哟哟哟哟| 在线看三级毛片| www日本黄色视频网| 中文在线观看免费www的网站| 亚洲av成人av| 看黄色毛片网站| 香蕉丝袜av| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美日韩高清专用| 黄色成人免费大全| 亚洲av熟女| 国产1区2区3区精品| 亚洲自偷自拍图片 自拍| 长腿黑丝高跟| 亚洲男人的天堂狠狠| 午夜福利18| 一卡2卡三卡四卡精品乱码亚洲| 97超视频在线观看视频| 国产亚洲精品综合一区在线观看| 一个人观看的视频www高清免费观看 | 精品电影一区二区在线| 久久精品国产99精品国产亚洲性色| 国产免费av片在线观看野外av| 啦啦啦韩国在线观看视频| 精品国产乱码久久久久久男人| 国产精品一区二区精品视频观看| 亚洲欧美日韩高清专用| 国产成人系列免费观看| 99热这里只有是精品50| 亚洲九九香蕉| 亚洲成人免费电影在线观看| 日本撒尿小便嘘嘘汇集6| 少妇丰满av| 中文字幕久久专区| 日本a在线网址| 精品国产亚洲在线| 亚洲一区高清亚洲精品| 在线永久观看黄色视频| 人人妻人人看人人澡| 99久久无色码亚洲精品果冻| 久久久久久九九精品二区国产| 亚洲第一欧美日韩一区二区三区| 久久这里只有精品中国| 真人做人爱边吃奶动态| 亚洲欧美日韩卡通动漫| 国产一级毛片七仙女欲春2| 国产97色在线日韩免费| 色综合亚洲欧美另类图片| 真人做人爱边吃奶动态| 国产精品 国内视频| 伦理电影免费视频| 露出奶头的视频| h日本视频在线播放| 在线观看日韩欧美| 美女免费视频网站| 久久国产精品人妻蜜桃| 国内毛片毛片毛片毛片毛片| h日本视频在线播放| 熟女人妻精品中文字幕| 国产主播在线观看一区二区| 麻豆一二三区av精品| 听说在线观看完整版免费高清| 免费无遮挡裸体视频| 久99久视频精品免费| 在线观看一区二区三区| 国产伦精品一区二区三区四那| 91久久精品国产一区二区成人 | 人人妻人人澡欧美一区二区| 欧美大码av| 99国产综合亚洲精品| 少妇的逼水好多| 久久精品91无色码中文字幕| 午夜福利在线在线| 国产综合懂色| 午夜亚洲福利在线播放| av在线蜜桃| 人妻久久中文字幕网| www.999成人在线观看| 国产熟女xx| 91在线精品国自产拍蜜月 | 色视频www国产| 国产高清videossex| 深夜精品福利| 免费在线观看日本一区| 国产高清视频在线播放一区| 在线观看免费午夜福利视频| 91字幕亚洲| 免费看日本二区| 一二三四在线观看免费中文在| 性色avwww在线观看| 精品一区二区三区视频在线观看免费| 国产精华一区二区三区| 757午夜福利合集在线观看| 嫩草影院入口| 成人特级黄色片久久久久久久| 亚洲色图 男人天堂 中文字幕| 日本免费一区二区三区高清不卡| 18禁黄网站禁片午夜丰满| 国产男靠女视频免费网站| 国产日本99.免费观看| 中文字幕人成人乱码亚洲影| 中文在线观看免费www的网站| 一二三四社区在线视频社区8| 国产成人精品久久二区二区免费| 免费大片18禁| 国产精品98久久久久久宅男小说| 麻豆av在线久日| 精品电影一区二区在线| www.熟女人妻精品国产| 亚洲九九香蕉| 我的老师免费观看完整版| 精品99又大又爽又粗少妇毛片 | 757午夜福利合集在线观看| 成人av在线播放网站| 黄色女人牲交| 国产精品亚洲美女久久久| 亚洲欧美日韩高清专用| 国产主播在线观看一区二区| 亚洲国产日韩欧美精品在线观看 | 亚洲人成网站高清观看| 亚洲av熟女| 亚洲av成人不卡在线观看播放网| 国产av一区在线观看免费| 国产精品自产拍在线观看55亚洲| 午夜福利在线观看免费完整高清在 | 男女之事视频高清在线观看| 午夜视频精品福利| 精品久久久久久久久久久久久| 久久精品综合一区二区三区| 亚洲熟女毛片儿| 老司机福利观看| 九九热线精品视视频播放| 亚洲 欧美 日韩 在线 免费| 欧美日韩亚洲国产一区二区在线观看| 国产午夜精品久久久久久| 三级男女做爰猛烈吃奶摸视频| 亚洲人成伊人成综合网2020| 中文字幕人妻丝袜一区二区| 白带黄色成豆腐渣| 两人在一起打扑克的视频| 亚洲精品色激情综合| 少妇熟女aⅴ在线视频| 无人区码免费观看不卡| 1024香蕉在线观看| 757午夜福利合集在线观看| 精品一区二区三区四区五区乱码| 九九久久精品国产亚洲av麻豆 | 亚洲国产欧洲综合997久久,| 91九色精品人成在线观看| 一个人观看的视频www高清免费观看 | 亚洲中文av在线| 日日摸夜夜添夜夜添小说| 国产一区二区在线av高清观看| 国产av麻豆久久久久久久| av在线天堂中文字幕| 国产精品一区二区三区四区免费观看 |