• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Descent Equations Starting from High Rank Chern-Simons?

    2018-05-02 01:51:26BeiKang康貝YiPan潘一KeWu吳可JieYang楊潔andZiFengYang楊紫峰
    Communications in Theoretical Physics 2018年4期
    關(guān)鍵詞:楊潔

    Bei Kang(康貝),Yi Pan(潘一), Ke Wu(吳可),Jie Yang(楊潔),and Zi-Feng Yang(楊紫峰)

    1School of Mathematical Sciences,Capital Normal University,Beijing 100048,China

    2School of Mathematics and Statistics,Henan University,Kaifeng 475004,China

    1 Introduction

    In the early 1970s,Wess and Zumino introduced effective Lagrangian in four-dimensional quantum field theory with supersymmetry,which is called Wess-Zumino term(WZ term)nowadays.[1]After that,Witten tried to gauge the WZ term by trial and error and obtained gauged WZ term in 1983[2]called Wess-Zumino-Witten term(WZW term)subsequently.Chou,Guo,Wu,and Song[3]got the complete WZW term by means of geometric and topological consideration.From then on,the geometric properties of WZW term have been widely discussed and studied.[4]Among these works,Chern-Simons forms are the signi ficant part in the study of WZW term.Chern-Simons forms were named after Chern and Simons for their work.[5]They are also important in gauge theory.Since then,the WZW term and the anomaly become significant in the researches of quantum gauge theory and mathematical physics.Many works of anomalies in quantum gauge theory came out in the view point of geometric and topological methods,[4,6]which are the topological origin of quantum anomaly.Since a physical theory should be anomaly free,many physicists devote to looking for anomaly cancellation.Among them,Green and Schwarz discovered Green-Schwarz mechanism.[7]Their work also solved the big anomaly problem in superstring theory.Hence it inspired the first revolution of superstring theory.In the study of the anomaly,many works have been focused on descent equations.[4,8]They appeared to be very important in understanding the essence of the anomaly.

    Recall that the descent equations are also called zigzag equation,[9]

    where k=1,...,r(will be explained in Subsec.2.1).The last term of these equations is

    It is a differential r-form,where the descent equations terminate.

    In the work of Ref.[10],Alekseev,Naef,Xu,and Zhu expanded descent equations in the case of r=2.They combined Kashiwara-Vergne theory with descent equation to establish a correspondence between solutions of Kashiwara’s first equation in the Lie theory and universal solutions of descent equations of r=2.The solutions of their expanded descent equations are given as follows,

    Our main work is to give a degree completion of general descent equations to obtain the general solutions.In other words,we can get all solutions from(2r?1)-form,(2r?2)-form,...,down to 1-form and 0-form.Among these differentials,1-form and 0-form are the key parts to construct.In the second section of this paper,we provide a detailed construction of our descent equations for r=2.Then in the third section,we use free Lie algebra to construct the space of differential forms.Furthermore in this new space,we give a new interpretation of 1-form and 0-form solutions of descent equations.In the last section,we derive general solutions of descent equations for r>2.

    2 Chern-Simons Type Characteristic Classes and Descent Equations ofr=2

    In the first part of this section,we review descent equations defined in Ref.[4]and an expansion of them for the case r=2 by Alekseev et al.[10]Then we describe new expanded descent equations of r=2 different from those in Ref.[10].The term ω3in our expanded descent equations coincides within Eq.(1)from Ref.[10].However,ωiis different fromfor i=0,1,2.The advantage of our formalism is that it can be generalized to more cases.We will explain the generalization of our descent equations for r>2 in Sec.4.

    2.1 Descent Equations and Their Expansion at r=2

    Let G be a connected Lie group with Lie algebra G,and E be a principle G bundle over a C∞-manifold M with projection π :E → M.Assume P is an invariant polynomial of degree r,that is,a symmetric,multilinear map fromto C invariant under the inner automorphism of G on Gr.If A∈?1(E,G)is a connection on E and F=dA+(1/2)[A,A]is the corresponding curvature,then we have

    The above proposition is generalized in Ref.[6]by introducing the following concept of Chern-Simons type characteristic classes.

    Given k+1 connections A0,A1,...,Akon the principal G bundle E,we define

    where ηi,j=Ai? Aj.The curvature of Ai0;t1,...,tkis

    The Chern-Simons type characteristic classes,or the k-Chern-Simons Q-cochain,is defined as follows

    A marvellous property of k-Chern-Simons Q-cochain is given in the following theorem,which generalizes the formula(2):

    Theorem 1[6]The following equation holds

    Here?is an operator acting on a polynomial R(k)(A0,...,Ak)by

    where the symbol“?”over Aiindicates that Aiis deleted from the sequence A0,...,Ak+1.It is easy to see?2=0,thus? is a coboundary operator.According to Theorem 1,the coboundary of the(k?1)-Chern-Simons Q-cochain equals the exterior differential of a k-Chern-Simons Q-cochain.

    Take r=2 as an example.For any g1∈G,take A0=0,A2=A,and A1=Ag1=Ag1+g1?1dg1representing a gauge transformation of A,descent equations(4)shall be

    Recently Alekseev et al.gave descent equations ending with a 0-form in Ref.[10].As shown in that paper,a new operator δ is defined,and it induces the following descent equations

    2.2 Another Solution of Descent Equations in r=2

    Motivated by paper Ref.[10],we consider if there exist more general descent equations ending with a 0-form,that is,for any case of r=2,3,...We define an operator δ which acts on a polynomial R(A,g1,...,gk)consisting of A,g1,...,gk,dA,dg1,...,dgkwith the rule

    where g1,...,gk+1are elements of G. Note that the operator δ defined above acts on polynomials of A,g1,...,gk,dA,dg1,...,dgk. In fact,it acts on the space of differential forms D?x1,...,xn?defined in Subsec.3.1(see Subsec.3.1 for details).Hence the operator δ defined by Eq.(8)is different from the one defined in Ref.[10],which acts on forms in WG??(Gk),where WG is the Weil algebra(see Ref.[10]).It is easy to check that δ2=0 and we have the following descent equations,

    Here ω3(A)=CS3(A)=(0,A).Equations(9)look like(7),but the respective spaces in which they live are totally different.We would like to write down the expressions of ωi’s(i=0,1,2)in the new space.According to the definition of δ,we can compute the following equations

    As a consequence,

    which means ω2(A,g1)and×(Ag1,A)differ by a cocycle.Here we depict the primitivity of(Ag1,A)in terms of hP,the Poincare homotopy operator(See Ref.[11]for more details).Thus we can choose ω2(A,g1)to be((0,Ag1,A)?(Ag1,A)),other than WZ(A,ex1)+s?A,x1?in Ref.[10].As one can see,g1in ω2(A,g1)represents the gauge transformationof A.We continue our computation of ω2(A,g1,g2),

    Notice that the first term in the last line in Eq.(10)is a closed form.In fact,

    Hence it is acceptable to write ω1(A,g1,g2)formally as

    for a certain u ∈ tDer2.The construction of ω1depending on d(div(u))will be explained in the next section in details.It can be verified that the construction satis fies the whole computation.Note that ω1(A,g1,g2)is different from(A,g1,g2)in Ref.[10]too.So far we obtain expressions for ω2(A,g1)and ω1(A,g1,g2),the remaining task is only to find ω0(A,g1,g2,g3).We would like to continue clarifying the conditions that ω0(A,g1,g2,g3)should satisfy

    From the computation Eq.(11)we know ω0(A,g1,g2,g3)shall satisfy

    So far we have deduced our descent equations for r=2,but we have not written down the expression for ω0.We will give an expression of ω0(A,g1,g2,g3)as well as an explanation of d(div(u))in the next section.The procedure will be stated in the language of free Lie algebra,mainly based on Ref.[12].

    3 Construction ofω0

    This section begins with some basic concepts in free Lie algebra,and then proceeds to constructing a new space of differential forms D?x1,...,xn?which contains ωi’s in Eq.(9),especially ω1and ω0.Next,a cosimplicial complex is brought in to provide a description of our descent equations(9).Finally,we shall focus on a Lie subalgebra tDernof Dern,the Lie algebra of derivations of Lien.In this part,we give a new definition of differential operator d acting on tDern.

    3.1 The Space of Differential Forms and Cosimplicial Complex

    Let F be a field of Char(F)=0.Over F,we define Lien=Lie(x1,...,xn)to be the degree completion of the free Lie algebra generated by n letters x1,...,xn.For the sake of further discussions,Lienis equipped with a gradation Lien=Liei(x1,...,xn),where elements in Liei(x1,...,xn)are constituted by i letters.

    Let Assn=U(Lien)be the universal enveloping algebra of Lien,so it is the degree completion of the free associative algebra generated by x1,x2,...,xn.Therefore,each element b∈Assncan be written uniquely asDefine the linear operators?i(i=1,...,n)on b by?ib=bi.Then b has a unique decomposition

    Example 1For b=x1?x2+x2?x3+x3?x1,we know?1b=x3,?2b=x1,?3b=x2according to the definition,we easily get b=(?1b)? x1+(?2b)? x2+(?3b)? x3.

    Define the graded vector space trn=/span{a?b?b?a},?n,a,b∈,whereconsists of elements possessing a positive degree in Assn.It should be noticed that trndoes not inherit the product operation of Assn.

    With all the above preparations,we shall constructthespacetowhich ωi’sbelong. Consider Lie(x1,...,xn,dx1,...,dxn),a free graded Lie superalgebra with generators x1,...,xn,dx1,...,dxn. Here we assume deg(xi)= 0,deg(dxi)= 1 as usual.Then a monomial in Lie(x1,...,xn,dx1,...,dxn)has two degrees: one is the sum of degrees of generators,and the other is the number of letters constituting it. As described earlier,the universal enveloping algebra of Lie(x1,...,xn,dx1,...,dxn) is Ass(x1,...,xn,dx1,...,dxn)= U(Lie(x1,...,xn,dx1,...,dxn)). Define the space of differential forms as D?x1,...,xn?=Ass+(x1,...,xn,dx1,...,dxn)/span{a?b ? (?1)dega·degbb ? a},a,b ∈ Ass+(x1,...,xn,dx1,...,dxn),where elements in Ass+are constituted at least by one letter.Here we construct a new space of differential forms D?x1,...,xn?rather than the one in Ref.[10]since the latter is not suitable for descent equations of general r.In fact,it is difficult to find solutions belonging to the space of differential forms defined in that paper for descent equations for any r≠2.

    Example 2Let A be a generator satisfying deg(A)=1.The space of differential forms defined by A is D?A?=Ass+(A,dA)/span{a ? b? (?1)dega·degbb? a}, ?a,b ∈Ass+(A,dA).Denote A as a generator satisfying deg(A)= 1,and x1,...,xnas generators satisfying deg(xi)=0,i=1,...,n.We shall have a cosimplicial complex defined as

    Theorem 2The differential?δ coincides with the operator δ defined in Eq.(8).

    ProofWe only need to define the map φ :exi7→ gi.?

    3.2 Tangential Derivation Space

    Similar to the inner derivation of Lie algebra,the tangential derivation is defined as a derivation u such that u(xi)=[xi,ai]for i=1,...,n,where ai∈Lien.We denote u as(a1,...,an)for convenience of calculations in the context.

    Proposition 1The space of tangential derivations tDerncarries a Lie algebra structure,which suggests that tDernis a Lie subalgebra of Dern.(See Ref.[12]for a proof.)

    The action of the permutation group Snon tDernis induced by its action on Lien.For σ∈Sn,it follows that

    Define a simplicial map from tDernto tDern+1such that the image of u=(a1(x1,...,xn),...,an(x1,...,xn))is u1,2,...,n=(a1(x1,...,xn),...,an(x1,...,xn),0).By composing it with the permutation group Sn+1,we can get other maps,which are called simplicial maps too.

    There is another family of simplicial maps[13]from tDernto tDern+1,sending u=(a1(x1,...,xn),...,an(x1,...,xn))to

    RemarkAll simplicial maps defined above are Lie algebra homomorphisms.

    Example 3For u=(a1(x1,x2),a2(x1,x2)),we have u1,2=(a1(x1,x2),a2(x1,x2),0).Thus

    Apart from simplicial maps,we define a differential d from tDernto tDern+1given by

    Note that the differential d that we defined above is different from the one defined in Ref.[12],since u12,3,...,n+1,...,u1,2,...,nn+1in Eq.(14)have different meanings from the ones in Ref.[12].It can be checked that d2=0.Since ω1(A,g1,g2)∈ D1?A,x1,x2?,it requires a bridge between tDernand D??A,x·?.Hence we introduce a map

    Example 4Assume u=(a1(x1,...,xn),...,an(x1,...,xn))is a tangential derivation.Then

    Proposition 2div(du)=

    Proof

    As stated in the previous section,

    Thus we can take ω0(A,g1,g2,g3)to be div(du),since δdiv(du)= δ2div(u)=0.This completes descent equations(9).

    4 General Descent Equations

    We would like to point out that our construction works for more general cases.For the case of r=3,for example,the descent equations induced by δ shall be

    where

    Here u∈tDer4,α(A,g1,g2,g3)∈D1?A,x1,x2,x3?can be any 1-form consisting of A and(i=1,2,3).We provide a computation below.Let us begin with ω4(A,g1),

    Similar to the discussion of ω2in the Subsec.2.2,

    which shows that ω4(A,g1)differs fromby a cocycle.We choose ω4(A,g1)to beand continue our computation of ω3(A,g1,g2),

    The latter term in the last line in Eq.(18)is a closed form.In fact,

    Hence we write ω2(A,g1,g2,g3)formally as

    where α(A,g1,g2,g3) ∈ D?A,x1,x2,x3?.There is no doubt that we can continue in the following way

    Since

    and

    Eqs.(17)are exactly solutions of descent equations(16).

    In a similar way,we can construct descent equations for other general cases.We shall write down these equations and their solutions without detailed computations as follows,

    where

    Here θk=1 if(2r?k) ≡ 1(mod 4)or(2r?k) ≡ 2(mod 4),otherwise θk= ?1,for k=r?1,r,...,2r?2.αr?1(A,g1,...,gr)can be any forms in Dr?1?A,x1,...,xr?,so are αr?2(A,g1,...,gr+1)in Dr?2?A,x1,...,xr+1?,...,α2(A,g1,...,g2r?3)in D2?A,x1,...,x2r?3?.u ∈ tDer2r?2.

    Acknowledgement

    We are grateful to S.K.Wang for helpful discussions.

    [1]J.Wess and B.Zumino,Phys.Lett.B 37(1971)95.

    [2]E.Witten,Nucl.Phys.B 223(1983)422.

    [3]K.C.Chou,H.Y.Guo,K.Wu,and X.C.Song,Phys.Lett.134B(1984)67.

    [4]B.Zumino,Y.S.Wu,and A.Zee,Nucl.Phys.B 239(1984)477;H.Y.Guo,B.Y.Hou,S.K.Wang,and K.Wu,Commun.Theor.Phys.4(1985)145;K.C.Chou,H.Y.Guo,K.Wu,and X.C.Song,High Ener.Nucl.Phys.(In Chinese)8(1984)252;K.C.Chou,H.Y.Guo,K.Wu,and X.C.Song,Commun.Theor.Phys.3(1984)593;K.C.Chou,H.Y.Guo,K.Wu,and X.C.Song,Commun.Theor.Phys.3(1984)73;K.C.Chou,H.Y.Guo,K.Wu,and X.C.Song,Commun.Theor.Phys.3(1984)125;K.C.Chou,H.Y.Guo,X.Y.Li,et al.,Commun.Theor.Phys.3(1984)491;C.H.Chang,H.Y.Guo,and K.Wu,Commun.Theor.Phys.3(1984)707;K.C.Chou,H.Y.Guo,and K.Wu,Commun.Theor.Phys.4(1985)91;H.Y.Guo,B.Y.Hou,S.K.Wang,and K.Wu,Commun.Theor.Phys.4(1985)233;H.Y.Guo,S.K.Wang,and K.Wu,Commun.Theor.Phys.4(1985)509;H.Y.Guo,B.Y.Hou,S.K.Wang,and K.Wu,Acta Phys.Sin.(in Chinese)35(1986)89.

    [5]S.S.Chern and J.Simons,Ann.Math.99(1974)48.

    [6]H.Y.Guo,K.Wu,and S.K.Wang,Commun.Theor.Phys.4(1985)113.

    [7]M.B.Green and J.H.Schwarz,Phys.Lett.B 149(1984)117.

    [8]L.D.Faddeev,Phys.Lett.B 145(1984)81.

    [9]H.Y.Guo,S.K.Wang,and K.Wu,Phys.Lett.167B(1986)396.

    [10]A.Alekseev,F.Naef,X.M.Xu,and C.C.Zhu,arXiv:1702.08857

    [11]L.Gallot,E.Pilon,and F.Thuillier,Mod.Phys.Lett.A 30(2015)1550102.

    [12]A.Alekseev and C.Torossian,Ann.Math.175(2012)415.

    [13]A.Alekseev and C.Torossian,C.R.Acad.Sci.Paris S′erie I 347(2009)1231.

    猜你喜歡
    楊潔
    蝶戀花
    關(guān)于企業(yè)檔案管理體制改革的探討
    科學(xué)家(2022年5期)2022-05-13 21:42:18
    我的爺爺是村書記
    金魚缸碎了以后……
    金魚缸碎了以后……
    Humanistic Learning and Its Application in Community Language Learning
    My Family’s Birthdays
    楊潔書法作品
    第5講 科學(xué)探究
    楊潔書法作品
    亚洲国产欧美在线一区| 水蜜桃什么品种好| 亚洲综合色网址| 国产熟女欧美一区二区| 97在线人人人人妻| 最近的中文字幕免费完整| 国产精品女同一区二区软件| 欧美日韩福利视频一区二区| 欧美最新免费一区二区三区| 亚洲av在线观看美女高潮| 五月天丁香电影| 亚洲欧洲精品一区二区精品久久久 | av卡一久久| 国产精品人妻久久久影院| 亚洲精品视频女| 尾随美女入室| 新久久久久国产一级毛片| 国产精品久久久久久精品电影小说| 久久久精品94久久精品| 最黄视频免费看| 久久久国产精品麻豆| 精品一区二区三卡| 亚洲精品中文字幕在线视频| 啦啦啦在线免费观看视频4| 亚洲精品国产一区二区精华液| 日韩大码丰满熟妇| 狠狠婷婷综合久久久久久88av| 久久av网站| 国产精品麻豆人妻色哟哟久久| 亚洲精品成人av观看孕妇| 欧美日韩视频高清一区二区三区二| 亚洲欧洲国产日韩| 久久免费观看电影| 90打野战视频偷拍视频| 1024香蕉在线观看| 日本91视频免费播放| 热re99久久精品国产66热6| 亚洲国产欧美网| 人人妻人人添人人爽欧美一区卜| 国产男女内射视频| 日韩伦理黄色片| 久久天躁狠狠躁夜夜2o2o | 巨乳人妻的诱惑在线观看| a级毛片黄视频| 久久久久久久精品精品| 少妇的丰满在线观看| 中文欧美无线码| 国产精品一区二区在线观看99| 亚洲人成网站在线观看播放| 伊人久久大香线蕉亚洲五| 欧美精品亚洲一区二区| 一二三四中文在线观看免费高清| 爱豆传媒免费全集在线观看| 国产 一区精品| 久久精品国产亚洲av高清一级| 99国产精品免费福利视频| 一级爰片在线观看| 亚洲成人一二三区av| 免费日韩欧美在线观看| 午夜免费鲁丝| 免费久久久久久久精品成人欧美视频| 日本午夜av视频| 精品福利永久在线观看| 国产一区二区激情短视频 | 久久精品亚洲av国产电影网| 男的添女的下面高潮视频| 女人久久www免费人成看片| 久久久国产欧美日韩av| 日韩一区二区三区影片| 亚洲四区av| 9191精品国产免费久久| 校园人妻丝袜中文字幕| 久久久精品94久久精品| 久久久精品94久久精品| 久久精品久久久久久噜噜老黄| 美女主播在线视频| 观看av在线不卡| 国产精品偷伦视频观看了| 最新的欧美精品一区二区| 天天躁夜夜躁狠狠久久av| 亚洲精品自拍成人| 欧美日本中文国产一区发布| 亚洲人成网站在线观看播放| 亚洲成人免费av在线播放| 精品人妻一区二区三区麻豆| 国产在线一区二区三区精| 免费黄网站久久成人精品| 一边摸一边做爽爽视频免费| 久久精品国产综合久久久| 丰满迷人的少妇在线观看| 多毛熟女@视频| 精品一区二区免费观看| 日本午夜av视频| 免费观看a级毛片全部| 欧美日韩亚洲综合一区二区三区_| 国产精品国产av在线观看| 精品国产一区二区三区四区第35| av在线app专区| 91成人精品电影| 精品亚洲成国产av| 狠狠精品人妻久久久久久综合| 亚洲国产成人一精品久久久| 国产亚洲一区二区精品| 少妇人妻精品综合一区二区| 国产精品一区二区精品视频观看| 五月天丁香电影| 午夜激情av网站| 韩国高清视频一区二区三区| 亚洲三区欧美一区| 一本久久精品| av卡一久久| 啦啦啦中文免费视频观看日本| av一本久久久久| 欧美中文综合在线视频| 亚洲免费av在线视频| 亚洲av成人精品一二三区| 91国产中文字幕| 又大又爽又粗| av网站免费在线观看视频| 中文字幕人妻丝袜制服| 午夜福利免费观看在线| www.av在线官网国产| 人人妻人人爽人人添夜夜欢视频| 赤兔流量卡办理| 国产淫语在线视频| 亚洲精品久久成人aⅴ小说| 涩涩av久久男人的天堂| 国产在线一区二区三区精| 黑人巨大精品欧美一区二区蜜桃| 日日啪夜夜爽| 日本欧美视频一区| 国产亚洲精品第一综合不卡| 波多野结衣av一区二区av| 亚洲图色成人| 国产精品久久久久久久久免| 天堂俺去俺来也www色官网| 秋霞在线观看毛片| 97精品久久久久久久久久精品| 秋霞在线观看毛片| 五月天丁香电影| 曰老女人黄片| 国产乱来视频区| 亚洲精品一区蜜桃| 激情视频va一区二区三区| 国产 精品1| 欧美人与性动交α欧美软件| 老司机影院成人| 老司机影院成人| 九色亚洲精品在线播放| 侵犯人妻中文字幕一二三四区| 国产精品国产三级国产专区5o| 国产精品99久久99久久久不卡 | 欧美老熟妇乱子伦牲交| 久久鲁丝午夜福利片| 亚洲av日韩精品久久久久久密 | 欧美日韩av久久| 亚洲熟女毛片儿| 一二三四在线观看免费中文在| 亚洲一区中文字幕在线| 男人爽女人下面视频在线观看| 五月天丁香电影| 日本欧美国产在线视频| 高清欧美精品videossex| 免费在线观看视频国产中文字幕亚洲 | 成年人午夜在线观看视频| 五月天丁香电影| 下体分泌物呈黄色| 天堂俺去俺来也www色官网| 美女中出高潮动态图| 亚洲国产精品999| 免费看不卡的av| 免费看不卡的av| 国产日韩欧美亚洲二区| 国产精品一二三区在线看| 国产成人av激情在线播放| 伦理电影免费视频| 一级毛片我不卡| 丰满少妇做爰视频| 少妇 在线观看| 国产日韩欧美亚洲二区| 久久狼人影院| 看十八女毛片水多多多| 国产欧美亚洲国产| 波野结衣二区三区在线| 久久女婷五月综合色啪小说| videosex国产| 中文字幕另类日韩欧美亚洲嫩草| 男女之事视频高清在线观看 | videos熟女内射| 久久精品aⅴ一区二区三区四区| 亚洲精品一二三| 十八禁网站网址无遮挡| 色网站视频免费| 亚洲av中文av极速乱| 少妇人妻 视频| 免费久久久久久久精品成人欧美视频| 国产成人啪精品午夜网站| 日本av手机在线免费观看| 日日爽夜夜爽网站| 久久韩国三级中文字幕| 美女国产高潮福利片在线看| 久久久久国产精品人妻一区二区| 飞空精品影院首页| 久久精品熟女亚洲av麻豆精品| 在线天堂中文资源库| 你懂的网址亚洲精品在线观看| 午夜福利在线免费观看网站| 国产精品av久久久久免费| 天堂中文最新版在线下载| 一级,二级,三级黄色视频| 如日韩欧美国产精品一区二区三区| 欧美日韩福利视频一区二区| 女人精品久久久久毛片| 免费久久久久久久精品成人欧美视频| 久久热在线av| 亚洲成人手机| 亚洲一区中文字幕在线| 性色av一级| 亚洲伊人色综图| avwww免费| 在线精品无人区一区二区三| 亚洲人成77777在线视频| 男女边摸边吃奶| 国产精品国产三级专区第一集| 亚洲欧洲国产日韩| 黑人猛操日本美女一级片| 午夜福利视频精品| 欧美亚洲日本最大视频资源| 国产无遮挡羞羞视频在线观看| 欧美日韩亚洲高清精品| 丁香六月天网| 高清视频免费观看一区二区| 亚洲成色77777| 免费人妻精品一区二区三区视频| 爱豆传媒免费全集在线观看| 久久青草综合色| av不卡在线播放| 一级a爱视频在线免费观看| 精品亚洲乱码少妇综合久久| 巨乳人妻的诱惑在线观看| 老汉色av国产亚洲站长工具| 满18在线观看网站| 亚洲人成电影观看| e午夜精品久久久久久久| 日本爱情动作片www.在线观看| 国产 精品1| 日韩制服丝袜自拍偷拍| 日本91视频免费播放| 国产又色又爽无遮挡免| videosex国产| 欧美精品一区二区大全| 美女主播在线视频| 一级片'在线观看视频| 最近中文字幕高清免费大全6| 最近手机中文字幕大全| 丝袜在线中文字幕| 久久久欧美国产精品| 国产成人精品久久久久久| 久久这里只有精品19| 大码成人一级视频| 日本爱情动作片www.在线观看| 国产精品免费视频内射| 纯流量卡能插随身wifi吗| 国产淫语在线视频| 女性生殖器流出的白浆| 母亲3免费完整高清在线观看| 亚洲天堂av无毛| av网站在线播放免费| 久久 成人 亚洲| 亚洲欧美精品综合一区二区三区| 男人舔女人的私密视频| 赤兔流量卡办理| 亚洲第一区二区三区不卡| 极品人妻少妇av视频| 咕卡用的链子| 午夜影院在线不卡| 看免费成人av毛片| 日韩大码丰满熟妇| 日本vs欧美在线观看视频| 色吧在线观看| 青春草亚洲视频在线观看| 国产在视频线精品| 亚洲精品中文字幕在线视频| 日韩精品免费视频一区二区三区| 国产精品一区二区在线观看99| 亚洲精品久久久久久婷婷小说| 色综合欧美亚洲国产小说| 看免费av毛片| 久久青草综合色| 国产亚洲av高清不卡| 国产无遮挡羞羞视频在线观看| h视频一区二区三区| 久久人妻熟女aⅴ| 久久这里只有精品19| 国精品久久久久久国模美| 久久久久久免费高清国产稀缺| 久久久欧美国产精品| 伊人亚洲综合成人网| 七月丁香在线播放| av国产精品久久久久影院| 一级a爱视频在线免费观看| videos熟女内射| 19禁男女啪啪无遮挡网站| 国产黄色免费在线视频| xxx大片免费视频| 99久久综合免费| 亚洲av综合色区一区| 精品人妻在线不人妻| 99精国产麻豆久久婷婷| 哪个播放器可以免费观看大片| 免费av中文字幕在线| 免费日韩欧美在线观看| 亚洲精品国产av蜜桃| kizo精华| 人成视频在线观看免费观看| 国产一区二区在线观看av| 亚洲精品av麻豆狂野| 亚洲国产欧美日韩在线播放| 赤兔流量卡办理| 日韩大码丰满熟妇| 久久影院123| 另类精品久久| 精品酒店卫生间| 又大又爽又粗| 国产成人啪精品午夜网站| 免费日韩欧美在线观看| 亚洲少妇的诱惑av| 久久精品人人爽人人爽视色| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品女同一区二区软件| 激情视频va一区二区三区| 久久亚洲国产成人精品v| 亚洲精品日韩在线中文字幕| 一级片'在线观看视频| 一本大道久久a久久精品| 国产野战对白在线观看| 国产精品一区二区在线观看99| 亚洲一卡2卡3卡4卡5卡精品中文| 色视频在线一区二区三区| 亚洲欧美激情在线| 国产午夜精品一二区理论片| 国产女主播在线喷水免费视频网站| 久久久久国产一级毛片高清牌| 国产片特级美女逼逼视频| 国产日韩欧美在线精品| 叶爱在线成人免费视频播放| bbb黄色大片| 国产av国产精品国产| 国产精品国产三级国产专区5o| 欧美黑人精品巨大| 亚洲国产精品一区二区三区在线| 亚洲成国产人片在线观看| 国产免费一区二区三区四区乱码| 亚洲国产欧美日韩在线播放| 高清视频免费观看一区二区| 这个男人来自地球电影免费观看 | 日韩一区二区三区影片| 久久毛片免费看一区二区三区| 中文天堂在线官网| 久久久国产一区二区| 精品国产国语对白av| 亚洲伊人色综图| 久久国产精品大桥未久av| 亚洲国产av新网站| 热re99久久国产66热| 久久人人97超碰香蕉20202| 看免费成人av毛片| 午夜老司机福利片| 丁香六月欧美| 亚洲国产精品国产精品| 午夜福利在线免费观看网站| 最新在线观看一区二区三区 | 超色免费av| 久久ye,这里只有精品| 国产亚洲一区二区精品| 国产成人一区二区在线| 欧美日韩视频精品一区| 久久综合国产亚洲精品| 久久久久久久大尺度免费视频| 午夜福利免费观看在线| 色吧在线观看| 超碰成人久久| 精品一区二区三卡| 男的添女的下面高潮视频| 欧美国产精品一级二级三级| 免费黄色在线免费观看| 亚洲欧美成人精品一区二区| 黄片无遮挡物在线观看| 日韩成人av中文字幕在线观看| 女人被躁到高潮嗷嗷叫费观| 国产免费现黄频在线看| 一本色道久久久久久精品综合| 中文乱码字字幕精品一区二区三区| 美女午夜性视频免费| 久久99一区二区三区| 日韩av免费高清视频| 少妇 在线观看| 午夜福利,免费看| 成人黄色视频免费在线看| 日日爽夜夜爽网站| 国产一卡二卡三卡精品 | 最近中文字幕高清免费大全6| 女的被弄到高潮叫床怎么办| 日韩熟女老妇一区二区性免费视频| 日本wwww免费看| 亚洲av福利一区| 国产精品熟女久久久久浪| 国产精品香港三级国产av潘金莲 | 99精国产麻豆久久婷婷| 亚洲一级一片aⅴ在线观看| 在现免费观看毛片| 精品一品国产午夜福利视频| 在线观看免费午夜福利视频| 亚洲精品日本国产第一区| 亚洲久久久国产精品| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久成人av| 成人午夜精彩视频在线观看| 欧美日韩视频精品一区| 丰满少妇做爰视频| 久久毛片免费看一区二区三区| 这个男人来自地球电影免费观看 | 国产成人系列免费观看| 男的添女的下面高潮视频| 中国国产av一级| 国产爽快片一区二区三区| 亚洲成人av在线免费| 777米奇影视久久| 99热全是精品| 久久精品国产亚洲av涩爱| 日韩制服骚丝袜av| 在线 av 中文字幕| av视频免费观看在线观看| 国产精品一国产av| 99九九在线精品视频| 国产淫语在线视频| 成人手机av| 亚洲欧美一区二区三区久久| 青春草视频在线免费观看| 超色免费av| 大片免费播放器 马上看| 精品一区二区三卡| 中文欧美无线码| 午夜91福利影院| 精品一品国产午夜福利视频| 两性夫妻黄色片| 日韩欧美精品免费久久| 久久精品aⅴ一区二区三区四区| 国产精品一国产av| 一区二区三区乱码不卡18| 一区二区日韩欧美中文字幕| 亚洲熟女精品中文字幕| 一本久久精品| 18禁国产床啪视频网站| 国产精品秋霞免费鲁丝片| 曰老女人黄片| 捣出白浆h1v1| 成人三级做爰电影| 婷婷成人精品国产| 国产熟女欧美一区二区| 久久综合国产亚洲精品| 丝袜喷水一区| 久久久久网色| 在线观看免费高清a一片| 精品亚洲成国产av| 两性夫妻黄色片| av不卡在线播放| 国产探花极品一区二区| 成人国产av品久久久| 七月丁香在线播放| 97精品久久久久久久久久精品| 美女高潮到喷水免费观看| 欧美日韩亚洲国产一区二区在线观看 | av国产久精品久网站免费入址| 久久久精品免费免费高清| 久久精品久久久久久噜噜老黄| 五月天丁香电影| 成人漫画全彩无遮挡| 精品一区二区三卡| 又大又黄又爽视频免费| 狂野欧美激情性bbbbbb| 色网站视频免费| 天堂8中文在线网| 女人高潮潮喷娇喘18禁视频| 纵有疾风起免费观看全集完整版| 久久 成人 亚洲| 欧美变态另类bdsm刘玥| 亚洲国产av影院在线观看| 国产精品一二三区在线看| 亚洲欧美一区二区三区黑人| 亚洲 欧美一区二区三区| 久热这里只有精品99| 又大又黄又爽视频免费| 午夜91福利影院| 欧美黑人欧美精品刺激| 午夜激情久久久久久久| 老熟女久久久| 免费观看a级毛片全部| 日韩免费高清中文字幕av| 宅男免费午夜| 久久久久视频综合| 国产精品99久久99久久久不卡 | 国产精品免费大片| 黄网站色视频无遮挡免费观看| 成年美女黄网站色视频大全免费| 观看美女的网站| 国产日韩欧美亚洲二区| 91国产中文字幕| 国产精品久久久久久精品电影小说| 亚洲av电影在线进入| 国产激情久久老熟女| 丁香六月天网| av免费观看日本| a级毛片黄视频| 国产成人精品在线电影| 国产日韩一区二区三区精品不卡| 少妇被粗大的猛进出69影院| 又粗又硬又长又爽又黄的视频| 免费黄频网站在线观看国产| 桃花免费在线播放| 久久久久久人人人人人| 男女下面插进去视频免费观看| 午夜福利视频精品| 国产伦理片在线播放av一区| 90打野战视频偷拍视频| 黄频高清免费视频| 久久国产亚洲av麻豆专区| 考比视频在线观看| 一本色道久久久久久精品综合| 悠悠久久av| 视频在线观看一区二区三区| 超碰成人久久| 人人妻人人澡人人爽人人夜夜| 久久综合国产亚洲精品| h视频一区二区三区| 亚洲成国产人片在线观看| 亚洲专区中文字幕在线 | 夜夜骑夜夜射夜夜干| 国产成人精品在线电影| 久久韩国三级中文字幕| 99国产精品免费福利视频| 多毛熟女@视频| 国产成人系列免费观看| 各种免费的搞黄视频| 99久久人妻综合| 69精品国产乱码久久久| 一边摸一边做爽爽视频免费| 纵有疾风起免费观看全集完整版| 在线 av 中文字幕| 欧美最新免费一区二区三区| www.熟女人妻精品国产| 亚洲第一av免费看| 一区二区av电影网| 18禁观看日本| av在线观看视频网站免费| 亚洲欧美一区二区三区国产| 亚洲一码二码三码区别大吗| 亚洲自偷自拍图片 自拍| 国产av码专区亚洲av| 亚洲成人手机| 欧美日本中文国产一区发布| 久久久久人妻精品一区果冻| av视频免费观看在线观看| 一级片'在线观看视频| 美女午夜性视频免费| 国产成人免费观看mmmm| 在线亚洲精品国产二区图片欧美| 香蕉国产在线看| 国产精品一二三区在线看| 亚洲av中文av极速乱| 国产 精品1| 交换朋友夫妻互换小说| 日本欧美国产在线视频| 亚洲第一区二区三区不卡| 日韩免费高清中文字幕av| 国产av精品麻豆| 一区二区三区乱码不卡18| 老司机影院毛片| 久久韩国三级中文字幕| 国产一区二区激情短视频 | 在线观看一区二区三区激情| 精品一区二区免费观看| 亚洲专区中文字幕在线 | 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕| 久热爱精品视频在线9| 日韩人妻精品一区2区三区| 欧美日韩精品网址| 久久久久久久久久久久大奶| 久久精品亚洲熟妇少妇任你| 肉色欧美久久久久久久蜜桃| 老司机深夜福利视频在线观看 | av国产久精品久网站免费入址| 亚洲av电影在线进入| 丁香六月欧美| 五月开心婷婷网| 91精品伊人久久大香线蕉| videosex国产| 99久久99久久久精品蜜桃| 国产男女超爽视频在线观看| netflix在线观看网站| 国产av精品麻豆| 日韩免费高清中文字幕av| 肉色欧美久久久久久久蜜桃| 我要看黄色一级片免费的| 黄频高清免费视频| www日本在线高清视频| 国产女主播在线喷水免费视频网站| 久久久久精品性色| 亚洲激情五月婷婷啪啪| 韩国av在线不卡| 一区二区三区精品91| 国产精品久久久久久精品古装| 69精品国产乱码久久久| 午夜精品国产一区二区电影|