• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-Consistent Sources Extensions of Modified Differential-Difference KP Equation?

    2018-05-02 01:51:21Gegenhasi葛根哈斯YaQianLi李雅倩andDuoDuoZhang張朵朵
    Communications in Theoretical Physics 2018年4期
    關(guān)鍵詞:哈斯葛根

    Gegenhasi(葛根哈斯), Ya-Qian Li(李雅倩),and Duo-Duo Zhang(張朵朵)

    School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China

    1 Introduction

    Seeking new integrable system is an important aspect of the theory of integrable system. The soliton equation with self-consistent sources is an integrable generalization of the original integrable equation.Soliton equations with self-consistent sources also have important applications in hydrodynamics,plasma physics,and solid state physics.For example,the KdV equation with selfconsistent sources describes the interaction between long and short capillary gravity waves in hydrodynamics and coupling of a plasma wavepacket to acoustic waves in plasma physics.[1]The KP equation with self-consistent sources describes the interaction of a long wave with a short-wave packet propagating on the x,y plane at an angle to each other.[2?3]Various methods such as the inverse scattering methods,[4?8]Darboux transformation methods.[9?14]Hirota’s bilinear method and Wronskian technique,[15?21]deformations of binary Darboux transformations[22?23]have been developed to study the soliton equations with self-consistent sources.In Ref.[24],the authors proposed a new algebraic method,called the source generation procedure to generate and solve the soliton equations with self consistent sources both in continuous and discrete cases in a unified way.

    The differential-difference KP equation is an integrable semi-discretization of the KP equation.It takes the following form[25?26]

    where Vndenotes V(n,y,t)and△denotes the forward difference operator defined by△fn=fn+1?fn.

    Through the dependent variable transformation

    Eq.(1)istransformed into the following bilinear eqaution[25?26]

    where the bilinear operatorsand eDnare defined by[27]

    A bilinear B?cklund transformation for the bilinear differential-difference KP equation(2)is written as[28]

    where λ is a nonzero constant and γ is an arbitrary constant.By introducing new dependent variables Un=(ln)y,wn=ln,Eqs.(3)–(4)are transformed into the following nonlinear equations

    It is not difficult to show that the solution Vnof differential-difference KP Eq.(1)is related to the solution wn,Unof the modified differential-difference KP equations(5)–(6)by the Miura transformation Vn=wn,y? Un.In fact,from Eq.(5),we derive

    Substituting Vn= γ ? λ?1ewn+1?wn+wn,yinto the left side of Eq.(1),and applying Eqs.(6)–(7),the left side of Eqs.(1)becomes

    which also can be derived by substituting Vn=γ?λ?1ewn+1?wn+wn,yinto the right side of Eq.(1).

    If we take Wn=wn,y=(lnf′n/fn)y,the nonlinear differential-difference Eqs.(5)–(6)become

    We call Eqs.(3)–(4)or(8)–(9)the modified differential difference KP equation.It is easy to know that Vn=Wn?Unis a Miura transformation connecting the solutions of the differential-difference KP equation(1)and the modified differential-difference KP equations(8)–(9).

    The paper is organized as follows.In Sec.2,we first derive the N-soliton solution of the modified differential difference KP equations(5)–(6)in the form of the Grammian determinants,and then construct the modified differential-difference KP equation with self-consistent sources applying the source generation procedure. In Sec.3,the N-soliton solution in Casoratian form for the modified differential-difference KP equation with selfconsistent sources is given.In Sec.4,we produce and solve another form of the modified differential-difference KP equation with self-consistent sources which is a B?cklund transformation for the differential-difference KP equation with self-consistent sources.Section 5 is devoted to a conclution and discussion.

    2 The Modified Differential-Difference KP Equation Equation with Self-consistent Sources

    In Ref.[28],the Casorati determinant solution for the modified differential-difference KP equations(3)–(4)was given.In this section,we first compactly express N-soliton solution to the modified differential-difference KP equations(3)–(4)in a Grammian form,then generate the modified differential-difference KP equation with self-consistent sources by using the source generation procedure.

    If we take λ = ?1,γ =1,Eqs.(3)–(4)and(8)–(9)become

    and

    respectively.

    A continuum limit of the modified differential-difference KP equation(10)–(11)or(12)–(13)gives the mKP equation.This can be seen most easily from the bilinear form by setting

    in(10)–(11)and comparing ?3order in Eq.(10), ?2order in Eq.(11)to obtain the mKP equation in bilinear form:[29?30]

    Proposition 1The modified differential-difference KP equations(10)–(11)have the following Grammian determinant solution:

    where Φ(n),Ψ(n)are N-th column vectors defined by

    In addition,cij(1≤i,j≤N+1)are arbitrary constants,?i(n),ψi(?n)(i=1,...,N+1)are functions of n,y,t,and satisfy the following dispersion relations:

    The proof of the Proposition 1 will be given in the later part of the Sec.2.

    Now we construct the modified differential-difference KP equation with self-consistent sources applying the source generation procedure.We change the Grammian determinant solutions(14)–(15)into the following form:

    where N-th column vectors Φ(n),Ψ(n)are given in Eqs.(16)–(17)and ?i(n),ψi(?n)(i=1,...,N+1)also satisfy the dispersion relations(18)–(20). In addition,γij(t)satis fies

    with γi(t)being an arbitrary nondecreasing function of t and K being a positive integer.

    The Grammian determinants τnin Eq.(21)andin Eq.(22)can be expressed by means of the following pfaffians:

    where the pfaffian elements are defined by

    in which i,j=1,...,N+1 and k,m are integers.

    It is easy to show that the functions τn,given in Eq.(24)still satisfy Eq.(10):

    However,they will not satisfy Eq.(11),and they satisfy the following new equation:

    where new functions gj,n,hj,n(j=1,...,K)are given by

    where the dot denotes the derivative of γj(t)with respect to t.Furthermore,we can show that τn,(j=1,...,K)satisfy the following 2K equations:

    Therefore,Eqs.(27)–(28),(31)–(32)constitute the modified differential-difference KP equation with selfconsistent sources.In the following,we show that the Grammmian determinants(24),(29)–(30)are solutions to the modified differential-difference KP equation with self-consistent sources(27)–(28),(31)–(32).

    Using the dispersion relations(18)–(20),we can derive the following differential and difference formula for(j=1,...,K):

    where?indicates deletion of the letter under it.

    By substituting Eqs.(33)–(41)into Eqs.(28),(31)–(32)we obtain the following determinant identities:

    and

    respectively.

    When γij(t)= ci,j(1 ≤ i,j ≤ N),where ci,j(1≤i,j≤N)are arbitrary constants,the Grammian determinants τn,are reduced to the Grammian determinants fn,respectively,and==0,j=1,...,K.Consequently,the modified differential-difference KP equation with self-consistent sources(10),(28),(31)–(32)are reduced to the modified differential-difference KP equation(10)–(11).Therefore,the Proposition 1 holds.

    Through the dependent variable transformations

    the modified differential-difference KP equation with selfconsistent sources(27)–(28),(31)–(32)can be transformed into the following nonlinear equations

    In order to obtain the N-soliton solution of the modified differential-difference KP equation with self-consistent sources(45)–(48),we take

    for i=1,2,...,N+1 in the Grammian determinants(14)–(15),(29)–(30).Here pi,qi,(i=1,2,...,N+1)are real arbitrary constants,

    For example,if we take K=1,N=1 and

    where a(t)isa function oftsatisfying γ1(t) =e2a(t)/(p1+q1)is a nondecreasing function of t,then we have

    Therefore,the one-soliton solution of the nonlinear modified differential-difference KP equation with self-consistent sources(45)–(48)is given by

    Fig.1 The shape and motion of the one-soliton solution Wnfor a(t)=0.2e2t:(a)t=0.2,(b)t=1.2.

    Fig.2 The shape and motion of the one-soliton solution Wnfor a(t)=0.1(t+cost):(a)t=0.2,(b)t=1.2.

    In order to get a non-trivial and non-singular solution,we set p1>p2>0,q1< ?p2<0,p1+q1≠0 in Eqs.(51)–(54).Equations(51)and(52)provide line solitons traveling with constant amplitudes

    the top traces

    and

    which are straight lines with the same slope?ln((1+p1)/(1?q1))/(p1+q1)in the n,y plane,respectively.The corresponding sources are given by Eqs.(53)and(54).The source,whose role is played by a(t),changes the top traces or velocities of the solitons(51)–(52)but not their shapes.Figures 1–4 show the shapes and motions of the one-soliton solution Wn,Ungievn in(51)–(52)by taking p1=0.6,p2=0.4,q1= ?0.8,=0 for different choices of a(t).

    Fig.3 The shape and motion of the one-soliton solution Unfor a(t)=0.2e2t:(a)t=0.2,(b)t=1.2.

    Fig.4 The shape and motion of the one-soliton solution Unfor a(t)=0.1(t+cost):(a)t=0.2,(b)t=1.2.

    If we take K=1,N=2 and

    we derive

    Substitution of the functions(55)–(58)into the dependent variable transformations(44)gives two-soliton solution of the modified differential-difference KP equation with self-consistent sources(45)–(48).

    3 Casorati Determiant Solution for Modified Differential-Difference KP Equation with Self-Consistent Sources

    In Sec.2,we obtain the N-soliton solution(24),(29)–(30)expressed in terms of the Grammian determinant to the modified differential-difference KP equation with self-consistent sources(27)–(28),(31)–(32).In this section,we express the N-soliton solution of the modified differential-difference KP equation with self-consistent sources(27)–(28),(31)–(32)in the form of the Casorati determinant and clarify its bilinear structure.

    Proposition 2The modified differential-difference KP equation with self-consistent sources(27)–(28),(31)–(32)has the following Casorati determinant solution:

    where

    in which ?i1(n+m),?i2(n+m)for m=0,...,N;i=1,...,N are functions of n,y,t and

    with γi(t)being an arbitrary function of t and K,N being positive integers.In addition, ?i1(n),?i2(n)satisfy the following dispersion relations:

    for j=1,2,and the pfaffian elements are defined by

    in which i,j=1,...,N and m,l are integers.

    ProofWe can drive the following dispersion relation forfrom the Eqs.(64):

    We can calculate the following differential and difference formula for Casorati determinants(59)–(62)by applying properties of the determinant and dispersion relations(67)–(69):

    By substituting the expressions(72)–(81),the modified differential-difference KP equation with self-consistent sources(27)–(28),(31)–(32)reduces to the following pfaffian identities:

    respectively.

    4 Commutativity of Source Generation Procedure and B?cklund Transformation

    In this section,we derive another form of the modified differential-difference KP equation with self-consistent sources,which is a B?cklund transformation for the differential-difference KP equation with self-consistent sources given in Ref.[31].This shows that the commutativity of the source generation procedure and B?cklund transformation is valid for the differential-difference KP equation.

    We have shown that the Casorati determinants τn,(j=1,...,K)given in Eqs.(59)–(62)satisfy the modified differential-difference KP equation with self-consistent sources(27)–(28),(31)–(32).Now we take

    for j=1,...,K,and introduce two new fields

    where the pfaffian elements are defined in Eqs.(65)–(66).It is not difficult to show that Casorati determinants Fn,(j=1,...,K)and(j=1,...,K)are two solutions to the differential-difference KP equation with self-consistent sources derived in Ref.[31]:

    Furthermore,we can verify that the Casorati determinants Fn,(j=1,...,K)given in Eqs.(82)–(87)satisfy the following bilinear equations:

    which is another form of the modified differential-difference KP equation with self-consistent sources.

    It is proved in Ref.[31]that the differential-difference KP equation with self-consistent sources(88)–(90)possess the following bilinear B?cklund transformation:

    If we take λ =1,θ= ?1,ν =0,μj=1,j=1,...,K in Eqs.(97)–(102),we obtain the modified differential-difference KP equation with self-consistent sources(91)–(96).Therefore,the commutativity of source generation procedure and B?cklund transformation is valid for the modified differential-difference KP equation.

    5 Conclution and Discussion

    In this paper,we show that Vn=Wn?Unis a Miura transformation connecting the solutions of differential-difference KP equation(1)and the modified differential-difference KP equations(12)–(13).We present the Grammian solution to the modified differential-difference KP equations(12)–(13)from which we construct an integrable coupled modified differential-difference KP system(45)–(48)employing the source generation procedure.By expressing its N-soliton solution in terms of the Grammian and Casorati determinants,the bilinear modified differential-difference KP equation with self-consistent sources(27)–(28),(31)–(32)is resolved into the determinant identities.Another form of the modified differential-difference KP equation with self-consistent sources(91)–(96)which constitutes a B?cklund transformation for the differential-difference KP equation with self-consistent sources is generated and solved via the source generation procedure.

    Now we investigate a continuum limit of the modified differential-difference KP with self-consistent sources(27)–(28),(31)–(32).If we take

    in(10),(28),(31)–(32)and compare ?3order in Eq.(10)and ?2order in Eqs.(28),(31)–(32),we obtain the mKP equation with self-consistent sources:

    Recently,the integrable nonlocal nonlinear equations with PT-symmetry have attracted the great interests of researchers.[32?36]It is interesting for us to generalize the source generation procedure to those nonlocal nonlinear equations.

    Acknowledgements

    The authors would like to express their sincere thanks to the referees for valuable suggestions.

    [1]J.Leon and A.Lati fi,J.Phys.A 23(1990)1385.

    [2]V.K.Mel’nikov,Commun.Math.Phys.112(1987)639.

    [3]V.K.Mel’nikov,Commun.Math.Phys.126(1989)201.

    [4]V.K.Mel’nikov,Lett.Math.Phys.7(1983)129.

    [5]V.K.Mel’nikov,Inverse Problems 6(1990)233.

    [6]V.K.Mel’nikov,Inverse Problems 8(1992)133.

    [7]Y.B.Zeng,W.X.Ma,and R.L.Lin,J.Math.Phys.41(2000)5453.

    [8]R.L.Lin,Y.B.Zeng,and W.X.Ma,Physica A 291(2001)287.

    [9]Y.B.Zeng,W.X.Ma,and Y.J.Shao,J.Math.Phys.42(2001)2113.

    [10]Y.B.Zeng,Y.J.Shao,and W.X.Ma,Commun.Theor.Phys.38(2002)641.

    [11]T.Xiao and Y.B.Zeng,J.Phys.A:Math.Gen.37(2004)7143.

    [12]X.J.Liu and Y.B.Zeng,J.Phys.A:Math.Gen.38(2005)8951.

    [13]Y.B.Zeng,Y.J.Shao,and W.M.Xue,J.Phys.A:Math Gen.36(2003)5035.

    [14]W.X.Ma,Chaos,Solitons and Fractals 26(2005)1453.

    [15]Y.Hase,R.Hirota,Y.Ohta,and J.Satsuma,J.Phys.Soc.Jpn.58(1989)2713.

    [16]Y.Matsuno,J.Phys.A:Math.Gen.24(1991)L273.

    [17]X.B.Hu,J.Phys.A:Math.Gen.24(1991)5489.

    [18]D.J.Zhang,J.Phys.Soc.Jpn.71(2002)2649.

    [19]H.H.Hao,D.J.Zhang,and S.F.Deng,Theor.Math.Phys.158(2009)151.

    [20]D.J.Zhang and H.Wu,Commun.Theor.Phys.49(2008)809.

    [21]Gegenhasi and X.B.Hu,J.Nonlinear Math.Phys.13(2006)183.

    [22]O.Chvartatskyi,A.Dimakis,and F.Müller-Hoissen,Lett.Math.Phys.106(2016)1139.

    [23]F.Müller-Hoissen,O.Chvartatskyi,and K.Todac,J.Geom.Phys.113(2017)226.

    [24]X.B.Hu and H.Y.Wang,Inverse Problems 22(2006)1903.

    [25]E.Date,M.Jimbo,and T.Miwa,J.Phys.Soc.Jpn.51(1982)4125.

    [26]T.Tamizhmani,S.K.Vel,and K.M.Tamizhmani,J.Phys.A:Math.Gen.31(1998)7627.

    [27]R.Hirota,Direct Methods in Soliton Theory,Cambridge University Press,Cambridge(2004).

    [28]J.X.Zhao,Gegenhasi,and Xing-Biao Hu,J.Phys.Soc.Jpn.78(2009)064005.

    [29]M.Jimbo and T.Miwa,Publ.RIMS,Kyoto Univ.19(1983)943.

    [30]F.Gesztesy and W.Schweiger,Rep.Math.Phys.30(1991)205.

    [31]Gegenhasi and X.B.Hu,Math.Comput.Simulat.74(2007)145.

    [32]M.J.Ablowitz and Z.H.Musslimani,Phys.Rev.Lett.110(2013)064105.

    [33]M.J.Ablowitz and Z.H.Musslimani,Phys.Rev.E 90(2014)032912.

    [34]M.J.Ablowitz and Z.H.Musslimani,Nonlinearity 29(2016)915.

    [35]A.S.Fokas,Nonlinearity 29(2016)319.

    [36]M.J.Ablowitz and Z.H.Musslimani,Stud.Appl.Math.139(2017)7.

    猜你喜歡
    哈斯葛根
    DK SPACES AND CARLESON MEASURES*
    藥食兩用話葛根
    哈斯高貿(mào)易(深圳)有限公司
    模具制造(2021年6期)2021-08-06 01:07:42
    哈斯高貿(mào)易(深圳)有限公司
    模具制造(2021年4期)2021-06-07 01:45:30
    頸椎病良方葛根湯
    它就是塔哈斯克
    基于網(wǎng)絡(luò)藥理學(xué)的葛根抗腫瘤潛在機(jī)制探討
    均勻設(shè)計(jì)法優(yōu)化葛根半仿生提取工藝
    中成藥(2017年5期)2017-06-13 13:01:12
    哈斯高調(diào)出境深耕產(chǎn)業(yè)需求
    哈斯 致力于高品質(zhì)機(jī)床產(chǎn)品開(kāi)發(fā)
    亚洲国产中文字幕在线视频| 亚洲色图av天堂| 99热这里只有精品一区| 99在线视频只有这里精品首页| 欧美性猛交╳xxx乱大交人| 久久久国产精品麻豆| 国产高清视频在线观看网站| 老熟妇仑乱视频hdxx| 身体一侧抽搐| 欧美日韩精品网址| 国产黄片美女视频| 亚洲欧美日韩东京热| 国产探花在线观看一区二区| 夜夜躁狠狠躁天天躁| 精品久久久久久久久久免费视频| 国产探花在线观看一区二区| 国产色婷婷99| 国产av麻豆久久久久久久| 人妻丰满熟妇av一区二区三区| 久久久久久久亚洲中文字幕 | 99精品久久久久人妻精品| 熟女少妇亚洲综合色aaa.| 又黄又粗又硬又大视频| 亚洲精品成人久久久久久| 深爱激情五月婷婷| 夜夜夜夜夜久久久久| 波多野结衣巨乳人妻| 国产免费一级a男人的天堂| av欧美777| 国产伦人伦偷精品视频| 欧美另类亚洲清纯唯美| av天堂中文字幕网| 草草在线视频免费看| 香蕉丝袜av| 亚洲成a人片在线一区二区| 看黄色毛片网站| 欧美一区二区精品小视频在线| 欧美黑人欧美精品刺激| 成人性生交大片免费视频hd| 日日夜夜操网爽| av福利片在线观看| 一进一出好大好爽视频| 真人一进一出gif抽搐免费| 九色国产91popny在线| 亚洲专区国产一区二区| 亚洲av美国av| 成人av在线播放网站| 人妻丰满熟妇av一区二区三区| 国产极品精品免费视频能看的| 国产91精品成人一区二区三区| 午夜福利在线观看吧| 国产精品 欧美亚洲| 成年版毛片免费区| 亚洲av免费在线观看| 嫁个100分男人电影在线观看| 黄色丝袜av网址大全| 又黄又爽又免费观看的视频| 在线观看一区二区三区| 亚洲精品国产精品久久久不卡| 99久久无色码亚洲精品果冻| 亚洲第一电影网av| 身体一侧抽搐| 国产真人三级小视频在线观看| 亚洲国产欧洲综合997久久,| 十八禁人妻一区二区| 午夜激情欧美在线| 免费av观看视频| 波多野结衣高清无吗| 成人特级av手机在线观看| 亚洲人与动物交配视频| 熟妇人妻久久中文字幕3abv| 一区福利在线观看| 99riav亚洲国产免费| 真实男女啪啪啪动态图| 国产一级毛片七仙女欲春2| 亚洲精品色激情综合| 久久九九热精品免费| 久久久久久久亚洲中文字幕 | 免费av毛片视频| 丝袜美腿在线中文| svipshipincom国产片| 免费无遮挡裸体视频| 男女下面进入的视频免费午夜| 亚洲黑人精品在线| 国产又黄又爽又无遮挡在线| 亚洲成人免费电影在线观看| 长腿黑丝高跟| 国产亚洲欧美98| 欧美+日韩+精品| 亚洲国产精品sss在线观看| 天美传媒精品一区二区| 亚洲第一欧美日韩一区二区三区| 黄色成人免费大全| АⅤ资源中文在线天堂| 天美传媒精品一区二区| 啦啦啦免费观看视频1| 91九色精品人成在线观看| 国产欧美日韩精品一区二区| 国产色爽女视频免费观看| 欧美大码av| xxx96com| 在线播放无遮挡| 国产精品国产高清国产av| av天堂中文字幕网| 两个人的视频大全免费| 久久欧美精品欧美久久欧美| 精品久久久久久,| 午夜a级毛片| 国产成人福利小说| www.www免费av| 最新美女视频免费是黄的| 成年女人看的毛片在线观看| 一个人免费在线观看的高清视频| 欧美一级毛片孕妇| 精品国产超薄肉色丝袜足j| 19禁男女啪啪无遮挡网站| 狂野欧美白嫩少妇大欣赏| 9191精品国产免费久久| 国产真实伦视频高清在线观看 | 亚洲成人中文字幕在线播放| 一本久久中文字幕| 看片在线看免费视频| 成人国产一区最新在线观看| 久久久久久久精品吃奶| 精品人妻一区二区三区麻豆 | 色吧在线观看| 一区福利在线观看| 久久久久久久久中文| 亚洲va日本ⅴa欧美va伊人久久| 99久久久亚洲精品蜜臀av| 国产精品一区二区三区四区久久| 亚洲黑人精品在线| svipshipincom国产片| 又黄又粗又硬又大视频| 欧美三级亚洲精品| 国产av在哪里看| 欧美日韩中文字幕国产精品一区二区三区| 禁无遮挡网站| 脱女人内裤的视频| 亚洲国产高清在线一区二区三| 精品国产三级普通话版| 久久6这里有精品| 欧美一级毛片孕妇| 一级毛片女人18水好多| 国产精品国产高清国产av| 男人舔奶头视频| av国产免费在线观看| 亚洲av成人av| 精品免费久久久久久久清纯| av黄色大香蕉| 久久欧美精品欧美久久欧美| 日本 欧美在线| 亚洲在线自拍视频| 人人妻,人人澡人人爽秒播| 日日干狠狠操夜夜爽| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产探花极品一区二区| 欧美bdsm另类| 熟女人妻精品中文字幕| 国产单亲对白刺激| 两性午夜刺激爽爽歪歪视频在线观看| 丁香欧美五月| 亚洲国产色片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品999在线| 国产精品久久视频播放| a级一级毛片免费在线观看| 亚洲欧美日韩无卡精品| 精品欧美国产一区二区三| 在线国产一区二区在线| 精品乱码久久久久久99久播| 国产97色在线日韩免费| 色哟哟哟哟哟哟| 深爱激情五月婷婷| 一级毛片女人18水好多| 国产高清激情床上av| 一本一本综合久久| 亚洲一区二区三区不卡视频| 长腿黑丝高跟| 国产精品 欧美亚洲| 老熟妇仑乱视频hdxx| 一夜夜www| 天堂影院成人在线观看| 久久欧美精品欧美久久欧美| 麻豆国产97在线/欧美| 日韩高清综合在线| 成年免费大片在线观看| 国产伦精品一区二区三区四那| 精品久久久久久,| 黄片大片在线免费观看| 日韩国内少妇激情av| 免费电影在线观看免费观看| 少妇的丰满在线观看| 色老头精品视频在线观看| 男女床上黄色一级片免费看| 国产精品久久电影中文字幕| 日本五十路高清| 中国美女看黄片| 在线国产一区二区在线| 丰满的人妻完整版| 桃色一区二区三区在线观看| 国产午夜福利久久久久久| 超碰av人人做人人爽久久 | 亚洲精品成人久久久久久| 欧美乱妇无乱码| 欧美绝顶高潮抽搐喷水| 国产精品三级大全| 国产 一区 欧美 日韩| 亚洲精品在线观看二区| 国产精品嫩草影院av在线观看 | 99热这里只有精品一区| 国产野战对白在线观看| 麻豆成人午夜福利视频| 国产老妇女一区| 极品教师在线免费播放| 看免费av毛片| 无遮挡黄片免费观看| 69人妻影院| 一本精品99久久精品77| 国产老妇女一区| 99热只有精品国产| 在线观看午夜福利视频| 日本三级黄在线观看| 又黄又爽又免费观看的视频| 男人舔奶头视频| 欧美性猛交黑人性爽| 一本一本综合久久| 国产aⅴ精品一区二区三区波| 欧美日韩国产亚洲二区| 人人妻人人澡欧美一区二区| АⅤ资源中文在线天堂| 精品欧美国产一区二区三| 亚洲男人的天堂狠狠| 欧美绝顶高潮抽搐喷水| 2021天堂中文幕一二区在线观| 国产一区二区三区在线臀色熟女| 无人区码免费观看不卡| 国产精品野战在线观看| 欧美日本亚洲视频在线播放| 女人十人毛片免费观看3o分钟| 日本三级黄在线观看| 波多野结衣高清无吗| www.www免费av| 特级一级黄色大片| 噜噜噜噜噜久久久久久91| 国产在视频线在精品| av中文乱码字幕在线| 给我免费播放毛片高清在线观看| 国产黄片美女视频| av视频在线观看入口| 亚洲中文日韩欧美视频| 亚洲精品美女久久久久99蜜臀| 亚洲欧美精品综合久久99| 国内少妇人妻偷人精品xxx网站| 男女视频在线观看网站免费| 久久精品国产亚洲av涩爱 | 久久久久久久久久黄片| 国产成人aa在线观看| 精品久久久久久久人妻蜜臀av| 国产一区二区三区视频了| 久久久久久久久久黄片| 久久九九热精品免费| 久久久久久久亚洲中文字幕 | 亚洲成人久久性| 中文字幕人妻丝袜一区二区| 最后的刺客免费高清国语| 国产aⅴ精品一区二区三区波| 中文亚洲av片在线观看爽| 一区福利在线观看| 欧美成人一区二区免费高清观看| 亚洲不卡免费看| 在线观看66精品国产| 久久久久久久久大av| 欧美xxxx黑人xx丫x性爽| 天堂网av新在线| av中文乱码字幕在线| 亚洲精品影视一区二区三区av| 欧美一级a爱片免费观看看| 亚洲片人在线观看| 很黄的视频免费| 亚洲一区二区三区色噜噜| 欧美黑人巨大hd| 国产午夜精品论理片| 国产黄a三级三级三级人| 尤物成人国产欧美一区二区三区| 久久这里只有精品中国| 99久国产av精品| 日本黄大片高清| 嫩草影院入口| 婷婷亚洲欧美| 欧美日韩乱码在线| 欧美日韩国产亚洲二区| 18禁在线播放成人免费| 色综合婷婷激情| 亚洲av成人av| 啦啦啦观看免费观看视频高清| 精品人妻1区二区| 两个人视频免费观看高清| 亚洲av中文字字幕乱码综合| 国产精品av视频在线免费观看| 日韩高清综合在线| 欧美最新免费一区二区三区 | 亚洲精品久久国产高清桃花| 老司机在亚洲福利影院| 身体一侧抽搐| 免费看十八禁软件| 又紧又爽又黄一区二区| 国产精品久久视频播放| 欧美最新免费一区二区三区 | tocl精华| 一区二区三区激情视频| 俺也久久电影网| 波野结衣二区三区在线 | 在线观看舔阴道视频| 国产三级黄色录像| 亚洲av中文字字幕乱码综合| 亚洲国产欧美人成| 小蜜桃在线观看免费完整版高清| 欧美日韩中文字幕国产精品一区二区三区| 看片在线看免费视频| 亚洲熟妇中文字幕五十中出| 啦啦啦观看免费观看视频高清| 国产91精品成人一区二区三区| 亚洲国产中文字幕在线视频| 搡女人真爽免费视频火全软件 | 色在线成人网| 又爽又黄无遮挡网站| 亚洲精品在线观看二区| 在线看三级毛片| 人妻夜夜爽99麻豆av| 国产亚洲av嫩草精品影院| 国产精品亚洲一级av第二区| 在线观看午夜福利视频| 欧美日韩综合久久久久久 | 国产欧美日韩一区二区三| 欧美另类亚洲清纯唯美| 国产精品av视频在线免费观看| 成人亚洲精品av一区二区| 午夜影院日韩av| 在线看三级毛片| 日韩欧美国产一区二区入口| 一级黄片播放器| 91字幕亚洲| 午夜精品久久久久久毛片777| 欧美日韩黄片免| 日本一二三区视频观看| 成年女人看的毛片在线观看| 99在线视频只有这里精品首页| 精品国产超薄肉色丝袜足j| 俺也久久电影网| 女同久久另类99精品国产91| 日本一二三区视频观看| 麻豆久久精品国产亚洲av| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 俺也久久电影网| 午夜两性在线视频| 免费观看的影片在线观看| 日韩中文字幕欧美一区二区| 亚洲最大成人手机在线| 人妻夜夜爽99麻豆av| 真人一进一出gif抽搐免费| 国产一区二区三区视频了| 午夜精品在线福利| 日韩免费av在线播放| 久久久国产成人免费| 亚洲成人久久性| 麻豆成人午夜福利视频| 嫩草影视91久久| 狂野欧美白嫩少妇大欣赏| 成人国产一区最新在线观看| e午夜精品久久久久久久| 2021天堂中文幕一二区在线观| xxxwww97欧美| 亚洲国产精品999在线| 亚洲精品456在线播放app | 久久欧美精品欧美久久欧美| 欧美黄色淫秽网站| 精华霜和精华液先用哪个| 99久国产av精品| 国产不卡一卡二| 熟女少妇亚洲综合色aaa.| 国内揄拍国产精品人妻在线| 欧美大码av| 成人精品一区二区免费| 国产精品一及| 亚洲欧美日韩高清在线视频| 欧美一区二区国产精品久久精品| 欧美乱码精品一区二区三区| 国产伦人伦偷精品视频| 国产黄片美女视频| 美女cb高潮喷水在线观看| 999久久久精品免费观看国产| 午夜精品在线福利| 欧美+亚洲+日韩+国产| 在线看三级毛片| 亚洲成人精品中文字幕电影| 99热这里只有精品一区| 国产精品久久久人人做人人爽| 欧美中文综合在线视频| 岛国视频午夜一区免费看| 看免费av毛片| 国产精品自产拍在线观看55亚洲| www日本在线高清视频| 欧美在线一区亚洲| 日韩中文字幕欧美一区二区| 久99久视频精品免费| 午夜福利在线在线| 色综合欧美亚洲国产小说| 色噜噜av男人的天堂激情| 欧美国产日韩亚洲一区| 久久久久久久久久黄片| 精品久久久久久久人妻蜜臀av| 天天添夜夜摸| 国产精品99久久久久久久久| 男女视频在线观看网站免费| 午夜福利在线观看免费完整高清在 | 午夜福利在线观看吧| 亚洲人成网站在线播放欧美日韩| 久久久色成人| 嫩草影视91久久| 国产69精品久久久久777片| 3wmmmm亚洲av在线观看| 最新美女视频免费是黄的| АⅤ资源中文在线天堂| 91九色精品人成在线观看| 亚洲欧美一区二区三区黑人| 欧美日韩综合久久久久久 | 成年女人永久免费观看视频| 91九色精品人成在线观看| 日日干狠狠操夜夜爽| av福利片在线观看| 一本一本综合久久| 精品人妻1区二区| 亚洲欧美精品综合久久99| 久久99热这里只有精品18| 亚洲av成人精品一区久久| 国产精品日韩av在线免费观看| 在线播放无遮挡| 最近最新中文字幕大全免费视频| 女同久久另类99精品国产91| 99精品久久久久人妻精品| 婷婷精品国产亚洲av在线| 中出人妻视频一区二区| 色吧在线观看| 99久久精品一区二区三区| 90打野战视频偷拍视频| 757午夜福利合集在线观看| 一边摸一边抽搐一进一小说| 悠悠久久av| av片东京热男人的天堂| 一个人免费在线观看的高清视频| 啦啦啦韩国在线观看视频| 九九热线精品视视频播放| 国产熟女xx| 亚洲国产精品成人综合色| 欧美区成人在线视频| 一级作爱视频免费观看| 久久人人精品亚洲av| 午夜福利成人在线免费观看| 色吧在线观看| 人人妻人人看人人澡| 亚洲欧美日韩高清专用| 日韩精品青青久久久久久| 国产精品久久久久久久久免 | 国产av不卡久久| 在线国产一区二区在线| 国产精品久久久久久人妻精品电影| 99视频精品全部免费 在线| 欧美日韩一级在线毛片| 97人妻精品一区二区三区麻豆| 99久久成人亚洲精品观看| 国产国拍精品亚洲av在线观看 | 久久精品影院6| 怎么达到女性高潮| 免费电影在线观看免费观看| 蜜桃久久精品国产亚洲av| 一a级毛片在线观看| 色av中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 色综合欧美亚洲国产小说| 午夜福利欧美成人| 蜜桃久久精品国产亚洲av| 日本 av在线| 亚洲av不卡在线观看| 国产成人系列免费观看| 欧美色欧美亚洲另类二区| 国产乱人视频| 在线观看日韩欧美| 日韩欧美 国产精品| 麻豆国产av国片精品| 老汉色∧v一级毛片| 最近在线观看免费完整版| 国产99白浆流出| 日本一二三区视频观看| 中文亚洲av片在线观看爽| 午夜老司机福利剧场| 亚洲av二区三区四区| 天天躁日日操中文字幕| 国内精品一区二区在线观看| а√天堂www在线а√下载| 亚洲va日本ⅴa欧美va伊人久久| 日本免费a在线| 又黄又粗又硬又大视频| 我要搜黄色片| 九色国产91popny在线| 美女高潮喷水抽搐中文字幕| 两个人看的免费小视频| 国产欧美日韩精品亚洲av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 在线观看免费视频日本深夜| 欧美xxxx黑人xx丫x性爽| 日韩中文字幕欧美一区二区| 1024手机看黄色片| 国产精品久久久久久久电影 | 两个人的视频大全免费| 午夜精品久久久久久毛片777| 我的老师免费观看完整版| 最近在线观看免费完整版| 日韩欧美 国产精品| 熟女人妻精品中文字幕| 国产乱人视频| 中文字幕精品亚洲无线码一区| 嫩草影视91久久| 亚洲欧美激情综合另类| 午夜影院日韩av| 蜜桃亚洲精品一区二区三区| 亚洲国产精品999在线| 老司机福利观看| 精品国产三级普通话版| 日韩欧美国产在线观看| 美女黄网站色视频| 精品一区二区三区av网在线观看| 长腿黑丝高跟| 午夜视频国产福利| 精品久久久久久久毛片微露脸| 亚洲无线观看免费| 51午夜福利影视在线观看| 亚洲av五月六月丁香网| 国模一区二区三区四区视频| 成年女人看的毛片在线观看| 99精品久久久久人妻精品| 又粗又爽又猛毛片免费看| 亚洲精品乱码久久久v下载方式 | 精品福利观看| 中文字幕精品亚洲无线码一区| 色综合亚洲欧美另类图片| 看黄色毛片网站| 久久久久国内视频| 国产av在哪里看| 两个人看的免费小视频| 亚洲av第一区精品v没综合| 免费在线观看影片大全网站| 91麻豆av在线| 国产av不卡久久| 亚洲一区二区三区不卡视频| 亚洲av免费高清在线观看| 国产真人三级小视频在线观看| 窝窝影院91人妻| 嫩草影院入口| 国产男靠女视频免费网站| 国产综合懂色| 51午夜福利影视在线观看| 日韩欧美 国产精品| 法律面前人人平等表现在哪些方面| 九九热线精品视视频播放| 99视频精品全部免费 在线| 首页视频小说图片口味搜索| АⅤ资源中文在线天堂| 国语自产精品视频在线第100页| 国产亚洲精品久久久com| 好男人电影高清在线观看| 国产精品久久久久久久久免 | 91字幕亚洲| 夜夜夜夜夜久久久久| 国产不卡一卡二| 最近最新中文字幕大全电影3| 亚洲内射少妇av| 亚洲成av人片在线播放无| 亚洲av第一区精品v没综合| 黄色成人免费大全| 男人和女人高潮做爰伦理| 91字幕亚洲| 国产v大片淫在线免费观看| 国产精品久久久久久精品电影| 精品久久久久久久久久免费视频| 国产亚洲欧美在线一区二区| 搞女人的毛片| 日韩欧美精品免费久久 | 日韩欧美精品v在线| 欧美另类亚洲清纯唯美| 美女黄网站色视频| 少妇的逼水好多| 亚洲av第一区精品v没综合| 一级黄色大片毛片| 日韩亚洲欧美综合| 免费看a级黄色片| 蜜桃久久精品国产亚洲av| 亚洲av成人av| 欧美绝顶高潮抽搐喷水| 日韩有码中文字幕| 免费电影在线观看免费观看| 欧美日韩瑟瑟在线播放| 国内精品久久久久久久电影| 天堂动漫精品| av福利片在线观看| www国产在线视频色| 欧美一区二区国产精品久久精品| 亚洲成人免费电影在线观看| 人妻久久中文字幕网| 九九热线精品视视频播放| 亚洲精品在线美女| 日韩欧美在线二视频| 我要搜黄色片| 大型黄色视频在线免费观看|