• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Non-Abelian Extensions of 3-Lie Algebras?

    2018-05-02 01:51:18LiNaSong宋麗娜AbdenacerMakhloufandRongTang唐榮
    Communications in Theoretical Physics 2018年4期

    Li-Na Song(宋麗娜),Abdenacer Makhlouf, and Rong Tang(唐榮)

    1Department of Mathematics,Jilin University,Changchun 130012,China

    2University of Haute Alsace,Laboratoire de Math′ematiques,Informatique et Applications,Mulhouse,France

    1 Introduction

    Ternary Lie algebras(3-Lie algebras)or more generally n-ary Lie algebras are a natural generalization of Lie algebras.They were introduced and studied first by Filippov in Ref.[1].This type of algebras appeared also in the algebraic formulation of Nambu Mechanics,[2]generalizing Hamiltonian mechanics by considering two hamiltonians,see Ref.[3]and also Ref.[4].Ternary brackets were also considered,in contexts of String Theory and M-Theory,by Basu and Harvey for lifted Nahm equations,[5]and by Bagger and Lambert in a construction of an N=2 supersymmetric version of the worldvolume theory.[6]For more applications,see also Refs.[7–11].

    Several algebraic aspects of n-Lie algebras were studied in the last years.The concept of Lie algebra representation was extended naturally to 3-Lie algebras first in Ref.[12].In this framework,adjoint representations of a 3-Lie algebra(g,[·,·,·]g)are maps Lx,y:g → g defined by Lx,y(z)=[x,y,z]g,where x,y are fixed elements.Moreover the set∧2g,of so called fundamental objects,is endowed with a structure of Leibniz algebra.[13]A cohomology is also defined in Refs.[14–16].Bai and her collaborators studied realizations and classifications of n-Lie algebras.[17?18]It turns out that a structure of graded Lie algebra is defined on the cochain complex,see Ref.[19].For more details about 3-Lie algebras developments,see review articles.[20?21]

    In Ref.[22],the authors introduced the notion of a generalized representation of a 3-Lie algebra,by which abelian extensions of 3-Lie algebras are studied.Due to its difficulty and less of tools,non-abelian extensions of 3-Lie algebras are not studied.In this paper,motivated by works in Refs.[22–23],we find a suitable approach which uses Maurer-Cartan elements to study non-abelian extensions of 3-Lie algebras.We also show that the Leibniz algebra on the space of fundamental objects is a non-abelian extension of Leibniz algebras.

    The paper is organized as follows.In Sec.2,we provide a summary of non-abelian extensions of Leibniz algebras and cohomologies of 3-Lie algebras.A characterization of non-abelian extensions of a 3-Lie algebra by another 3-Lie algebra is given in Sec.3 and several examples provided.In Sec.4,we show that there is a one-to-one correspondence between isomorphism classes of non-abelian extensions of 3-Lie algebras and equivalence classes of Maurer-Cartan elements.Finally,we analyze in Sec.5 the corresponding Leibniz algebra structure on the space of fundamental objects and show that it is a non-abelian extension of Leibniz algebras.

    2 Preliminaries

    Let K be an algebraically closed field of characteristic 0 and all the vector spaces in this paper considered over K.

    2.1 Non-Abelian Extensions of Leibniz Algebras

    A Leibniz algebra is a vector space k endowed with a linear map[·,·]k:k? k → k satisfying

    This is in fact a left Leibniz algebra.In this paper,we only consider left Leibniz algebras which we call Leibniz algebras.

    Let(k,[·,·]k)be a Leibniz algebra. We denote by DerL(k)and DerR(k)the set of left derivations and the set of right derivations of g respectively:

    Note that the right derivations are called anti-derivations in Refs.[24–25]. It is easy to see that for all x ∈ k,:k?→ k,which is given byis a left derivation;:k?→ k,which is given by(y)=[y,x]k,is a right derivation.

    Definition 1

    Given a linear section,we havek ⊕ s as vector spaces,and the Leibniz algebra structure oncan be transferred to k⊕s:

    Proposition 1Withtheabovenotations,(k⊕s,[·,·](l,r,ω))is a Leibniz algebra if and only if l,r,ω satisfy the following equalities:

    Equation(6)means that lx∈DerL(s)and Eq.(7)means that rx∈DerR(s).See Ref.[26]for more details about non-abelian extensions of Leibniz algebras.

    2.2 3-Lie Algebras and Their Representations

    We recall in this section definitions,representations and cohomology of 3-Lie algebras.

    Definition 2A 3-Lie algebra is given by a vector space g together with a skew-symmetric linear map[·,·,·]g:∧3g→g such that the following identity holds:

    The identity(13)is called Fundamental Identity(FI)or sometimes Nambu identity.

    Definition 3A morphism of 3-Lie algebras f :(g,[·,·,·]g) → (h,[·,·,·]h)is a linear map f:g → h such that

    We call elements in∧2g fundamental objects of the 3-Lie algebra(g,[·,·,·]g).One defines a bilinear operation[·,·]Fon ∧2g,given by

    It turns out that(∧2g,[·,·]F)is a Leibniz algebra,[13]and it plays an important role in the theory of 3-Lie algebras.

    The concept of representation introduced by Kasymov is defined as follows.

    Definition 4(Ref.[12])A representation ρ of a 3-Lie algebra g on a vector space V is given by a linear map ρ:∧2g?→ gl(V),such that for all x1,x2,x3,x4∈ g,there holds:

    It leads to the following semidirect product for 3-Lie algebras.

    Lemma 1Let g be a 3-Lie algebra,V a vector space and ρ :∧2g → gl(V)a skew-symmetric linear map.Then(V;ρ)is a representation of g if and only if there is a 3-Lie algebra structure on the direct sum of vector spaces g⊕V,defined by

    for xi∈g,vi∈V,1≤i≤3.

    The previous 3-Lie algebra structure is called semidirect product and denoted by g nρV.

    Furthermore,there is a cohomology of 3-Lie algebras with coefficients in a representation(V;ρ).First pcochains on g are defined to be linear maps

    Denote the space of p-cochains by Cp(g,V).Then the coboundary operator δ:Cp?1(g,V) ?→ Cp(g,V)is defined as

    here Xi=xi∧yifor i=1,...,p and z∈g.

    3 Non-Abelian Extensions of3-Lie Algebras

    We discuss in this section non-abelian extensions of 3-Lie algebras.First we recall some basics.

    Definition 5A non-abelian extension of a 3-Lie algebra(g,[·,·,·]g)by a 3-Lie algebra(h,[·,·,·]h)is a short exact sequence of 3-Lie algebra morphisms:is a 3-Lie algebra.

    A section of a non-abelian extensionof g by h is a linear map s:g ?→such that p ?s=id.

    Definition 6Two extensions of g by h,(,[·,·,·]?g1)and(,[·,·,·]?g2),are said to be isomorphic if there exists a 3-Lie algebra morphism θ:such that we have the following commutative diagram:

    Given a section s of a non-abelian extensionof g by h,we can define ρ :∧2g?→ gl(h),ν :g?→ Hom(∧2h,h)and ω :∧3g ?→ h respectively by

    The following proposition provides the conditions on ρ,ν and ω such that(g⊕h,[·,·,·](ρ,ν,ω))is a 3-Lie algebra.

    Proposition 2The pair(g ⊕ h,[·,·,·](ρ,ν,ω)),defined above,is a 3-Lie algebra if and only if ρ,ν and ω satisfy,for all x1,...,x5∈g,v1,...,v5∈h,the following conditions

    ProofThe proof is obtained by straightforward computations of the fundamental identity for different combinations of elements and the converse is direct.

    Example 1We consider g to be the simple 4-dimensional 3-Lie algebra defined with respect to a basis{x1,x2,x3,x4}by the skew-symmetric brackets

    and h to be the 3-dimensional 3-Lie algebra defined with respect to basis{v1,v2,v3}by

    Then every non-abelian extension of g by h is given by ρ =0.The following families of ν and ω provide non-abelian extensions of g by h

    where riare parameters in K.

    Example 2We consider g to be the 3-dimensional 3-Lie algebra defined with respect to a basis{x1,x2,x3}by the skew-symmetric bracket[x1,x2,x3]=x1and h to be the same 3-Lie algebra which we write with respect to basis{v1,v2,v3},that is[v1,v2,v3]=v1.Then every non-abelian extension of g by h is given by one of the following triples(ρ,ν,ω).

    where riare parameters in K.

    Any non-abelian extension,by choosing a section,is isomorphic to(g ⊕ h,[·,·](ρ,ν,ω)).Therefore,we only consider in the sequel non-abelian extensions of the form(g ⊕ h,[·,·](ρ,ν,ω)).

    Propostion 3Let(g ⊕ h,[·,·,·](ρ1,ν1,ω1))and(g ⊕h,[·,·,·](ρ2,ν2,ω2))be two non-abelian extensions of g by h.Then the two extensions are isomorphic if and only if there is a linear map ξ:g → h such that the following equalities hold:

    ProofLet(g⊕h,[·,·,·](ρ1,ν1,ω1))and(g⊕h,[·,·,·](ρ2,ν2,ω2))be two non-abelian extensions of g by h.Assume that the two extensions are isomorphic.Then there is a 3-Lie algebra morphism θ:g⊕h→ g⊕h,such that we have the following commutative diagram:

    where ι is the inclusion and pr is the projection.Since for all x ∈ g,pr(θ(x))=x,we can assume that θ(x+u)=x?ξ(x)+u for some linear map ξ:g→ h.By

    we can deduce that Eq.(29)holds.By

    we can deduce that Eq.(30)holds.By

    we can deduce that Eq.(31)holds.

    4 Non-Abelian Extensions in Terms of Maurer Cartan Elements

    In Ref.[19],the author constructed a graded Lie algebra for n-Leibniz algebras.Here,we give the precise formulas for the 3-Lie algebra case.

    We define Cp(g,g)=Hom(∧2g?(p)···? ∧2g∧ g,g)and C?(g,g)= ⊕pCp(g,g). Let α ∈ Cp(g,g),β ∈Cq(g,g),p,q≥ 0. Let Xi=xi∧yi∈ ∧2g for i=1,2,...,p+q and xi,yi∈ g.A permutation σ ∈ Snis called an(i,n ? i)-unshuffle if σ(1)< ···< σ(i)and σ(i+1)< ···< σ(n). If i=0 or n,we assume σ=id.The set of all(i,n?i)-unshuffles will be denoted by unsh(i,n?i).

    Theorem 1(Ref.[19])The graded vector space C?(g,g)equipped with the graded commutator bracket

    is a graded Lie algebra where α ? β ∈ Cp+q(g,g)is defined by

    Furthermore,(C?(g,g),[·,·]3Lie,ˉδ)is a DGLA,whereˉδ is given byˉδP=(?1)pδP for all P∈Cp(g,g),and δ is the coboundary operator of g with coefficients in the adjoint representation.See Ref.[22]for more details.

    Remark 1The coboundary operator δ associated to the adjoint representation of the 3-Lie algebra g can be written as δP=(?1)p[μg,P]3Lie,for all P ∈ Cp(g,g),whereμg∈ C1(g,g)is the 3-Lie algebra structure on g,i.e.μg(x,y,z)=[x,y,z]g.Thus,we haveˉδP=[μg,P]3Lie.

    Now, we describe non-abelian extensionsusing Maurer-Cartan elements.Let(L,[·,·],d)be a differential graded Lie algebra,with L0abelian.?The set MC(L)ofMaurer-Cartan elements of the DGLA(L,[·,·],d)is defined by

    Moreover,P0,P1∈MC(L)are called gauge equivalent if and only if there exists an element ξ∈L0such that

    We can define a path between P0and P1.Let

    Then P(t)is a power series of t in MC(L).We have P(0)=P0and P(1)=P1.The set of the gauge equivalence classes of MC(L)is denoted by MC(L).

    Let(g,[·,·,·]g)and(h,[·,·,·]h)be two 3-Lie algebras.Let g⊕h be the 3-Lie algebra direct sum of g and h,where the bracket is defined by

    Lemma 2With the above notations,we haveh,h))?(g⊕h,h),and(C>(g⊕h,h),[·,·]3Lie,δˉ)is a sub-DGLA ofFurthermore,its degree 0 part(g⊕h,h)=Hom(g,h)is abelian.

    ?This condition guarantees that the right hand side of Eq.(35)makes sense.In general,we should assume that L is equipped with a descending filtration:

    which is compatible with the Lie bracket,and such that L is complete with respect to this filtration,i.e.

    See Refs.[23,27]for more details.

    ProofBy the definition of the bracket[·,·]3Lieandwe obtain thatis a sub-DGLA ofForwe can regard it as α ∈ Cp(g ⊕ h,h)such that α|Cp(h,h)=0.Moreover,forwe haveThus,we obtain(C(g ⊕is a sub-DGLA ofTherefore,is a sub-DGLA ofObviously,Hom(g,h)is abelian.

    Proposition 4The following two statements are equivalent:

    ProofBy Proposition 2,(g ⊕ h,[·,·,·](ρ,ν,ω))is a 3-Lie algebra if and only if Eqs.(18)–(28)hold.

    If c=ρ+ν+ω is a Maurer-Cartan element,we have

    By straightforward computations,we have

    Recall the definition of the bracket[·,·,·]and the c,we have

    Moreover,we have

    Furthermore,by the definition of the bracket in Theorem 1,we have

    Moreover,we have

    Thus,c= ρ+ν+ω is a Maurer-Cartan element if and only if Eqs.(18)–(28)hold.

    Corollary 1Let g and h be two 3-Lie algebras.Then there is a one-to-one correspondence between non-abelian extensions of the 3-Lie algebra g by h and Maurer-Cartan elements in the DGLA

    Theorem 2Let g and h be two 3-Lie algebras.Then the isomorphism classes of non-abelian extensions g by h oneto-one correspond to the gauge equivalence classes of Maurer-Cartan elements in the DGLA

    ProofTwo elements c= ρ+ ν+ ω and c′= ρ′+ ν′+ω′in MC(L)are equivalent if there exists ξ∈ Hom(g,h)such thatMore precisely,for all ei=xi+vi∈g⊕h,we have

    Furthermore,by the bracket in Theorem 1,we have

    Thus,we have

    Moreover,we have

    More generally,for n≥3

    For all ei=xi+vi∈g⊕h,we have

    Thus,we have

    Moreover,we have

    More generally,for n≥3

    Therefore,we have

    Thus,two elements c= ρ+ν+ω and c′= ρ′+ν′+ω′in MC(L)are equivalent if and only Eqs.(29)–(31)hold.

    5 Non-Abelian Extensions of Leibniz Algebras

    In this section,we always assume that(g ⊕ h,[·,·](ρ,ν,ω))is a non-abelian extension of the 3-Lie algebra g by h.We aim to analyze the corresponding Leibniz algebra structure on the space of fundamental objects.Note that∧2(g⊕h)((∧2h)⊕(g?h))⊕(∧2g)naturally.We useto denote the Leibniz bracket on the space of fundamental objects of the 3-Lie algebra(g ⊕ h,[·,·](ρ,ν,ω)).

    First we introduce a Leibniz algebra structure on(∧2h)⊕ (g ? h).Define a linear map{·,·}:((∧2h)⊕ (g ? h))?((∧2h)⊕ (g?h))→ (∧2h)⊕(g? h)by

    Proposition 5With the above notations,((∧2h)⊕ (g ? h),{·,·})is a Leibniz algebra.

    ProofBy direct computation,we have

    Thus,((∧2h)⊕(g?h),{·,·})is a Leibniz subalgebra of the Leibniz algebra

    for all x,y,z,t∈g,u,v,w∈h.

    Now we are ready to give the main result of this section.

    Theorem 3Let(g,[·,·,·]g)and(h,[·,·,·]h)be two 3-Lie algebras and(g ⊕ h,[·,·](ρ,ν,ω))a non-abelian extension of the 3-Lie algebra g by h.Then the Leibniz algebra(∧2(g⊕h),[·,·]?F)is a non-abelian extension of the Leibniz algebra(∧2g,[·,·]F)by the Leibniz algebra((∧2h)⊕ (g ? h),{·,·}).

    ProofOne can show that conditions(6)–(12)in Proposition 1 hold directly.Thus,(∧2(g⊕h),[·,·]?F)is a non-abelian extension of the Leibniz algebra(∧2g,[·,·]F)by the Leibniz algebra((∧2h) ⊕ (g ? h),{·,·}).Here we use a different approach to prove this theorem.Using the isomorphism between ∧2(g⊕h)and((∧2h)⊕(g?h))⊕(∧2g),the Leibniz algebra structure on∧2(g⊕h)is given by

    Thus,by Eq.(5),we deduce that(∧2(g⊕h),[·,·]?F)is a non-abelian extension of the Leibniz algebra(∧2g,[·,·]F)by the Leibniz algebra((∧2h)⊕ (g ? h),{·,·}).

    [1]V.T.Filippov,Sib.Mat.Zh.26(1985)126.

    [2]Y.Nambu,Phys.Rev.D 7(1973)2405.

    [3]L.Takhtajan,Commun.Math.Phys.160(1994)295.

    [4]P.Gautheron,Lett.Math.Phys.37(1996)103.

    [5]A.Basu and J.A.Harvey,Nucl.Phys.B 713(2005)136.

    [6]J.Bagger and N.Lambert,Phys.Rev.D 77(2008)065008.

    [7]J.Bagger and N.Lambert,Phys.Rev.D 79(2009)025002.

    [8]J.Gomis,D.Rodr?guez-G′omez,M.Van Raamsdonk,and H.Verlinde,J.High Energy Phys.8(2008)094.

    [9]P.M.Ho and Y.Matsuo,J.High Energy Phys.06(2008)105.

    [10]P.M.Ho,R.Hou,and Y.Matsuo,J.High Energy Phys.6(2008)020.

    [11]G.Papadopoulos,J.High Energy Phys.5(2008)054.

    [12]Sh.M.Kasymov,Algebra i Logika 26(1987)277.

    [13]Y.Daletskii and L.Takhtajan,Lett.Math.Phys.39(1997)127.

    [14]J.Figueroa-O’Farrill,J.Math.Phys.50(2009)113514.

    [15]J.A.de Azc′arraga and J.M.Izquierdo,J.Phys.Conf.Ser.175(2009)012001.

    [16]L.Takhtajan,St.Petersburg Math.J.6(1995)429.

    [17]R.Bai,C.Bai,and J.Wang,J.Math.Phys.51(2010)063505.

    [18]R.Bai,G.Song,and Y.Zhang,Front.Math.China 6(2011)581.

    [19]M.Rotkiewicz,Extracta Math.20(2005)219.

    [20]J.A.de Azc′arraga and J.M.Izquierdo,J.Phys.A:Math.Theor.43(2010)293001.

    [21]A.Makhlouf,Chapter 4 in Non Associative&Non Commutative Algebra and Operator Theory,eds.C.T.Gueye and M.S.Molina,Proceedings in Mathematics&Statistics,Springer,Mulhouse 160(2016).

    [22]J.Liu,A.Makhlouf,and Y.Sheng,Algebr Represent Theor.20(2017)1415.

    [23]Y.Fregier,J.Algebra 398(2014)243.

    [24]J.L.Loday,Enseign.Math.39(1993)269.

    [25]J.L.Loday and T.Pirashvili,Math.Ann.296(1993)139.

    [26]J.Liu,Y.Sheng,and Q.Wang,Commun.Algebra.46(2018)574.

    [27]V.A.Dolgushev,Stable Formality Quasi-Isomorphisms for Hochschild Cochains,arXiv:math.K-Theory and Homology/1109.6031.

    国产成人精品无人区| 人人妻人人看人人澡| 久久久久性生活片| a级毛片在线看网站| 舔av片在线| 国产私拍福利视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品人妻1区二区| 国产精品一区二区精品视频观看| 黄色成人免费大全| 变态另类成人亚洲欧美熟女| 日韩精品中文字幕看吧| 老司机深夜福利视频在线观看| 久久久久久久久中文| 午夜日韩欧美国产| 在线观看舔阴道视频| 可以在线观看毛片的网站| 精品国产乱子伦一区二区三区| 色av中文字幕| 狂野欧美白嫩少妇大欣赏| xxxwww97欧美| 一卡2卡三卡四卡精品乱码亚洲| 法律面前人人平等表现在哪些方面| 久久伊人香网站| 欧美成人免费av一区二区三区| 日韩欧美在线二视频| 一级毛片精品| 一本综合久久免费| 中文资源天堂在线| 亚洲国产精品合色在线| 国产精品98久久久久久宅男小说| 一区二区三区激情视频| 国产爱豆传媒在线观看 | 国产欧美日韩精品亚洲av| 亚洲国产欧美人成| 欧美性猛交黑人性爽| 视频区欧美日本亚洲| 日韩欧美免费精品| 少妇裸体淫交视频免费看高清 | √禁漫天堂资源中文www| 高清在线国产一区| 精品第一国产精品| 日日爽夜夜爽网站| 国产午夜精品论理片| 国产熟女xx| 两性午夜刺激爽爽歪歪视频在线观看 | 男女午夜视频在线观看| 国产乱人伦免费视频| 老司机午夜福利在线观看视频| 欧美成人一区二区免费高清观看 | 国产野战对白在线观看| 婷婷亚洲欧美| 免费观看精品视频网站| 免费看十八禁软件| 国产成年人精品一区二区| 亚洲自拍偷在线| 又粗又爽又猛毛片免费看| 国产一区二区三区视频了| 亚洲 国产 在线| 一级a爱片免费观看的视频| 久久99热这里只有精品18| 国产一区二区激情短视频| 久久久精品国产亚洲av高清涩受| 狂野欧美白嫩少妇大欣赏| 很黄的视频免费| 99热这里只有精品一区 | 中国美女看黄片| 母亲3免费完整高清在线观看| 99在线人妻在线中文字幕| 精品久久久久久久毛片微露脸| 我要搜黄色片| 国产成人精品久久二区二区91| 欧美午夜高清在线| 久久精品国产清高在天天线| 人人妻人人澡欧美一区二区| 久久中文看片网| 国产亚洲欧美在线一区二区| 久久久久久久精品吃奶| 热99re8久久精品国产| 老司机福利观看| 国产激情久久老熟女| 欧美最黄视频在线播放免费| xxx96com| 久久人妻av系列| 欧美日本视频| 国产精品一区二区三区四区免费观看 | 国产乱人伦免费视频| 黄色 视频免费看| 18禁黄网站禁片免费观看直播| 少妇被粗大的猛进出69影院| 欧美日韩中文字幕国产精品一区二区三区| 亚洲一码二码三码区别大吗| 久99久视频精品免费| 国产片内射在线| 亚洲精品av麻豆狂野| 三级男女做爰猛烈吃奶摸视频| 欧美一区二区精品小视频在线| 亚洲成人精品中文字幕电影| 18禁国产床啪视频网站| 国产亚洲欧美在线一区二区| 日本免费a在线| 久久九九热精品免费| 免费看日本二区| 久久人妻av系列| 男男h啪啪无遮挡| 亚洲av五月六月丁香网| 老司机靠b影院| 欧美av亚洲av综合av国产av| 国产av不卡久久| 精品久久久久久久末码| 最近在线观看免费完整版| 国产视频内射| 精品久久久久久成人av| 日韩欧美国产在线观看| 午夜日韩欧美国产| 国产精品1区2区在线观看.| 久久久久久人人人人人| 精品人妻1区二区| 精品国产美女av久久久久小说| av有码第一页| а√天堂www在线а√下载| 亚洲欧美日韩高清专用| 狂野欧美激情性xxxx| 一级毛片高清免费大全| 亚洲国产高清在线一区二区三| 婷婷精品国产亚洲av在线| 宅男免费午夜| 亚洲av熟女| 99热6这里只有精品| 欧美极品一区二区三区四区| 国产探花在线观看一区二区| 亚洲欧美日韩东京热| 国产一区二区三区视频了| 在线视频色国产色| 亚洲18禁久久av| 听说在线观看完整版免费高清| 久久久久国内视频| 欧美日韩一级在线毛片| 日韩欧美在线二视频| 亚洲午夜理论影院| 国产乱人伦免费视频| 两个人的视频大全免费| 97人妻精品一区二区三区麻豆| 99热只有精品国产| 叶爱在线成人免费视频播放| 国模一区二区三区四区视频 | 桃红色精品国产亚洲av| 老司机午夜十八禁免费视频| svipshipincom国产片| 亚洲av片天天在线观看| 国产精品亚洲一级av第二区| 欧美又色又爽又黄视频| 国产精品一及| 在线观看美女被高潮喷水网站 | 中国美女看黄片| 亚洲一区高清亚洲精品| 国产在线精品亚洲第一网站| 国产伦在线观看视频一区| 三级国产精品欧美在线观看 | 亚洲国产精品999在线| 88av欧美| 岛国在线免费视频观看| 亚洲欧洲精品一区二区精品久久久| 淫妇啪啪啪对白视频| 国产精品一区二区三区四区免费观看 | 精品国产亚洲在线| 村上凉子中文字幕在线| 国产91精品成人一区二区三区| 听说在线观看完整版免费高清| 午夜福利在线观看吧| 久久精品国产99精品国产亚洲性色| 久久久精品大字幕| 婷婷精品国产亚洲av| 巨乳人妻的诱惑在线观看| 亚洲精品美女久久av网站| 十八禁人妻一区二区| 国产日本99.免费观看| √禁漫天堂资源中文www| 黑人操中国人逼视频| 老司机靠b影院| 在线永久观看黄色视频| 国产精品爽爽va在线观看网站| 久久九九热精品免费| 欧美日韩亚洲国产一区二区在线观看| 久久国产精品人妻蜜桃| 91在线观看av| 黑人巨大精品欧美一区二区mp4| 91字幕亚洲| 亚洲成人国产一区在线观看| 国产精品精品国产色婷婷| 给我免费播放毛片高清在线观看| 成年女人毛片免费观看观看9| 免费观看精品视频网站| 久久久久国产精品人妻aⅴ院| 天天躁夜夜躁狠狠躁躁| avwww免费| 69av精品久久久久久| 婷婷丁香在线五月| 国内精品久久久久精免费| 搡老熟女国产l中国老女人| 精品国产超薄肉色丝袜足j| 一级a爱片免费观看的视频| 欧美一区二区国产精品久久精品 | 国内精品久久久久久久电影| 正在播放国产对白刺激| 色老头精品视频在线观看| 嫩草影视91久久| 长腿黑丝高跟| a在线观看视频网站| 丰满人妻熟妇乱又伦精品不卡| 久久久久免费精品人妻一区二区| 久久久久久免费高清国产稀缺| 一进一出好大好爽视频| 制服丝袜大香蕉在线| 久99久视频精品免费| 99精品在免费线老司机午夜| 身体一侧抽搐| 18禁国产床啪视频网站| 亚洲精品久久国产高清桃花| 蜜桃久久精品国产亚洲av| 欧美日本视频| ponron亚洲| 亚洲熟妇中文字幕五十中出| 免费搜索国产男女视频| 国产精品亚洲av一区麻豆| 国产成人精品久久二区二区免费| 动漫黄色视频在线观看| 国产精品久久久人人做人人爽| 日本a在线网址| 国产亚洲欧美98| 搡老熟女国产l中国老女人| 亚洲 国产 在线| 亚洲精品国产精品久久久不卡| 免费看十八禁软件| 中出人妻视频一区二区| 又黄又爽又免费观看的视频| 一级a爱片免费观看的视频| 嫩草影院精品99| 1024手机看黄色片| 久久热在线av| 精品不卡国产一区二区三区| av国产免费在线观看| 成在线人永久免费视频| tocl精华| 午夜精品一区二区三区免费看| 在线观看www视频免费| 久久精品国产亚洲av香蕉五月| 国产精品av久久久久免费| 免费在线观看成人毛片| 午夜日韩欧美国产| av国产免费在线观看| 啪啪无遮挡十八禁网站| 两个人看的免费小视频| 免费在线观看影片大全网站| 精品国产美女av久久久久小说| 国产精品久久视频播放| 91麻豆av在线| 一本大道久久a久久精品| 女人高潮潮喷娇喘18禁视频| 九色成人免费人妻av| 最近在线观看免费完整版| 看免费av毛片| 999久久久国产精品视频| 国产亚洲欧美在线一区二区| 无人区码免费观看不卡| 日韩大尺度精品在线看网址| 色哟哟哟哟哟哟| 免费高清视频大片| 精品熟女少妇八av免费久了| 精品第一国产精品| 精品一区二区三区视频在线观看免费| 久久精品国产清高在天天线| 最近最新免费中文字幕在线| 国产精品 欧美亚洲| 亚洲欧美精品综合一区二区三区| 亚洲国产看品久久| 免费看美女性在线毛片视频| av片东京热男人的天堂| 国产伦一二天堂av在线观看| 日韩成人在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 日韩大尺度精品在线看网址| 午夜两性在线视频| 国产成年人精品一区二区| 麻豆国产av国片精品| 国产av麻豆久久久久久久| 久久久久亚洲av毛片大全| 91成年电影在线观看| 老司机福利观看| 国产精品一区二区精品视频观看| 婷婷六月久久综合丁香| 在线观看午夜福利视频| 精品久久久久久久久久久久久| 亚洲午夜精品一区,二区,三区| avwww免费| 这个男人来自地球电影免费观看| 久久午夜综合久久蜜桃| 两个人的视频大全免费| 黄色视频,在线免费观看| www国产在线视频色| 老司机深夜福利视频在线观看| 五月伊人婷婷丁香| 亚洲精华国产精华精| 亚洲狠狠婷婷综合久久图片| 香蕉国产在线看| 精品一区二区三区av网在线观看| 国产一级毛片七仙女欲春2| 久久久国产精品麻豆| 国产精品亚洲av一区麻豆| 亚洲午夜精品一区,二区,三区| 日本 av在线| 国产亚洲av嫩草精品影院| 国内精品久久久久精免费| 午夜视频精品福利| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕精品亚洲无线码一区| 搡老熟女国产l中国老女人| 亚洲精品一区av在线观看| 国产成人精品无人区| 成人18禁高潮啪啪吃奶动态图| 两个人的视频大全免费| 成在线人永久免费视频| 国产v大片淫在线免费观看| 黄色成人免费大全| 国产精品一区二区三区四区久久| 久99久视频精品免费| 国产亚洲精品av在线| 18禁黄网站禁片免费观看直播| 免费看十八禁软件| 看免费av毛片| 日韩欧美精品v在线| a在线观看视频网站| 成人精品一区二区免费| 精华霜和精华液先用哪个| 色精品久久人妻99蜜桃| 精品国产乱子伦一区二区三区| 亚洲 国产 在线| 日本免费a在线| 最新美女视频免费是黄的| 国产爱豆传媒在线观看 | 亚洲成a人片在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 舔av片在线| 色尼玛亚洲综合影院| 久久久久久免费高清国产稀缺| av有码第一页| 成年免费大片在线观看| 岛国在线观看网站| 在线免费观看的www视频| 操出白浆在线播放| 欧美乱码精品一区二区三区| 美女大奶头视频| 黄片大片在线免费观看| 国产99久久九九免费精品| 午夜福利在线在线| cao死你这个sao货| 国产成人av激情在线播放| 国产精品影院久久| 两个人视频免费观看高清| 成人18禁高潮啪啪吃奶动态图| 亚洲精品在线观看二区| 久久精品国产亚洲av高清一级| 精品第一国产精品| 成人国产一区最新在线观看| 18禁美女被吸乳视频| 男女那种视频在线观看| 成人国产一区最新在线观看| 亚洲欧美一区二区三区黑人| 丰满人妻熟妇乱又伦精品不卡| 少妇粗大呻吟视频| 久久人妻福利社区极品人妻图片| 免费看日本二区| 日韩中文字幕欧美一区二区| 亚洲狠狠婷婷综合久久图片| 精品久久久久久成人av| 色哟哟哟哟哟哟| 国产伦人伦偷精品视频| 99热这里只有精品一区 | 九色国产91popny在线| 此物有八面人人有两片| aaaaa片日本免费| 亚洲av成人精品一区久久| 又粗又爽又猛毛片免费看| 大型av网站在线播放| 啦啦啦韩国在线观看视频| 一区福利在线观看| 后天国语完整版免费观看| 不卡av一区二区三区| 亚洲熟妇中文字幕五十中出| 老司机午夜福利在线观看视频| 黑人巨大精品欧美一区二区mp4| 色综合站精品国产| 亚洲av电影不卡..在线观看| 成人特级黄色片久久久久久久| 视频区欧美日本亚洲| 成人亚洲精品av一区二区| 日本黄色视频三级网站网址| 亚洲狠狠婷婷综合久久图片| 亚洲第一电影网av| 神马国产精品三级电影在线观看 | 国产精品一区二区三区四区免费观看 | 欧美午夜高清在线| 成人av在线播放网站| 午夜激情av网站| 91成年电影在线观看| 欧美国产日韩亚洲一区| 又粗又爽又猛毛片免费看| 午夜免费激情av| 特级一级黄色大片| 美女高潮喷水抽搐中文字幕| 中出人妻视频一区二区| 亚洲中文字幕日韩| 久久人妻福利社区极品人妻图片| 级片在线观看| 国产野战对白在线观看| 精品欧美国产一区二区三| 又黄又爽又免费观看的视频| 国产av不卡久久| 欧美国产日韩亚洲一区| 久久精品人妻少妇| 日韩大码丰满熟妇| 国产伦一二天堂av在线观看| 美女高潮喷水抽搐中文字幕| 最新在线观看一区二区三区| 日韩中文字幕欧美一区二区| 国产黄色小视频在线观看| 人妻丰满熟妇av一区二区三区| 精华霜和精华液先用哪个| 麻豆成人午夜福利视频| 白带黄色成豆腐渣| 亚洲狠狠婷婷综合久久图片| 国产在线精品亚洲第一网站| 美女午夜性视频免费| 可以在线观看的亚洲视频| 黑人巨大精品欧美一区二区mp4| 一个人免费在线观看电影 | 人人妻人人看人人澡| 岛国视频午夜一区免费看| 精品久久蜜臀av无| 此物有八面人人有两片| 俺也久久电影网| 日韩精品中文字幕看吧| or卡值多少钱| 精品一区二区三区av网在线观看| 人人妻人人澡欧美一区二区| 哪里可以看免费的av片| 亚洲国产精品久久男人天堂| 无遮挡黄片免费观看| 欧美日韩福利视频一区二区| 精品少妇一区二区三区视频日本电影| 91av网站免费观看| 天堂av国产一区二区熟女人妻 | 一本久久中文字幕| 在线十欧美十亚洲十日本专区| 九九热线精品视视频播放| 久久国产精品人妻蜜桃| 国产精品香港三级国产av潘金莲| 久久久精品国产亚洲av高清涩受| 在线a可以看的网站| 日本免费a在线| 亚洲av中文字字幕乱码综合| 精品乱码久久久久久99久播| 亚洲国产中文字幕在线视频| 人人妻人人澡欧美一区二区| 18禁黄网站禁片午夜丰满| 亚洲电影在线观看av| 亚洲五月天丁香| 日本熟妇午夜| 成在线人永久免费视频| 国产探花在线观看一区二区| 国产精品,欧美在线| 在线播放国产精品三级| avwww免费| 久久精品国产99精品国产亚洲性色| www.自偷自拍.com| 99在线视频只有这里精品首页| 精品少妇一区二区三区视频日本电影| 国产高清有码在线观看视频 | 2021天堂中文幕一二区在线观| 麻豆成人午夜福利视频| 女同久久另类99精品国产91| 亚洲国产精品成人综合色| 在线观看舔阴道视频| 亚洲国产欧美人成| 日日夜夜操网爽| 美女高潮喷水抽搐中文字幕| 高清在线国产一区| 男女下面进入的视频免费午夜| 久久久久久亚洲精品国产蜜桃av| 日韩免费av在线播放| 欧美乱妇无乱码| 亚洲熟女毛片儿| 69av精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 真人一进一出gif抽搐免费| 手机成人av网站| 狠狠狠狠99中文字幕| 亚洲中文日韩欧美视频| 久久精品影院6| 欧美一级a爱片免费观看看 | 校园春色视频在线观看| 亚洲真实伦在线观看| 可以在线观看的亚洲视频| 亚洲精品中文字幕在线视频| a在线观看视频网站| av免费在线观看网站| 一个人免费在线观看电影 | 久久久久免费精品人妻一区二区| 99在线人妻在线中文字幕| 国产在线精品亚洲第一网站| 国产91精品成人一区二区三区| 老司机福利观看| 久久久国产欧美日韩av| 亚洲成a人片在线一区二区| 色av中文字幕| 久久欧美精品欧美久久欧美| 黄色片一级片一级黄色片| 欧美+亚洲+日韩+国产| 久久久国产成人免费| 精品一区二区三区视频在线观看免费| 国产精品久久视频播放| 国产黄片美女视频| 男女视频在线观看网站免费 | 欧美日韩亚洲综合一区二区三区_| 精品久久久久久久人妻蜜臀av| 99在线人妻在线中文字幕| 中文字幕久久专区| 国产高清视频在线观看网站| 国产在线精品亚洲第一网站| 亚洲激情在线av| 正在播放国产对白刺激| 男人舔女人下体高潮全视频| 欧美极品一区二区三区四区| av国产免费在线观看| 老司机午夜福利在线观看视频| 午夜福利18| 老司机午夜福利在线观看视频| 亚洲国产看品久久| 欧美黄色淫秽网站| 亚洲国产精品999在线| 国产精品亚洲av一区麻豆| 村上凉子中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 老熟妇仑乱视频hdxx| 亚洲成人久久爱视频| ponron亚洲| 国产成人aa在线观看| 黄色 视频免费看| 一级作爱视频免费观看| 久久久久久九九精品二区国产 | 人妻夜夜爽99麻豆av| 久久香蕉激情| 久久久久久人人人人人| 可以在线观看的亚洲视频| 午夜福利在线在线| 久99久视频精品免费| 欧美三级亚洲精品| 久久久久九九精品影院| 亚洲精品一卡2卡三卡4卡5卡| 色播亚洲综合网| 久热爱精品视频在线9| 亚洲国产欧美一区二区综合| 在线观看66精品国产| a在线观看视频网站| 夜夜看夜夜爽夜夜摸| tocl精华| 亚洲专区中文字幕在线| 国产真实乱freesex| www.自偷自拍.com| 99久久精品国产亚洲精品| 亚洲国产精品sss在线观看| 老司机午夜福利在线观看视频| 日韩 欧美 亚洲 中文字幕| 亚洲国产精品久久男人天堂| 黄色女人牲交| 午夜久久久久精精品| 男女床上黄色一级片免费看| 怎么达到女性高潮| 久久久久久大精品| 欧美 亚洲 国产 日韩一| 国产成人精品无人区| 久久国产精品影院| 国产亚洲av嫩草精品影院| 国产99白浆流出| 黄色片一级片一级黄色片| 国产野战对白在线观看| 人妻久久中文字幕网| av在线播放免费不卡| 91麻豆av在线| 亚洲国产精品999在线| 黄色片一级片一级黄色片| 变态另类成人亚洲欧美熟女| 欧美日韩乱码在线| 91老司机精品| 在线视频色国产色| 欧美色视频一区免费| 激情在线观看视频在线高清| av有码第一页| 正在播放国产对白刺激| 日韩精品免费视频一区二区三区| 免费看日本二区| avwww免费| www.精华液| 精品乱码久久久久久99久播| 丁香六月欧美| 亚洲av第一区精品v没综合| 又紧又爽又黄一区二区| 1024手机看黄色片| 国产av在哪里看| 欧美一级毛片孕妇| 国产精品久久久人人做人人爽| 高潮久久久久久久久久久不卡| 琪琪午夜伦伦电影理论片6080| 搞女人的毛片| 99riav亚洲国产免费|