• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Streamline similarity method for flow distributions and shock losses at the impeller inlet of the centrifugal pump *

    2018-04-13 12:23:38ZhZhang

    Zh. Zhang

    ?

    Streamline similarity method for flow distributions and shock losses at the impeller inlet of the centrifugal pump*

    Zh. Zhang

    Pumps, streamline similarity method, flow distribution, shock loss, structural constant

    Introduction

    In industrial applications, both the hydraulic efficiency and the operation safety of a pump highly depend on the flow dynamic behaviour of water flows from the pump inlet to the exit. The undesirable flow dynamic behaviour of a pump comprises instability in the pump characteristics, shock loss leading to the drop of the hydraulic efficiency, cavitation as well as rotating stall and many other phenomena. Although some undesirable flow phenomena are related to the exit flow out of the impeller owing to the interaction between the impeller and the guide wanes and have been mainly investigated by numerical methods[1-4], in many cases, however, the origin of a great number of undesirable flow phenomena has often been con- firmed at the inlet area of the pump. To the first, the unfavourable rotating stall has its origin in the inlet flow[5]. To the second, the cavitation around the leading edge of the impeller blades remains a serious problem in many cases. To its suppression one often applies a pre-device like the inducer upstream of the pump impeller, referring to [6], for instance. The main subject of designing a high performance pump is actually to specify the real flow conditions at the pump inlet and to layout the geometrical profile of impeller blades to match that flow. To be noted is that the objective of specifying the trailing edge of the impeller blades of a pump mainly aims to specify the designed specific work.

    In general, the velocity distribution along the leading edge of impeller blades is in no case uniform because of the streamline curvatures. This is so even though the flow in the suction pipe is uniform and irrotational (potential flow). Meridian velocities on the hub and shroud sides of the pump impeller may differ by a factor two or even more[7-10]. Although such a non-uniform velocity distribution is much significant in both determining the geometrical design of the impeller blades and influencing all subsequent flows, with regard to computations there exists hardly any favourable and explicit method. Apparently, only the so-called streamline curvature method to solve the velocity gradient equation has been used for that purpose. The method was developed based on the general theory in Ref. [11] and has been primarily applied in the turbocompressors[8-10]. It is, however, a method with intensive iterative computations, which often suffer from the divergence problem and also take much more computation time. In addition, the velocity gradient equation (a partial differential equation) was uniquely solved by the finite difference method rather than by the integration. The other methods to acquire knowledge about the respective non-uniform velocity distribution have so far been, among very few investigations, limited to experimen- tal measurements[12,13].

    The occurrence of flow separations and the resulting shock losses on the leading edge of the impeller blades are related to the pump operations out of the design point. Up to now, there practically exists no analysis for computing the mean of the related shock losses because of the non-uniformity of the flow distribution. This shortage in the analysis strongly confuses the explanation and interpretation of the form of the efficiency characteristic of a pump. With other words it is still not quite clear, how the shock loss physically and computationally depends on the flow rate.

    The objective of the present paper is to work out a computational method that can be easily applied to accurately determine the flow distribution at the pump inlet, especially along the leading edge of the impeller blades. As mentioned above, the available flow information at the impeller inlet serves to layout as well as to check the geometrical profile of the impeller blades. The simplest way to work out such a method is obviously to assume the flow in the suction pipe to be uniform and irrotational. The flow of this form is the simplest potential flow. Because the flow of this property directly approaches the leading edge of the impeller blades, it can be considered to be frictionless. The irrotationality condition of the flow then remains. The flow dynamic laws used in this paper to derive the new computational method are momentum and mass conservation laws as well as the laws of potential flows. To solve the velocity gradient equa- tion, the streamline distribution at the impeller inlet is assumed to be similar, i.e., independent of the flow rate. The computational method, thus, is called the streamline similarity method (SSM) for pump flows.

    Based on the use of this method the overall shock loss at the impeller inlet becomes predictable and should be computed. This also aims to reveal the physical background of shock losses in function of the flow rate.

    It should be further mentioned that the SSM presented in this paper had also be successfully applied to the exit flow of a Francis turbine which operates both at the nominal flow rate and the flow rate out of the design point[14]. As long as the flow at the impeller inlet can be considered to be a potential flow (irrotational and thus constant total pressure) and the flow friction effect can be neglected, the irrota- tionality condition of the flow at the impeller exit should remain unchanged. At the nominal flow rate, the exit flow out of the turbine impeller possesses only axial and radial velocity components. It is then comparable with the two-dimensional flow at the inlet of a pump: with similar geometrical distributions of streamlines. In Ref. [14], the computational method was simply referred to private communication, without giving the detailed derivations.

    1. Potential flow theory for pumps

    1.1 Momentum equation and coordinate transforma- tion

    Theflowinthesuctionpipeisassumedtobe one- dimensional, uniform and frictionless (Fig. 1). Such a flow is a potential flow of the simplest form. When reaching the leading edge of the impeller blades, the flow then becomes two-dimensional because of the existence of the radial velocity component. Such a fri- ctionlesstwo-dimensionalflow with vanishing circum- ferential velocity component can be described by the Eulerian momentum equations for frictionless flow in the cylindrical coordinate system as

    The first equation is written here only for completeness and will not be further considered throughout the present paper. Obviously, as stated in Eq. (4), there is a pressure gradient perpendicular to the streamlines.

    Because the flow in the suction pipe is assumed to be potential flow, i.e., the flow with uniform distribution of the total pressure, such a flow must so maintain up to the leading edge of the impeller blades. The Bernoulli equation for constant total pressure and its transverse derivative are then given by

    Together with Eq. (4) one obtains

    With respect to Eq. (7) this last equation can then be written as

    In the description of the streamline curvature method, for instance, in Refs. [8, 9], the above equation is called velocity gradient equation. Its solution was uniquely based on the finite difference method. As will be shown below in Section 2, Eq. (10) will be solved by integration.

    1.2 Mass conservation equation

    Thus, Eq. (12) is rewritten as

    or owing to Eqs. (8) and (11)

    2. Flow distributions along the leading edge of im- peller blades

    2.1 General formulae of velocity distributions

    Fig. 1 Flow in the meridian plane of the impeller

    From Eq. (18) the distribution of the meridian velocity along the leading edge of an impeller blade is given by

    Employing Eq. (20) one obtains

    The distribution of the meridian velocity com- ponent along the leading edge of an impeller blade is then computed as

    2.2 Special case analysis for velocity distributions

    and

    Obviously, the flat distribution of is obtained at small ratio . In Fig. 2, this means a large ratio .

    2.2.2 Special Case 2: Concentric streamlines

    Basically, the geometrical configuration of con- centric streamlines leads to the decrease of the radius of curvature of the shroud side profile and, thus, to an enlarged non-uniform velocity distribution. This can be demonstrated by considering again the curvature radius on the hub side. Because , one gets . This value is evidently smaller than the practical values from 0.6 to 0.8, which have been applied in Fig. 2. In Fig. 3, the distribution of according to Eq. (33) and for is compared with the real caseof from Fig. 2. Obviously, the con- centric circular profiles on the hub and shroud sides should never be suggested. Otherwise, it would likely result in local flow separation and cavitation.

    This result should be used with caution because concentric circular profiles have just been considered as unfavorable.

    2.2.3Special Case 3: Pseudo uniform velocity distri- bution

    Because the assumption of uniform velocity distribution along the leading edge of impeller blades does not reflect the reality (designated as pseudo uniform), as confirmed in Fig. 2, the above equation only represents a rough approximation.

    And, consequently

    Fig.4Inlet flow of an axial pump

    2.3 Pressure distributions

    As long as the velocity distribution along the leading edge of impeller blades of a pump has been calculated, the related pressure distribution can imme- diately be calculated based on the Bernoulli equation given in Eq. (5)

    3. Aplications and validations for flow distribution

    3.1 Numerical method and computational steps

    Fig. 5 Determination of the origins and curvatures of the curved streamlines by interpolation

    Remarkably, the velocity distribution is again highly non-uniform, comparable to that in Ref. [7] where the velocity changes from 2.5 m/s on the hub side to 6 m/s on the shroud side.

    Furthermore, the pressure distribution along the leading edge can be calculated according to Eq. (38). The computational result is shown in Fig. 6(c) (with the pressure on the shroud side as reference). The static pressure on the shroud side is a minimum and in many cases could even be negative, which means that flow separation and cavitation take place. If this occurs, none of the computational results in Fig. 6 will be true.

    Fig.6 Computational results and comparison between accurate calculations and the approximations for a pump (KWO) with

    3.2 Comparison of calculations with an earlier mea- surement

    Fig. 7Comparison of calculations by using Eqs. (25) and (29) with measurements (Sulzer 1992)

    At this point, the author would like to indicate that there have been hardly any numerical simulations of such a flow distribution that can be used as the reference. With other words, almost all published CFD simulations of the pump flows were performed with doubtful flow condition at the impeller inlet. Most likely and unfortunately, the condition of the pseudo uniform velocity distribution according to the special case 3 in Section 2.2 has been assumed. For this reason, the velocity distribution according to Eq. (25) of the geometrical character should always be applied to validate CFD simulations, at least and each time before the complex flows both within and out of the impeller will be further simulated by CFD.

    4. Shock loss at the impeller inlet

    4.1 Shock loss formula

    It should be mentioned that the shock loss at the impeller inlet behaves as a much significant loss in the pump flow. Its computation, however, seemed since ever to be impossible because of the non-uniform velocity distribution. In this section and based on the obtained velocity distribution along the leading edge of impeller blades (Section2), a very practical formula for the shock loss will be presented.

    Pumps are normally designed for operating at the nominal flow rate, at which the leading edges of impeller blades are configured to ensure the shockless entrance of the flow into the impeller. The related blade angle and its distribution along the blade leading edge should be designed with respect to the velocity distribution that has been calculated by Eq. (25) for the case of straight flow without pre-rotation, as given by

    At other flow rate, as long as all streamlines remain constant, the relative flow angle is given by

    Fig. 8Flow and velocity triangles at the impeller inlet, used for determining the shock loss at the partial load of the pump

    4.2 Structural constants

    In Eq. (50), the second structural constant has been introduced which is defined as

    Fig.9Shock loss at the impeller inlet of a centrifugal pump

    4.3 Limitation of using the structural constants

    Fig. 10 Induced flow stagnation at the impeller inlet at low flow rate

    5. Summary and outlook

    For a long time, the hydraulic characteristics of both the pump and the turbine could only be obtained by measurements; this is still the case today. There has been no reliable analytical method for computing such hydraulic characteristics. One main reason for this shortage in the related technology is the lack of the fundamentals for analytically computing the non- uniform flow distributions, for instance, at the pump inlet. Such a non-uniformity of the velocity distribu- tion basically determines the geometrical design of the impeller of the pump. At the operations out of the design point, it also determines the shock loss in the flow at the impeller inlet. As a matter of fact, the shock loss behaves as a highly significant loss in such pump flows.

    The method provides a completely new way to compute the pump inlet flow without having to regard the flow states (laminar or turbulent) and to use any turbulence models. Especially, the derived velocity distribution at the impeller inlet can be applied to validate CFD simulations, before the complex flows within and out of the impeller will be further simu- lated.

    Because of the geometrical similarity of the streamline distribution at the impeller inlet of the pump, the SSM can also be directly applied to non- uniform flows at the impeller exit of a Francis turbine, aiming to accurately average all related flow para- meters. In reality, because such an application has already been confirmed to be highly successful[14], the method presented in this paper for pump flows has, thus, also been indirectly validated.

    The method can be applied to the pump flow down to about 60% of the nominal flow rate.

    For future investigations aiming to achieve the advanced hydraulic performances in pump and turbine flows, the SSM with the use of two structural cons- tants will certainly play a significant role and likely release the standard design for pumps and turbines as a function of the specific speed of the machines.

    [1] Shi F., Tsukamoto H. Numerical study of pressure fluctua- tions caused by impeller-diffuser interaction in a diffuser pump stage [J]., 2001, 123(3): 466-474.

    [2] Muggli F., Eisele K., Zhang Zh. et al. Numerical investi- gations of the flow in a pump turbine in pump mode [C]., London, UK, 1999.

    [3] Feng J., Benra F., Dohmen H. Unsteady flow visualization at part-load conditions of a radial diffuser pump: By PIV and CFD [J]., 2009, 12(1): 65-72.

    [4] Guleren K., Pinarbasi A. Numerical simulation of the stalled flow within a vaned centrifugal pump [J]., 2004, 218: 1-10.

    [5] Zhang Zh. Rotating stall mechanism and stability control in the pump flows [J]., 2011, 225: 779-788.

    [6] Hong S., Kim D., Kim J. et al. Study on inducer and impeller of a centrifugal pump for a rocket engine turbo- pump [J]., 2013, 227: 311-319.

    [7] Pfleiderer K. Die kreiselpumpen für flüssigkeiten und gase [M]. Berlin, Germany: Springer-Verlag, 1955, 126.

    [8] Casey M., Roth P. A streamline curvature throughflow method for radial turbocompressors [C]., Solihull, UK,1984.

    [9] Casey M., Robinson C. A new streamline curvature throughflow method for radial turbomachinery [J].2008, 132(3): 2119-2130.

    [10] Gong W. Q., Wu R. K., Zhang B. A new finite difference method to solve the velocity gradient equation in stream- line curvature method [J]., 2016, 8(9): 1-13.

    [11] Wu C. H. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial-, and mixed-flow types [R]. Washington DC, USA: NACA, 1952, NACA-TN-2604.

    [12]Stoffel B., Weiss K. Different types and locations of part-load recirculations in centrifugal pumps found from LDA measurements [C]., Valencia, Spain, 1996, II: 1034-1044.

    [13] Eisele K. Global und LDA messungen am radialpumpen- laufrad la 033.112 mit unbeschaufeltem und beschaufel- tem diffusor [R]. Sulzer Innotec Report, 1992, IT 1773.

    [14]Zhang Zh., Titzschkau M. Self-validated calculation of characteristics of a Francis turbine and the mechanism of the S-shape operational instability [J].,2012, 15(3): 032036.

    [15]Gülich J. Centrifugal pumps [M]. 2nd Edition, Berlin, Germany: Springer-Verlag, 2010, (Fig. 7.4).

    Appendix: Computation of the parameter

    This equation can also be written as

    and

    From Eq. (a4) one obtains

    This can also be written as

    From Eq. (a2) one obtains then

    or

    From Eq. (a5) one obtains

    It can be further written as

    For the same reason as in (1) it follows from Eq. (a2) that

    and further that

    (3) Combination

    Equations (a7) and (a11) are inserted into Eq. (a1), leading to

    For further simplification of this equation follo- wing relationships are applied:

    Equations (a9) and (a13) are then inserted into Eq. (a14). Finally one obtains

    (September 12, 2016, Revised June 27, 2017)

    ?China Ship Scientific Research Center 2018

    Zh. Zhang (1957-),Male, Ph. D.

    Zh. Zhang,

    E-mail: zhengji.zhang@hotmail.com

    别揉我奶头~嗯~啊~动态视频| 国产精品一区二区三区四区久久| 特大巨黑吊av在线直播| 亚洲av免费在线观看| 99久久九九国产精品国产免费| 九色国产91popny在线| 两个人视频免费观看高清| 黄色女人牲交| 日本黄色视频三级网站网址| 窝窝影院91人妻| 亚洲人成伊人成综合网2020| 综合色av麻豆| 亚洲成人精品中文字幕电影| 国产伦精品一区二区三区四那| 国产成人av教育| 午夜亚洲福利在线播放| 久久中文看片网| 日韩人妻高清精品专区| 黄色丝袜av网址大全| 一级黄片播放器| а√天堂www在线а√下载| 亚洲综合色惰| 男女啪啪激烈高潮av片| 老熟妇乱子伦视频在线观看| 少妇的逼水好多| 精品久久久久久成人av| 亚洲人与动物交配视频| 日韩欧美免费精品| 欧美bdsm另类| 欧美日韩国产亚洲二区| 精品久久久久久久久久久久久| 久久久色成人| 男女视频在线观看网站免费| 亚洲不卡免费看| 精品欧美国产一区二区三| 成年女人永久免费观看视频| 12—13女人毛片做爰片一| 欧美日韩精品成人综合77777| 亚洲天堂国产精品一区在线| 三级毛片av免费| a在线观看视频网站| 有码 亚洲区| 亚洲成人中文字幕在线播放| 精品一区二区三区人妻视频| 免费看光身美女| 亚洲国产精品久久男人天堂| 18禁裸乳无遮挡免费网站照片| 久久亚洲精品不卡| 亚洲av中文av极速乱 | 精品一区二区三区视频在线观看免费| 看黄色毛片网站| 99热精品在线国产| 久久精品国产99精品国产亚洲性色| 真人一进一出gif抽搐免费| 国产精品久久久久久av不卡| 女生性感内裤真人,穿戴方法视频| 亚洲成人中文字幕在线播放| 亚洲精品在线观看二区| 亚洲国产高清在线一区二区三| 黄色日韩在线| 色综合婷婷激情| 婷婷色综合大香蕉| 尾随美女入室| 免费人成在线观看视频色| 国产精品永久免费网站| 午夜激情福利司机影院| 欧美色视频一区免费| 成人无遮挡网站| 一边摸一边抽搐一进一小说| 国产精品自产拍在线观看55亚洲| 我的女老师完整版在线观看| av国产免费在线观看| 波多野结衣高清无吗| 久久精品国产自在天天线| eeuss影院久久| 国产高清视频在线播放一区| 全区人妻精品视频| 一个人看视频在线观看www免费| 小蜜桃在线观看免费完整版高清| 十八禁国产超污无遮挡网站| 午夜福利成人在线免费观看| 精品人妻一区二区三区麻豆 | 观看美女的网站| 亚洲欧美日韩卡通动漫| 最近中文字幕高清免费大全6 | 日韩欧美国产在线观看| 国产伦一二天堂av在线观看| 国产美女午夜福利| 最近视频中文字幕2019在线8| 精品乱码久久久久久99久播| 精华霜和精华液先用哪个| 成人毛片a级毛片在线播放| 欧美日韩综合久久久久久 | 亚洲性久久影院| 人妻丰满熟妇av一区二区三区| 99久久成人亚洲精品观看| 精品99又大又爽又粗少妇毛片 | 婷婷精品国产亚洲av在线| 国产亚洲精品久久久久久毛片| 在线播放无遮挡| 啦啦啦韩国在线观看视频| 精品久久久久久成人av| 国产高清三级在线| 久久精品国产亚洲av天美| 国产精品永久免费网站| 乱码一卡2卡4卡精品| 日韩大尺度精品在线看网址| 99热这里只有是精品50| 天堂网av新在线| 直男gayav资源| 亚洲男人的天堂狠狠| 一级av片app| 免费在线观看成人毛片| 别揉我奶头~嗯~啊~动态视频| 国产成人影院久久av| 一边摸一边抽搐一进一小说| 午夜福利视频1000在线观看| 亚州av有码| 深夜a级毛片| 午夜福利高清视频| 国产一级毛片七仙女欲春2| 九九热线精品视视频播放| 国产v大片淫在线免费观看| 夜夜夜夜夜久久久久| 久久午夜福利片| 亚洲国产精品成人综合色| 一级毛片久久久久久久久女| 88av欧美| 亚洲欧美日韩无卡精品| 欧美精品啪啪一区二区三区| 午夜激情福利司机影院| 人妻少妇偷人精品九色| 国产亚洲91精品色在线| 亚洲精品成人久久久久久| 高清在线国产一区| 久99久视频精品免费| 午夜久久久久精精品| 亚洲欧美日韩卡通动漫| 亚洲av免费在线观看| 欧美日韩综合久久久久久 | 欧美又色又爽又黄视频| 亚洲电影在线观看av| 免费av不卡在线播放| 少妇熟女aⅴ在线视频| 日韩在线高清观看一区二区三区 | 亚洲精华国产精华液的使用体验 | 男女做爰动态图高潮gif福利片| 一级a爱片免费观看的视频| 精品人妻1区二区| 大型黄色视频在线免费观看| 人人妻,人人澡人人爽秒播| 国产一区二区三区视频了| 亚洲第一区二区三区不卡| 12—13女人毛片做爰片一| 两个人的视频大全免费| 一区二区三区高清视频在线| 日韩人妻高清精品专区| 日韩精品青青久久久久久| 国产高清视频在线播放一区| 身体一侧抽搐| 免费在线观看影片大全网站| 1000部很黄的大片| 国产高潮美女av| 中文字幕av成人在线电影| 神马国产精品三级电影在线观看| 97碰自拍视频| 国产男靠女视频免费网站| 成人三级黄色视频| 亚洲成人精品中文字幕电影| 久久欧美精品欧美久久欧美| 免费在线观看影片大全网站| 夜夜看夜夜爽夜夜摸| 国产午夜福利久久久久久| 国产精品一区二区性色av| 一个人看的www免费观看视频| 少妇熟女aⅴ在线视频| 久久久久国产精品人妻aⅴ院| 久久久久国产精品人妻aⅴ院| 伦理电影大哥的女人| 亚洲经典国产精华液单| 国产白丝娇喘喷水9色精品| 精品不卡国产一区二区三区| 国内精品一区二区在线观看| 人妻制服诱惑在线中文字幕| 一个人看的www免费观看视频| 欧美激情久久久久久爽电影| 国产免费一级a男人的天堂| 国产不卡一卡二| 久久久精品欧美日韩精品| 人妻少妇偷人精品九色| 日韩欧美在线二视频| 欧美最黄视频在线播放免费| 国产亚洲精品av在线| 中文亚洲av片在线观看爽| 搡女人真爽免费视频火全软件 | 国产亚洲精品综合一区在线观看| 国产亚洲精品久久久久久毛片| 日本五十路高清| 国产成年人精品一区二区| 亚洲七黄色美女视频| 99久久精品国产国产毛片| 欧美xxxx性猛交bbbb| 特大巨黑吊av在线直播| 精品久久久久久久人妻蜜臀av| 中国美白少妇内射xxxbb| 两性午夜刺激爽爽歪歪视频在线观看| 国产女主播在线喷水免费视频网站 | 久久九九热精品免费| 深爱激情五月婷婷| 午夜福利在线观看吧| 又爽又黄无遮挡网站| 可以在线观看毛片的网站| 三级国产精品欧美在线观看| 99在线人妻在线中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 国产爱豆传媒在线观看| 黄色视频,在线免费观看| 内地一区二区视频在线| 国产精品亚洲一级av第二区| 国产精品av视频在线免费观看| 中国美女看黄片| 精品久久久久久成人av| 国产伦在线观看视频一区| 国产视频一区二区在线看| 亚洲自偷自拍三级| 欧美色视频一区免费| 亚洲国产日韩欧美精品在线观看| av在线观看视频网站免费| 日本a在线网址| 免费黄网站久久成人精品| 不卡一级毛片| 欧美性感艳星| 日韩欧美在线二视频| 午夜福利高清视频| 极品教师在线免费播放| 午夜激情福利司机影院| 中文字幕久久专区| av福利片在线观看| 国产91精品成人一区二区三区| 简卡轻食公司| 又黄又爽又刺激的免费视频.| 久久久久国产精品人妻aⅴ院| 22中文网久久字幕| 国产成年人精品一区二区| 国产伦人伦偷精品视频| 免费人成视频x8x8入口观看| 三级男女做爰猛烈吃奶摸视频| 国产高清不卡午夜福利| 国产 一区精品| 91久久精品国产一区二区三区| 久久久久国内视频| 成年免费大片在线观看| 精品国内亚洲2022精品成人| 久久香蕉精品热| 亚洲精品一区av在线观看| 97超视频在线观看视频| 国产一区二区三区在线臀色熟女| 一本久久中文字幕| 麻豆国产av国片精品| 老司机福利观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产午夜福利久久久久久| 日韩精品有码人妻一区| 女人十人毛片免费观看3o分钟| 国产精品伦人一区二区| 在线国产一区二区在线| av天堂中文字幕网| 精品人妻视频免费看| 国产一区二区在线av高清观看| 欧美黑人巨大hd| 精品久久久久久成人av| 国产毛片a区久久久久| 亚洲成人精品中文字幕电影| 深夜精品福利| 一区二区三区免费毛片| 直男gayav资源| .国产精品久久| 一区福利在线观看| 免费观看人在逋| 精品无人区乱码1区二区| 亚洲三级黄色毛片| 女同久久另类99精品国产91| 热99在线观看视频| 亚洲美女视频黄频| 亚洲av日韩精品久久久久久密| 久久亚洲真实| 黄色丝袜av网址大全| a级一级毛片免费在线观看| 不卡一级毛片| 亚洲av美国av| 春色校园在线视频观看| 色尼玛亚洲综合影院| 日日摸夜夜添夜夜添av毛片 | 波多野结衣高清无吗| a级毛片a级免费在线| 日本欧美国产在线视频| 国产高清三级在线| av天堂中文字幕网| avwww免费| 性插视频无遮挡在线免费观看| 国产精品久久电影中文字幕| 在线国产一区二区在线| 在线观看av片永久免费下载| 国产国拍精品亚洲av在线观看| 成人午夜高清在线视频| 最新在线观看一区二区三区| 国产亚洲精品综合一区在线观看| 97碰自拍视频| 久久久精品欧美日韩精品| 非洲黑人性xxxx精品又粗又长| 国产探花在线观看一区二区| 全区人妻精品视频| 国产欧美日韩精品亚洲av| 最近在线观看免费完整版| 国产在视频线在精品| 亚洲精品一卡2卡三卡4卡5卡| 免费在线观看影片大全网站| 精品一区二区免费观看| av视频在线观看入口| 如何舔出高潮| 一个人看视频在线观看www免费| 亚洲成人精品中文字幕电影| 久久人人爽人人爽人人片va| 日本一二三区视频观看| 级片在线观看| 天天一区二区日本电影三级| 老熟妇仑乱视频hdxx| 99在线人妻在线中文字幕| а√天堂www在线а√下载| 1024手机看黄色片| 1024手机看黄色片| 国产综合懂色| 国产精品不卡视频一区二区| 亚洲一区二区三区色噜噜| 非洲黑人性xxxx精品又粗又长| 国产精品永久免费网站| 亚洲精华国产精华液的使用体验 | videossex国产| 午夜久久久久精精品| 又紧又爽又黄一区二区| 99久久精品热视频| 久久久久久久精品吃奶| av黄色大香蕉| 精品不卡国产一区二区三区| 精品人妻偷拍中文字幕| 色综合亚洲欧美另类图片| 97热精品久久久久久| 乱码一卡2卡4卡精品| 精品久久久久久久人妻蜜臀av| 欧美三级亚洲精品| 国产 一区精品| 亚洲国产欧美人成| 午夜激情福利司机影院| 欧美+日韩+精品| 午夜影院日韩av| 日日干狠狠操夜夜爽| 久久精品国产亚洲av天美| 中文亚洲av片在线观看爽| 久久中文看片网| 久久午夜亚洲精品久久| 国产伦在线观看视频一区| 久久欧美精品欧美久久欧美| 亚洲无线在线观看| 亚洲成a人片在线一区二区| 欧美绝顶高潮抽搐喷水| 亚洲国产精品sss在线观看| 久久6这里有精品| 老司机福利观看| 日韩中文字幕欧美一区二区| 国产一区二区激情短视频| 性欧美人与动物交配| 欧美日韩国产亚洲二区| 成人国产麻豆网| 在线观看午夜福利视频| 国产av麻豆久久久久久久| 国产午夜精品久久久久久一区二区三区 | 欧美丝袜亚洲另类 | 天堂√8在线中文| 两人在一起打扑克的视频| 婷婷亚洲欧美| 久久久久久伊人网av| 禁无遮挡网站| 少妇的逼水好多| 精华霜和精华液先用哪个| 在线观看午夜福利视频| 成人一区二区视频在线观看| 亚洲成人精品中文字幕电影| 亚洲七黄色美女视频| 乱码一卡2卡4卡精品| 成人av一区二区三区在线看| 一个人免费在线观看电影| 黄色丝袜av网址大全| h日本视频在线播放| 丰满乱子伦码专区| 男人狂女人下面高潮的视频| 又紧又爽又黄一区二区| 床上黄色一级片| 精品日产1卡2卡| 欧美日韩黄片免| 国产黄a三级三级三级人| 成年免费大片在线观看| 欧美不卡视频在线免费观看| 欧美精品国产亚洲| xxxwww97欧美| 成年版毛片免费区| 国产亚洲91精品色在线| 夜夜夜夜夜久久久久| 老熟妇乱子伦视频在线观看| 久久精品国产清高在天天线| 亚洲欧美激情综合另类| 网址你懂的国产日韩在线| 天堂动漫精品| 麻豆av噜噜一区二区三区| 变态另类成人亚洲欧美熟女| 美女高潮喷水抽搐中文字幕| 国产人妻一区二区三区在| 欧美激情国产日韩精品一区| 草草在线视频免费看| 一本一本综合久久| 欧美日韩国产亚洲二区| 亚洲美女视频黄频| 国产欧美日韩一区二区精品| 不卡视频在线观看欧美| 香蕉av资源在线| 午夜激情福利司机影院| 欧美绝顶高潮抽搐喷水| 97超视频在线观看视频| 少妇人妻精品综合一区二区 | 人妻夜夜爽99麻豆av| 俄罗斯特黄特色一大片| 久久草成人影院| 永久网站在线| 91久久精品国产一区二区三区| 欧美成人免费av一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久久av| 午夜福利成人在线免费观看| 日韩欧美 国产精品| 国产高清有码在线观看视频| 精品久久久久久久久久免费视频| 日本五十路高清| 最后的刺客免费高清国语| 国产av麻豆久久久久久久| 无遮挡黄片免费观看| 99riav亚洲国产免费| 在线国产一区二区在线| 有码 亚洲区| 亚洲图色成人| 观看美女的网站| 淫妇啪啪啪对白视频| 男女啪啪激烈高潮av片| 一边摸一边抽搐一进一小说| 美女被艹到高潮喷水动态| 国内揄拍国产精品人妻在线| 乱系列少妇在线播放| 国产黄片美女视频| 最近视频中文字幕2019在线8| 久久精品国产鲁丝片午夜精品 | 日韩欧美免费精品| 乱码一卡2卡4卡精品| 亚洲国产精品sss在线观看| 国产亚洲精品久久久com| 午夜日韩欧美国产| 日本 av在线| 亚洲成人久久爱视频| 亚洲经典国产精华液单| 亚洲熟妇熟女久久| 欧美日韩亚洲国产一区二区在线观看| 99久久久亚洲精品蜜臀av| 两个人视频免费观看高清| 男女那种视频在线观看| 美女免费视频网站| 久99久视频精品免费| 国产精品98久久久久久宅男小说| 国产av不卡久久| 国产精品久久久久久久久免| 亚洲一区二区三区色噜噜| 欧美zozozo另类| 成人综合一区亚洲| 亚洲精品一卡2卡三卡4卡5卡| 我要看日韩黄色一级片| 国产大屁股一区二区在线视频| 人人妻,人人澡人人爽秒播| 精品免费久久久久久久清纯| 黄色欧美视频在线观看| 亚洲精品色激情综合| 成人美女网站在线观看视频| 国产欧美日韩精品亚洲av| 中文在线观看免费www的网站| 午夜影院日韩av| 亚洲av免费高清在线观看| 内射极品少妇av片p| 麻豆国产97在线/欧美| 高清在线国产一区| 2021天堂中文幕一二区在线观| 一本一本综合久久| 亚洲精品一卡2卡三卡4卡5卡| 免费观看人在逋| 成人精品一区二区免费| 高清日韩中文字幕在线| 亚洲男人的天堂狠狠| 最好的美女福利视频网| 国产人妻一区二区三区在| 国产午夜福利久久久久久| 色播亚洲综合网| 亚洲国产日韩欧美精品在线观看| 国产精品国产三级国产av玫瑰| 成熟少妇高潮喷水视频| 日本五十路高清| 能在线免费观看的黄片| 动漫黄色视频在线观看| 亚洲国产精品成人综合色| 日日摸夜夜添夜夜添av毛片 | 亚洲男人的天堂狠狠| 午夜影院日韩av| 久99久视频精品免费| 亚洲电影在线观看av| 性插视频无遮挡在线免费观看| 欧美激情国产日韩精品一区| 天堂动漫精品| 久久久久久久亚洲中文字幕| 九九久久精品国产亚洲av麻豆| 久久久国产成人精品二区| 国内少妇人妻偷人精品xxx网站| 一本一本综合久久| 国产高清不卡午夜福利| 女人十人毛片免费观看3o分钟| 日韩国内少妇激情av| 91久久精品国产一区二区三区| 天堂网av新在线| 国产私拍福利视频在线观看| 精品久久久久久成人av| 深夜a级毛片| 亚洲成a人片在线一区二区| 日韩精品青青久久久久久| 别揉我奶头~嗯~啊~动态视频| 日韩中文字幕欧美一区二区| 一区二区三区免费毛片| 久久久久国产精品人妻aⅴ院| 嫩草影院精品99| 99久久精品一区二区三区| 深夜精品福利| 欧美国产日韩亚洲一区| 搡女人真爽免费视频火全软件 | 乱人视频在线观看| 亚洲在线观看片| 在线免费观看的www视频| 国产精品久久电影中文字幕| eeuss影院久久| 国产v大片淫在线免费观看| 国产真实伦视频高清在线观看 | 三级国产精品欧美在线观看| 桃红色精品国产亚洲av| 国产精品1区2区在线观看.| а√天堂www在线а√下载| 韩国av一区二区三区四区| a级毛片免费高清观看在线播放| 日韩一区二区视频免费看| 五月玫瑰六月丁香| 日本一本二区三区精品| 国产精品久久久久久精品电影| 亚洲avbb在线观看| 男人舔女人下体高潮全视频| 老司机午夜福利在线观看视频| 国产精品福利在线免费观看| 桃色一区二区三区在线观看| 久久久午夜欧美精品| 嫩草影院新地址| 91狼人影院| 舔av片在线| netflix在线观看网站| 国产精品三级大全| 欧美一级a爱片免费观看看| 亚洲av.av天堂| 免费黄网站久久成人精品| 久久精品夜夜夜夜夜久久蜜豆| 女的被弄到高潮叫床怎么办 | aaaaa片日本免费| 日本免费一区二区三区高清不卡| 在线免费十八禁| 日韩人妻高清精品专区| 可以在线观看的亚洲视频| 一进一出抽搐gif免费好疼| 在现免费观看毛片| 一进一出抽搐gif免费好疼| 熟女人妻精品中文字幕| 久久久久久九九精品二区国产| 1024手机看黄色片| 精品一区二区三区人妻视频| 久久久色成人| 国产极品精品免费视频能看的| 亚洲va在线va天堂va国产| 免费在线观看影片大全网站| 亚洲欧美清纯卡通| 在线天堂最新版资源| 午夜福利视频1000在线观看| 日本黄大片高清| 精品无人区乱码1区二区| 美女大奶头视频| 九九爱精品视频在线观看| 99久久中文字幕三级久久日本| 精品久久久噜噜| 国产亚洲91精品色在线| 麻豆一二三区av精品| 听说在线观看完整版免费高清| 国产精品乱码一区二三区的特点| 欧美成人a在线观看| 在线天堂最新版资源| 99精品久久久久人妻精品| 国产三级中文精品| 成年免费大片在线观看| 精品久久久久久久久亚洲 | 成人国产麻豆网| 精品久久久久久久久久免费视频| 少妇的逼好多水|