• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DualSPHysics: A numerical tool to simulate real breakwaters *

    2018-04-13 12:23:21FengZhang張峰AlejandroCrespoCorradoAltomareJosDomnguezAndreaMarzedduShaopingShang商少平MonchomezGesteira
    水動力學研究與進展 B輯 2018年1期
    關(guān)鍵詞:張峰

    Feng Zhang(張峰), Alejandro Crespo,Corrado Altomare ,José Domínguez,Andrea Marzeddu ,Shao-ping Shang(商少平) ,Moncho Gómez-Gesteira

    ?

    DualSPHysics: A numerical tool to simulate real breakwaters*

    Feng Zhang1(張峰), Alejandro Crespo2,Corrado Altomare3, 4,José Domínguez2,Andrea Marzeddu5,Shao-ping Shang1(商少平) ,Moncho Gómez-Gesteira2

    1.2.3.4.5.

    The open-source code DualSPHysics is used in this work to compute the wave run-up in an existing dike in the Chinese coast using realistic dimensions, bathymetry and wave conditions. The GPU computing power of the DualSPHysics allows simulating real-engineering problems that involve complex geometries with a high resolution in a reasonable computational time. The code is first validated by comparing the numerical free-surface elevation, the wave orbital velocities and the time series of the run-up with physical data in a wave flume. Those experiments include a smooth dike and an armored dike with two layers of cubic blocks. After validation, the code is applied to a real case to obtain the wave run-up under different incident wave conditions. In order to simulate the real open sea, the spurious reflections from the wavemaker are removed by using an active wave absorption technique.

    SPH, DualSPHysics, wavemaker, wave run-up

    Introduction

    The DualSPHysics is an SPH-based model as an efficient and user-friendly numerical code for a wide range of applications in the field of hydraulic, naval and coastal engineering. Due to the power of the GPU (Graphics Processing Unit) cards with powerful pa- rallel computing capability, real engineering problems can be simulated with the DualSPHysics with a high resolution in a reasonable time. When applied to the coastal engineering, it is demonstrated that the model can accurately reproduce the wave propagation and transformation and the wave-structure interactions.

    The DualSPHysics includes an implementation to generate regular and irregular waves with desired wave height and period. The code is designed to simu- late an experimental facility (the wave flume or the wave basin). Moving boundaries are used to simulate the displacement of the wavemaker in a physical facility. In the present study, a piston-type wavemaker that moves with a pre-imposed displacement is considered to generate regular wave trains. The DualSPHysics also includes systems of passive and active wave absorptions. The passive absorption is employed to avoid the wave reflection through a dissi- pative beach or sponge layers, while the active wave absorption is employed to absorb the reflected waves that travel back to the numerical piston. The details of the wave generation algorithms, the passive and active absorption techniques are described in Ref. [1].

    The DualSPHysics code is used here to model the wave run-up over the breakwaters and the dikes. As a first step, the code is validated by experiments in a flume where the surface elevation, the wave orbital velocities and the wave run-up are obtained by simu- lating the interaction of the regular waves with a smooth and an armored breakwater. Once the code is validated with data from physical tests, the DualSPHysics is applied to simulate the interaction of realistic waves with an existing dike in the Chinese coast where the wave run-up is obtained under various incident wave conditions.

    1. DualSPHysics model

    The DualSPHysics[2,3]is developed by using the SPH technique for real engineering problems and to be run on either CPUs or GPUs. The GPUs offer now a higher computing power than the CPUs and they are an affordable option to accelerate the SPH computa- tion with a low economic cost. Thereby, the simula- tions can be performed using a GPU card installed on a personal computer[3].

    The DualSPHysics is an open source software andcanbefreelydownloadedfrom www.dual.sphysics.org. The first validation of the GPU implementation of the code was presented in Ref. [4]. Recently, the DualSPHysics code was applied to coastal enginee- ring problems, e.g., to study the run-up on a real armour block coastal breakwater in Ref. [5] and to estimate the sea wave impact on coastal structures in Ref.[6] where the numerical results are validated with the experimental data for typical cases from the Belgian coast.

    The main features of the DualSPHysics code are described in detail in Ref. [2] and we will only present the main features of the method.

    1.1 SPH method

    In the SPH, a fluid is described by replacing its continuum properties with locally smoothed quantities at discrete Lagrangian locations. Thus, the domain can be multiply-connected with no special treatment of the free surface, making it ideal for studying complicated flow situations.

    The kernel functions play a fundamental role in the SPH method. They should be constructed by satis- fying several conditions such as the positivity, the compact support, the normalization, the monotonically decreasing and the delta function behaviour[7].

    A Quintic kernel developed inRef. [8] is used in thesimulations

    In the DualSPHysics, the Navier-Stokes equation is solved in a Lagrangian form:

    Therefore, the basic equations of conservation can be represented in the SPH notations[9]as

    The changes of the fluid density are calculated by means of the differential equation given inRef. [9] instead of using a weighted summation of the mass terms, which would lead to an artificial density dec- rease near the fluid interfaces

    The fluid is treated as weakly compressible in our approach, which allows the use of an equation of state to determine the fluid pressure, rather than solving an equation. However, the compressibility is adjusted to slow the speed of sound so that the time steps in the model (based on the sound speed) are reasonable.

    The relationship between the pressure and the density is assumed to follow the equation of state as[11]

    The Symplectic algorithm[12]is used in the present work to integrate variables in time. A variable time step is calculated according to Ref. [12], invol- ving the Courant-Friedrich-Lewy (CFL) condition, the force terms and the viscous diffusion term.

    1.2 Boundary conditions

    The dynamic boundary condition (DBC) is the default method provided by the DualSPHysics[13]. In this method, for the boundary particles, the same equations are satisfied as for the fluid particles, except that they do not move according to the forces exerted on them. Instead, they remain either fixed in position or move according to an imposed/assigned motion function (i.e.,as the moving objects such as the gates or the wave-makers). When a fluid particle appro- aches a boundary and the distance between the boun- dary particles and the fluid particles becomes smaller than twice the smoothing length, the density of the affected boundary particles increases, resulting in a pressure increase. In turn, we have a repulsive force exerted on the fluid particle due to the pressure term in the momentum equation. Validations with the dam-break flows and the sloshing tanks were made with good results as compared with other appro- aches[14].

    1.3 Wave generation

    The waves are generated in the DualSPHysics by means of moving boundaries to simulate the move- ment of a wavemaker as in physical facilities. The wave generation is made by using the moving boun- dary as piston-type and also flap-type wavemakers.

    In this way, the wave height, the wave period and deptharethekeyinputparametersinthe DualSPHysics, and therefore, the time series of the wavemaker dis- placement is obtained by using the aforementioned wave theories.

    1.4 Active wave absorption

    2. Validation

    The SPH results are compared with the experi- mental time series of the wave run-up for a smooth and armored dike. Numerical results of the wave run-up are validated against the data from physical model tests carried out at Maritime Engineering Laboratory (LIM) of the Universitat Politècnica de Catalunya (UPC). The small-scale wave flume named CIEMito is a part of the experimental infrastructures of LIM and is used for the purpose.

    2.1 Initial setup

    Fig. 1 Sketch of the wave flume with beach used in the SPH

    Table1Wave conditions in the validation cases

    2.2 Smooth dike: Exp. vs SPH

    Fig. 2Comparison of the experimental and numerical surface elevations for WG6 with smooth dike

    Fig. 3Comparison of the experimental and numerical run-ups for WG6 with smooth dike

    The numerical model accuracy is estimated by calculating the relative error between the numerical wave run-up and the experimental one. For this purpose, two kind of calculations are performed. First, the maximum numerical wave run-up height in each test case is compared with the experimental one (Table 2). Then the average of all run-up events in each test case is calculated and the numerical average run-up height is compared with the experimental one (Table 3). The errors are, in general, smaller than 4%, except for WG1, where the numerical model underes- timates the wave run-up height. A bigger deviation in such a case is expectable due the fact that the plunging breaking involves very turbulent and random pro- cesses. However, repetition tests were not performed during the experiment, which makes it difficult to judge the accuracy of the physical modelling under such wave conditions.

    Table 2Maximum wave run-ups for cases

    2.3 Armored dike: Exp. vs SPH

    The same initial configuration of the blocks in the experiment is considered in the simulations (Fig. 5). The positions of the cubic blocks of two layers are digitized and converted into a 3-D model (in the STL format),so that the pre-processing tools of the DualSPHysics can convert them into a set of boundary particles. The cubic blocks are considered fixed in the numerical modelling as in the physical model.

    Fig. 4Initial setup of the experiment with the armored dike

    Fig. 5(a)image of the blocks in the experiment

    Fig. 5(b)STL model in DualSPHysic

    The surface elevation at different positions along the wave flume, the wave orbital velocities and the wave run-up at the location of the dike are numeri- cally computed and compared with the experimental data performed in the CIEMito flume. Figure 6 plots the time series of the surface elevation at WG1, WG2, WG3 and WG4 and a very good agreement is obser- ved between the SPH calculations and the experi- mental results.

    The horizontal orbital velocity computed at V1 andV2intheDualSPHysicsisshowninFig.7andcompared with the experimental model results. The experimental results show some spikes, especially at the beginning of the time series. Notwithstanding, the average harmonic behavior is still visible and matches the numerical results. Vertical velocities cannot be compared because of inaccuracies of the measurement system.

    Fig. 6Comparison of the experimental and numerical surface elevation for WG1 with armored dike

    Fig. 8 (Color online) Wave gauges in the armored dike during the experiment

    The run-up is computed in the DualSPHysics model at 52 positions along the width of the tank to catch the 3-D behavior. However only two positions are used in the experiments. These two filaments are marked in Fig. 8. Hence, the black line in Fig. 9cor- responds to the average of the measurements by the two experimental probes while the different red lines correspond to the different numerical measurements. The analysis of Fig. 9 indicates that DualSPHysics is capable to represent the time history of the wave run-up on an armored dike.

    Fig. 9Comparison of the experimental and numerical run-ups for WG1 with armored dike

    3. Model application

    The DualSPHysics model is properly validated with experiments of wave run-ups as shown before. In this section, the model is applied to study the real si- tuations in the Chinese coast, in particular, in the coast of Chongwu with a dike. The SPH modelling will allow us to computethe wave run-ups in this dike under realistic wave conditions. A picture of the dike is shown in Fig. 10, which is located in Fujian pro- vince, made of cement with steps.

    Fig. 10(Color online) Picture of the dike in the coast of Chongwu

    Fig. 11 (Color online) Initial setup of the case of application

    Table 4Maximum wave run-ups for cases

    Fig. 12 Numerical domain to study wave propagation

    Figures 13 and 14 show the numerical and theo- retical time series of the surface elevation at locations 45 m, 68 m and 90 maway from the piston for Regular Wg1 andat locations 33 m, 66 m and 99 m for WG2, respectively. Figures 15 and 16 show the numerical and theoretical results for irregular waves. The SPH results follow the Stokes 2ndorder wave theory in terms of the surface elevation, so it is demonstrated that the waves are properly generated and propagated.

    A sponge layer is used in the numerical tank to avoid the wave reflection. Table 5 shows the reflec- tion coefficients (CR) in both regular and irregular wave cases. The wave reflection is considered very weak with the values of CR lower than 10%.

    Fig.13Comparison of the experimental and numerical surface elevations for regular WG1 with sponge layer

    Fig.14Comparison of the experimental and numerical surface elevations for regular WG2 with sponge layer

    Table 5Values of reflection coefficients with passive wave absorption

    Once the wave generation and propagation are proven to be accurate, theinteractionbetweenrealistic waves and a dike in the coast of Chongwu can be studied with the DualSPHysics. The AWAS is now employed to absorb the reflected waves at the piston in order to simulate the behavior of an open sea where the reflected waves propagate outside the simulated domain. The setup shown in Fig. 17 represents the case of study.

    Fig.15Comparison of the experimental and numerical surface elevations for irregular WG1 with sponge layer

    Fig.16Comparison of the experimental and numerical surface elevations for irregular WG2 with sponge layer

    It is necessary first to prove that the use of the AWASsystemcanavoidthere-reflectionandonly the desired incident waves are interacting with the real dike. Figures 18 and 19demonstratethatthesurface elevation of regular waves by using the AWAS has oscillations of the same amplitude and period, as it should be expected if the re-reflection at the piston is observed. Note that when the AWAS is not employed, the surface elevation at different locations becomes chaotic without a regular pattern.

    Fig.17Numerical domain to study wave-dike interaction

    Fig.18Comparisonofthenumericalsurface elevations obtained with and without AWAS for regular WG1

    Fig.19Comparison of the numerical surface elevations obtained with and without AWAS for regular WG2

    Fig. 21 Comparison of the numerical forceson the structure obtained with and without AWAS for regular WG1

    Fig. 22 Comparison of the numerical forceson the structure obtained with and without AWAS for regular WG2

    Fig. 23 Spectrum analysis of incident wave for irregular WG1

    The third way to prove the correct behavior of the AWAS is to compute the forces on the dike. If the re-reflection is removed, the regular cycles are obser- ved in the time series of the force, as it can be obser- ved in Figures 21 and 22 for regular WG1 and WG2, respectively.

    Fig. 24 Spectrum analysis of incident wave for irregular WG2

    Fig. 25 Time series of the wave run-up with regular WG1 and WG2

    After all these analyses, we can assume that the numerical tank can simulate a real sea state since the piston with the AWAS reproduces the behavior of an open sea. Therefore, we can now compute the values of the wave run-up at the dike. Figures 25 and 26 show the time series of the numerical run-up com- puted with the DualSPHysics for regular waves and irregular waves, and under the two incident wave conditions.

    Fig. 26 Time series of the wave run-up with irregular WG1 and WG2

    The values of the maximum wave run-up height in case of regular and irregular wave trains are shown in Table 6.

    Table 6Maximum wave run-up in the case of study

    4. Conclusions

    In the first part of this paper, the DualSPHysics code is validated in terms of the wave run-up on a breakwater. The numerical results are compared with experimental data of a smooth dike and a dike with two layers of cubic blocks. Several different wave conditions are simulated and an overall good accuracy is obtained for the wave surface elevation, the velo- cities and the time series of the run-up.

    The comparison of the numerical and experi- mental time series of the wave run-up, not only averaged but also their significant values, features the present work. Previous work with the DualSPHysics[5], in fact, is a validation for the run-up where only a maximum values for different incoming waves are compared with experimental and literature data.

    In the second part of this paper, the SPH code is applied to study a case of coastal engineering, using the real dimensions of a dike, the bathymetry and the wave conditions from the coast of Chongwu in China. In this case the wave conditions are imposed based on the real wave conditionsand the AWAS is employed to compensate the wave reflection at the numerical wavemaker (This is mandatory to simulate the real open sea).

    The DualSPHysics is properly validated with experiments and it can be applied to study real situa- tions in the coast of China.

    Acknowledgement

    This work was supported by the Xunta de Galicia (Spain) under project ED431C 2017/64 “Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas (Grupos de Referencia Competitiva)” co-funded by European Regional Development Fund (FEDER) and under project “NUMANTIA ED431F 2016/004”. The work is also funded by the Ministry of Economy and Competi- tiveness of the Government of Spain under project “WELCOME ENE2016-75074-C2-1-R”.

    [1] AltomareC., DomínguezJ.M., CrespoA.J.C. et al.Long-crested wave generation and absorption for SPH-based DualSPHysics model [J]., 2017, 127(7): 37-54.

    [2] CrespoA.J.C., DomínguezJ.M., RogersB.D. et al. DualSPHysics: open-source parallel CFD solver on SPH [J]., 2015, 187(2): 204-216.

    [3] DomínguezJ.M., CrespoA.J.C., Valdez-BalderasD. et al.New multi-GPU implementation for smoothed par- ticle hydrodynamics on heterogeneous clusters [J]., 2013, 184(8): 1848-1860.

    [4] CrespoA.J.C., DomínguezJ.M., BarreiroA. et al. GPUs, a new tool of acceleration in CFD: Efficiency and reliability on smoothed particle hydrodynamics methods [J]., 2011, 6(6): e20685.

    [5] AltomareC., CrespoA.J.C., RogersB.D. et al. Nume- rical modelling of armour block sea breakwater with smoothed particle hydrodynamics [J]., 2014, 130(1): 34-45.

    [6] AltomareC., CrespoA.J.C., DomínguezJ.M. et al. Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures [J]., 2015, 96(2): 1-12.

    [7] LiuG.R., LiuM.B. Smoothed Particle Hydrodynamics: a meshfree particle method [M].Singapore: World Scienti- fic, 2003.

    [8] WendlandH. Piecewiese polynomial, positive definite and compactly supported radial functions of minimal degree [J]., 1995, 4(1): 389-396.

    [9] MonaghanJ.J. Smoothed particle hydrodynamics [J]., 1992, 30(1): 543-574.

    [10]MonaghanJ.J. Smoothed particle hydrodynamics [J]., 1992, 30: 543-574.

    [11] BatchelorG.K. Introduction to fluid dynamics [M]. Cam- bridge, UK: Cambridge University Press, 1974.

    [12]LeimkuhlerB.J., ReichS., SkeelR.D. Integration methods for molecular dynamic IMA volume in mathe- matics and its application [M]. New York, USA: Springer, 1996.

    [13] CrespoA.J.C., Gómez-GesteiraM., DalrympleR. Boun- dary conditions generated by dynamic particles in SPH methods [J]., 2007, 5(3): 173-184.

    [14] DomínguezJ.M., CrespoA.J.C., Cercós-PitaJ.L. et al. Evaluation of reliability and efficiency of different boun- dary conditions in an SPH code [C]., Parma, Italy, 2015.

    [15] MadsenP. A., FuhrmanD. R., Sch?fferH. A. On the soli- tary wave paradigm for tsunamis [J]., 2008, 113(C12): 1-22.

    [16]LiuZ., FrigaardP. Generation and analysis of random waves, generation and analysis of random waves [R]. Aalborg, Denmark: Aalborg Universitet, 1999, 79.

    [17]Barthel F. C., Mansard V., Sand E. P. et al. Group bounded long waves in physical models [J]., 1983, 10(4): 261-294.

    [18] SchafferH.A., KlopmanG. Review of multidirectional active wave absorption methods [J]., 2000, 126(2): 88-97.

    [19] DidierE., NevesM.G. A Semi-Infinite numerical wave flume using smoothed particle hydrodynamics [J]., 2001, 22(3): 193-199.

    [20] MadsenO.S. On the generation of long waves [J]., 1971, 76(36): 8672-8683.

    (October 22, 2017, Accepted December 14, 2017)

    ?China Ship Scientific Research Center 2018

    * Project supported by the National Key R&D Program of China (Grant No. 2017YFC1404801).

    Feng Zhang (1989-), Male, Ph. D. Candidate,

    E-mail: zhangfeng@stu.xmu.edu.cn

    Shao-ping Shang,

    E-mail:spshang@xmu.edu.cn

    猜你喜歡
    張峰
    從內(nèi)到外,看懂無人機
    南都周刊(2021年3期)2021-04-22 16:43:49
    Raman scattering from highly-stressed anvil diamond*
    Tensile-strain induced phonon sp litting in diamond*
    張峰獨唱音樂會品賞札記
    歌劇(2017年7期)2017-09-08 13:09:37
    老爸的憂慮
    故事會(2017年3期)2017-02-09 16:40:17
    吹笛子
    張峰水庫下游河道風景圖
    山西水利(2016年9期)2016-02-05 01:46:10
    精彩片段
    打工仔的愛情宣言:賺取百萬娶你回家
    A facile method to build a proton nanosensor with neutral to basic pH sensitive range?
    一个人免费在线观看电影| 亚洲国产精品国产精品| 欧美bdsm另类| 大又大粗又爽又黄少妇毛片口| 日韩成人av中文字幕在线观看| 亚洲中文字幕日韩| 免费看av在线观看网站| 亚洲综合色惰| 大香蕉久久网| 干丝袜人妻中文字幕| 国产高清视频在线观看网站| 搞女人的毛片| 国模一区二区三区四区视频| 日韩欧美精品v在线| 丝袜喷水一区| 18禁在线无遮挡免费观看视频| 午夜福利网站1000一区二区三区| 亚洲av熟女| 亚洲成人av在线免费| 韩国av在线不卡| 午夜a级毛片| 欧美日本视频| 国产真实乱freesex| 中文精品一卡2卡3卡4更新| 午夜福利在线观看免费完整高清在| 韩国av在线不卡| 丰满人妻一区二区三区视频av| 国产免费男女视频| 久久精品国产99精品国产亚洲性色| 搡老妇女老女人老熟妇| 久久欧美精品欧美久久欧美| 国产成人午夜福利电影在线观看| 1024手机看黄色片| 国产欧美另类精品又又久久亚洲欧美| 亚洲中文字幕日韩| 中文在线观看免费www的网站| 丝袜美腿在线中文| 日本色播在线视频| 日韩在线高清观看一区二区三区| 日韩亚洲欧美综合| 精品人妻视频免费看| 欧美激情久久久久久爽电影| 特大巨黑吊av在线直播| 国产精品爽爽va在线观看网站| 日韩成人伦理影院| 日韩三级伦理在线观看| 欧美+日韩+精品| 亚洲国产色片| 97在线视频观看| 成人毛片60女人毛片免费| 啦啦啦观看免费观看视频高清| 亚洲欧美中文字幕日韩二区| 国产高清视频在线观看网站| 伦理电影大哥的女人| 蜜桃久久精品国产亚洲av| 一夜夜www| 亚洲,欧美,日韩| 日本黄色片子视频| av.在线天堂| 一个人免费在线观看电影| 国产高清三级在线| 我要看日韩黄色一级片| 国内精品美女久久久久久| 秋霞在线观看毛片| 精品久久国产蜜桃| 免费看a级黄色片| 人妻制服诱惑在线中文字幕| 色尼玛亚洲综合影院| 久久6这里有精品| 国产精品,欧美在线| 网址你懂的国产日韩在线| 中文字幕人妻熟人妻熟丝袜美| 性色avwww在线观看| 国产欧美另类精品又又久久亚洲欧美| 永久免费av网站大全| 亚洲av电影不卡..在线观看| 久久精品久久精品一区二区三区| 高清av免费在线| 欧美日韩精品成人综合77777| 久久久久久九九精品二区国产| 国产熟女欧美一区二区| 日韩成人伦理影院| 色尼玛亚洲综合影院| 中文字幕制服av| 免费看av在线观看网站| 欧美3d第一页| av国产久精品久网站免费入址| 免费观看性生交大片5| 淫秽高清视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 久久精品人妻少妇| 国产亚洲av片在线观看秒播厂 | 国产午夜福利久久久久久| 真实男女啪啪啪动态图| 男女视频在线观看网站免费| 亚洲国产精品sss在线观看| 99久久九九国产精品国产免费| 亚洲精品乱码久久久v下载方式| 亚洲欧美中文字幕日韩二区| 久久久精品欧美日韩精品| 亚洲经典国产精华液单| 久久精品熟女亚洲av麻豆精品 | 一边摸一边抽搐一进一小说| 久久精品影院6| www.av在线官网国产| 亚洲久久久久久中文字幕| 国产高清有码在线观看视频| 久久婷婷人人爽人人干人人爱| 黄片wwwwww| 美女国产视频在线观看| www.色视频.com| 蜜臀久久99精品久久宅男| 欧美人与善性xxx| 欧美xxxx性猛交bbbb| 色噜噜av男人的天堂激情| 国产91av在线免费观看| 少妇裸体淫交视频免费看高清| 中文字幕av成人在线电影| 最近最新中文字幕大全电影3| 亚洲综合精品二区| АⅤ资源中文在线天堂| 久久精品国产自在天天线| 两个人的视频大全免费| 日本熟妇午夜| 欧美潮喷喷水| 国产高清不卡午夜福利| 国产精品久久久久久久电影| 色综合色国产| 国产成人a区在线观看| 深爱激情五月婷婷| 免费不卡的大黄色大毛片视频在线观看 | 建设人人有责人人尽责人人享有的 | 久久久a久久爽久久v久久| 国产精品久久久久久精品电影| 在线观看av片永久免费下载| 国产探花极品一区二区| 成人综合一区亚洲| 亚洲av中文字字幕乱码综合| 免费av观看视频| h日本视频在线播放| 白带黄色成豆腐渣| 天堂中文最新版在线下载 | 亚洲欧洲国产日韩| 99久久精品热视频| 99热网站在线观看| 丰满人妻一区二区三区视频av| 黑人高潮一二区| 男女边吃奶边做爰视频| 一级二级三级毛片免费看| 国产女主播在线喷水免费视频网站 | 久久久精品大字幕| 成人性生交大片免费视频hd| 免费观看性生交大片5| 国国产精品蜜臀av免费| 国产精品久久久久久精品电影| 日韩中字成人| ponron亚洲| 人体艺术视频欧美日本| 伦精品一区二区三区| 青春草视频在线免费观看| 欧美极品一区二区三区四区| 亚洲成人久久爱视频| 99久国产av精品国产电影| 91久久精品国产一区二区成人| 18禁在线播放成人免费| 国产男人的电影天堂91| 免费观看a级毛片全部| 国产精品久久久久久久电影| 亚洲最大成人中文| 欧美潮喷喷水| 亚洲成人久久爱视频| 日本av手机在线免费观看| 国产高清视频在线观看网站| 亚洲精品aⅴ在线观看| 国产精品不卡视频一区二区| 精品99又大又爽又粗少妇毛片| 18禁在线无遮挡免费观看视频| 美女xxoo啪啪120秒动态图| 国产精品av视频在线免费观看| 日韩欧美 国产精品| 小蜜桃在线观看免费完整版高清| 亚洲欧美精品综合久久99| 1024手机看黄色片| 岛国在线免费视频观看| 少妇的逼好多水| 97人妻精品一区二区三区麻豆| 亚洲av中文字字幕乱码综合| 欧美3d第一页| 免费在线观看成人毛片| 成人鲁丝片一二三区免费| 如何舔出高潮| 亚洲av电影不卡..在线观看| 亚洲国产精品国产精品| 成人一区二区视频在线观看| 赤兔流量卡办理| 波野结衣二区三区在线| 亚洲婷婷狠狠爱综合网| 亚洲成人精品中文字幕电影| 在线观看av片永久免费下载| 又粗又爽又猛毛片免费看| 黄色日韩在线| 久久精品国产亚洲av涩爱| 成人综合一区亚洲| 99久久人妻综合| 麻豆av噜噜一区二区三区| 午夜激情欧美在线| 精品一区二区三区视频在线| 有码 亚洲区| 精品一区二区免费观看| 在线观看av片永久免费下载| 免费观看在线日韩| 亚洲中文字幕日韩| 亚洲激情五月婷婷啪啪| 精品国产三级普通话版| 长腿黑丝高跟| 九九热线精品视视频播放| 嫩草影院入口| 在线免费观看不下载黄p国产| 国产91av在线免费观看| 欧美极品一区二区三区四区| 国产淫语在线视频| 不卡视频在线观看欧美| 老司机影院毛片| 久久久久久久久久久免费av| 不卡视频在线观看欧美| 日日摸夜夜添夜夜添av毛片| 18+在线观看网站| 又黄又爽又刺激的免费视频.| 国产精品熟女久久久久浪| 2021少妇久久久久久久久久久| 18禁裸乳无遮挡免费网站照片| 青春草国产在线视频| 青青草视频在线视频观看| 超碰av人人做人人爽久久| 七月丁香在线播放| 国产不卡一卡二| 美女脱内裤让男人舔精品视频| 波多野结衣巨乳人妻| 亚洲精品456在线播放app| 老司机福利观看| 国语对白做爰xxxⅹ性视频网站| 一个人免费在线观看电影| 男女国产视频网站| 日韩强制内射视频| 中文字幕熟女人妻在线| 99热网站在线观看| 精品人妻视频免费看| 日本免费在线观看一区| 国产极品精品免费视频能看的| 夜夜看夜夜爽夜夜摸| 亚洲成人av在线免费| 亚洲最大成人中文| 网址你懂的国产日韩在线| 国产高清不卡午夜福利| 精品酒店卫生间| 99视频精品全部免费 在线| 精品一区二区三区人妻视频| 边亲边吃奶的免费视频| 免费看光身美女| 国产精品永久免费网站| 国产精品久久久久久久久免| 成年免费大片在线观看| 三级国产精品片| 亚洲人与动物交配视频| 水蜜桃什么品种好| 久久99热6这里只有精品| 麻豆乱淫一区二区| 久久精品国产99精品国产亚洲性色| 国产单亲对白刺激| videossex国产| 精品人妻熟女av久视频| 亚洲欧美一区二区三区国产| 99热6这里只有精品| 国产69精品久久久久777片| 国产视频内射| 成年av动漫网址| 国产在视频线在精品| 观看免费一级毛片| 免费人成在线观看视频色| 99久久九九国产精品国产免费| 最近最新中文字幕免费大全7| 51国产日韩欧美| 精品99又大又爽又粗少妇毛片| 麻豆成人av视频| 久久欧美精品欧美久久欧美| 长腿黑丝高跟| 男人的好看免费观看在线视频| 欧美成人午夜免费资源| 搞女人的毛片| 久久久午夜欧美精品| 一级毛片电影观看 | 能在线免费看毛片的网站| 亚洲久久久久久中文字幕| 久久久欧美国产精品| 精品熟女少妇av免费看| 免费播放大片免费观看视频在线观看 | 亚洲欧美精品专区久久| 97超视频在线观看视频| 亚洲精品影视一区二区三区av| a级毛色黄片| 亚洲丝袜综合中文字幕| 丝袜美腿在线中文| 在现免费观看毛片| av黄色大香蕉| 熟妇人妻久久中文字幕3abv| 久久欧美精品欧美久久欧美| 国产精品三级大全| 国产黄片视频在线免费观看| 久久精品夜色国产| 真实男女啪啪啪动态图| 成年版毛片免费区| 日本色播在线视频| 日本爱情动作片www.在线观看| 少妇熟女欧美另类| av专区在线播放| 国产爱豆传媒在线观看| 偷拍熟女少妇极品色| 91精品国产九色| 熟妇人妻久久中文字幕3abv| 自拍偷自拍亚洲精品老妇| 国产精品三级大全| 精品人妻熟女av久视频| 中文字幕久久专区| 欧美日韩一区二区视频在线观看视频在线 | 纵有疾风起免费观看全集完整版 | 熟妇人妻久久中文字幕3abv| 亚洲av中文av极速乱| 精品午夜福利在线看| 色播亚洲综合网| 欧美高清性xxxxhd video| 国产毛片a区久久久久| 亚洲欧美日韩无卡精品| 18禁在线播放成人免费| 韩国av在线不卡| 国产激情偷乱视频一区二区| 汤姆久久久久久久影院中文字幕 | 一个人看的www免费观看视频| 婷婷色综合大香蕉| 日日摸夜夜添夜夜爱| videos熟女内射| 亚洲第一区二区三区不卡| 久久久久久伊人网av| 能在线免费看毛片的网站| 欧美成人免费av一区二区三区| av在线亚洲专区| 91aial.com中文字幕在线观看| 亚洲av福利一区| 在现免费观看毛片| 联通29元200g的流量卡| 日韩av不卡免费在线播放| 青春草亚洲视频在线观看| 乱系列少妇在线播放| 麻豆一二三区av精品| 麻豆久久精品国产亚洲av| 免费电影在线观看免费观看| 最近手机中文字幕大全| 欧美成人免费av一区二区三区| 日韩一区二区视频免费看| 日韩av在线免费看完整版不卡| 成年女人永久免费观看视频| 国产人妻一区二区三区在| 国产成人午夜福利电影在线观看| 中文字幕av成人在线电影| 一级毛片久久久久久久久女| 久久精品夜色国产| 中国美白少妇内射xxxbb| 日本与韩国留学比较| 成年女人永久免费观看视频| 中文字幕精品亚洲无线码一区| 99久久精品一区二区三区| 日韩人妻高清精品专区| 色综合站精品国产| 亚洲欧美一区二区三区国产| 欧美潮喷喷水| 久久久亚洲精品成人影院| 午夜a级毛片| 亚洲欧美一区二区三区国产| 日韩成人伦理影院| 色噜噜av男人的天堂激情| 免费搜索国产男女视频| 真实男女啪啪啪动态图| 亚洲精品aⅴ在线观看| 综合色丁香网| 国产av一区在线观看免费| 成人毛片60女人毛片免费| 男女国产视频网站| 亚洲精品456在线播放app| 看十八女毛片水多多多| 在线免费观看的www视频| 禁无遮挡网站| 国产精品电影一区二区三区| 久久欧美精品欧美久久欧美| 久久99热这里只频精品6学生 | 日韩国内少妇激情av| 国产不卡一卡二| 男人和女人高潮做爰伦理| 亚洲成av人片在线播放无| 亚洲欧美日韩无卡精品| 插阴视频在线观看视频| 真实男女啪啪啪动态图| 久久精品人妻少妇| 精品免费久久久久久久清纯| 尤物成人国产欧美一区二区三区| 九九在线视频观看精品| 欧美性猛交黑人性爽| 如何舔出高潮| 高清午夜精品一区二区三区| 精品久久国产蜜桃| a级毛色黄片| 在线观看66精品国产| 一级毛片电影观看 | 亚洲三级黄色毛片| 亚洲精品自拍成人| 卡戴珊不雅视频在线播放| 国产成人a区在线观看| 男人舔奶头视频| 美女xxoo啪啪120秒动态图| 中文字幕制服av| 永久免费av网站大全| 国产精品精品国产色婷婷| 18禁动态无遮挡网站| 波野结衣二区三区在线| 日本猛色少妇xxxxx猛交久久| 青春草国产在线视频| 伦理电影大哥的女人| 亚洲精品色激情综合| 99热全是精品| 亚洲人成网站高清观看| 亚洲国产高清在线一区二区三| 91久久精品国产一区二区三区| 九九爱精品视频在线观看| 身体一侧抽搐| 欧美性感艳星| 最近最新中文字幕大全电影3| 蜜臀久久99精品久久宅男| 亚洲精品国产av成人精品| 午夜免费男女啪啪视频观看| 亚洲欧美日韩无卡精品| 欧美xxxx黑人xx丫x性爽| 小蜜桃在线观看免费完整版高清| 国产精品国产三级专区第一集| 视频中文字幕在线观看| 久久精品国产鲁丝片午夜精品| 国产免费福利视频在线观看| 青青草视频在线视频观看| 如何舔出高潮| 插逼视频在线观看| 国产免费视频播放在线视频 | 久99久视频精品免费| 99久久精品一区二区三区| 精品人妻视频免费看| 亚洲精品影视一区二区三区av| 午夜爱爱视频在线播放| 亚洲人与动物交配视频| 欧美+日韩+精品| 精品午夜福利在线看| 国产一级毛片在线| 亚洲第一区二区三区不卡| 欧美性猛交╳xxx乱大交人| 麻豆av噜噜一区二区三区| 高清午夜精品一区二区三区| 91久久精品国产一区二区三区| 别揉我奶头 嗯啊视频| 久久久亚洲精品成人影院| videossex国产| 亚洲精华国产精华液的使用体验| 少妇人妻一区二区三区视频| 亚洲综合精品二区| 国产精品电影一区二区三区| 小说图片视频综合网站| 久久人人爽人人爽人人片va| 成年免费大片在线观看| 国产伦精品一区二区三区四那| 在线观看一区二区三区| 欧美xxxx性猛交bbbb| 国产精品乱码一区二三区的特点| 爱豆传媒免费全集在线观看| 欧美3d第一页| 夜夜看夜夜爽夜夜摸| 欧美激情在线99| 成人午夜精彩视频在线观看| 七月丁香在线播放| 午夜福利成人在线免费观看| 91午夜精品亚洲一区二区三区| 日韩欧美精品免费久久| 国产精品一区二区三区四区免费观看| 国产一区二区在线av高清观看| 久久久久久久国产电影| 波多野结衣高清无吗| 午夜福利在线观看吧| 国产精品国产高清国产av| 国产视频首页在线观看| 高清毛片免费看| 国产 一区精品| 99热6这里只有精品| 午夜福利在线观看免费完整高清在| 好男人视频免费观看在线| 日韩国内少妇激情av| 成年女人永久免费观看视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人中文字幕在线播放| 最近的中文字幕免费完整| 高清午夜精品一区二区三区| 一级二级三级毛片免费看| 一级爰片在线观看| 婷婷色综合大香蕉| 亚洲国产精品成人久久小说| 九九在线视频观看精品| 欧美激情在线99| 亚洲国产日韩欧美精品在线观看| 免费av毛片视频| 又爽又黄无遮挡网站| 国产乱人视频| 精品一区二区三区视频在线| 熟女电影av网| 精品久久久久久久末码| 伦理电影大哥的女人| 视频中文字幕在线观看| 人人妻人人看人人澡| 一边亲一边摸免费视频| 18禁动态无遮挡网站| 免费看a级黄色片| 久久人人爽人人片av| 黄色一级大片看看| 免费观看人在逋| 中国美白少妇内射xxxbb| 国产一区二区亚洲精品在线观看| 久久久久久久国产电影| 国产一区二区三区av在线| 一级黄片播放器| 国产三级中文精品| 亚洲欧美一区二区三区国产| 国内少妇人妻偷人精品xxx网站| 精品一区二区三区视频在线| 欧美日韩综合久久久久久| 天天躁日日操中文字幕| 亚洲性久久影院| 国产精品人妻久久久影院| 亚洲av电影不卡..在线观看| 成年版毛片免费区| 国产精品日韩av在线免费观看| 欧美成人午夜免费资源| 少妇被粗大猛烈的视频| 成人二区视频| 日本免费在线观看一区| 久久久久九九精品影院| 免费看光身美女| 偷拍熟女少妇极品色| 国产精品电影一区二区三区| 国产高清视频在线观看网站| 十八禁国产超污无遮挡网站| 国产精品国产三级国产av玫瑰| 成年av动漫网址| 久久精品国产自在天天线| 免费看日本二区| 亚洲国产精品sss在线观看| 欧美3d第一页| 村上凉子中文字幕在线| 久久久久性生活片| 日本五十路高清| 日本黄色片子视频| 91aial.com中文字幕在线观看| 免费在线观看成人毛片| 久久欧美精品欧美久久欧美| 三级毛片av免费| 亚洲激情五月婷婷啪啪| 秋霞在线观看毛片| 日日啪夜夜撸| 桃色一区二区三区在线观看| 国产三级在线视频| 欧美3d第一页| 成人三级黄色视频| 国产精品一区二区三区四区免费观看| 亚洲最大成人av| 日韩在线高清观看一区二区三区| 久久久精品94久久精品| 秋霞伦理黄片| 成年女人永久免费观看视频| 国产精品野战在线观看| 91久久精品国产一区二区三区| 看黄色毛片网站| a级毛片免费高清观看在线播放| 国产精品电影一区二区三区| 97在线视频观看| 国产又色又爽无遮挡免| or卡值多少钱| 亚洲欧美成人精品一区二区| 欧美性猛交黑人性爽| 国产亚洲精品av在线| 一夜夜www| 精品酒店卫生间| av国产久精品久网站免费入址| 精品国产一区二区三区久久久樱花 | 久久这里有精品视频免费| 色综合亚洲欧美另类图片| av黄色大香蕉| 美女国产视频在线观看| 国产亚洲av片在线观看秒播厂 | 色综合色国产| 日日干狠狠操夜夜爽| 小蜜桃在线观看免费完整版高清| 国产亚洲91精品色在线| 国产色爽女视频免费观看| 少妇丰满av| 非洲黑人性xxxx精品又粗又长| 国产老妇女一区| 免费看美女性在线毛片视频| 久久这里有精品视频免费| 亚洲av成人精品一二三区| 国产精品国产三级国产专区5o | 毛片女人毛片| 大话2 男鬼变身卡| 国产麻豆成人av免费视频| 村上凉子中文字幕在线| 欧美成人免费av一区二区三区|