• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of the hydrological safety of dams combining two numerical tools: Iber and DualSPHysics *

    2018-04-13 12:13:50GonzlezCaoGarcFealDomnguezCrespomezGesteira

    J. González-Cao, O. García-Feal, J. M. Domínguez, A. J. C. Crespo, M. Gómez-Gesteira

    ?

    Analysis of the hydrological safety of dams combining two numerical tools: Iber and DualSPHysics*

    J. González-Cao, O. García-Feal, J. M. Domínguez, A. J. C. Crespo, M. Gómez-Gesteira

    Theupgrade of the hydrological safety of dams is a critical issue to avoid failures that can dramatically affect people and assets. This paper shows a numerical methodology to analyse the safety of the Belesar dam (NW, Spain) based on two different numerical codes. First, a mesh-based code named Iber, suited to deal with large 2-D domains, is used to simulate the impoundment. The initial conditions and the inlet provided to Iber correspond to the maximum water elevation and the maximum expected inflow to the impoundment defined in the technical specifications of the dam, which are associated to the more hazardous operation conditions of the dam. Iber provides information about the time needed for water to attain the crest of the dam when floodgates are closed. In addition, it also provides the velocity of discharge when gates are opened. Then, a mesh-free code named DualSPHysics, which is especially suited to deal with complex and violent 3-D flows, is used to reproduce the behaviour of one of the spillways of the dam starting from the results obtained with Iber, which are used as inlet conditions for DualSPHysics. The combined results of both model show thattheleft spillway can discharge the surplus of water associated to the maximum inflow to the reservoir if the gates of the spillways are opened before the overtopping of the dam was observed. In addition, water depth measured on the spillway is considerably lower than the lateral walls, preventing overtopping. Finally, velocities at different points of the spillway showed to be in good agreement with theoretical values.

    Hydrological safety, dam;numerical simulation, Iber, DualSPHysics

    Introduction

    The hydrological safety of dams can be associa- ted with the probability of failure of the exceedance structures: spillways and outlet works[1]. The failure of the exceedance structures can be divided into two types: structural and performance failures[2]. The first one is related to dam breaks or collapses and the second one is related to water excess in the impound- ment of the dam. These failures can generate high impacts downstream the dam causing serious damage to population[3, 4]or infrastructures. For instance, on February 11, 2017, the damage of main and emer- gency spillways of the Oroville dam, in Northern California, precluded the opening of the gates. This fact, combined with a high precipitation event, led to the rising of the level of the impoundment over the crest of the dam (overtopping). In order to avoid the collapse of the weir derived from overtopping, the gates of the spillways were opened causing the erosion of the main spillway. More than 150 000 people living downstream were evacuated.

    In this work the hydrological safety of Belesar dam was analysed by means of two numerical codes: Iber[5]and DualSPHysics[6]. First, the water elevation and the outflow of the spillways associated with the maximum expected flow defined in the dam speci- fications were obtained using Iber[5], which is a mesh- based numerical code that solves the St. Venant 2D equations using a finite volume scheme. Iber is well suited to analyse the behaviour of rivers or impound- ments with large domains where only the horizontal components of the velocity and the water depth are involved. Two applications of Iber to flood analysis can be found in Bonasia et al.[7]and Areu-Rangel et al.[8]. In the present application, the numerical domain includes the geometry of the Belesar dam and its associated impoundment.

    Once the water elevation near the spillways of the dam and the outflow of the left spillway were obtained with Iber, the behaviour of the spillway was studied by means of DualSPHysics[6], which is a mesh-free numerical code conceived to analyse free- surface phenomena where complex fluid dynamics is observed[9-11].

    1. Case of study

    Belesar dam and its associated impoundment are located in North-West of Spain in Autonomous Community of Galicia 42o37?45??N, 7o42?36??W. The dam was built in the mid 20th century with the main purpose of power generation, basin regulation and flooding control. The total high (from heel to crest) is 132 m with a crest length is 500 m, whose upper part is at 332 ma.s.l.. The impoundment associated to the dam has a capacity of 654.5 hm3and covers an area of 1.9097′108m2, with a watershed of 4 290 km2. The main exceedance structures of the dam are two spillways and four scour outlets. According to the technical specifications of the dam, the maximum level of the pool is equal to 330 m.a.s.l. and the maximum expected Mi?o river flow is 4 000 m3/s. The geographical location of the dam, and aerial image of the impoundment and a zoomed aerial image including both spillways are shown in Fig. 1.

    Fig.1(Color online) Location of “Belesar” dam (a), impound- ment associated to the dam (b) and aerial image of the dam (c). The figures showed in panels b and c were obtained from http://www.ign.es/iberpix2/visor/# (PNOA courtesy of ? Instituto Geográfico Nacional)

    The geometry of the impoundment was obtained from raster files obtained from the IGN website and edited by means of QGIS[12]. In addition, the geometry of the spillway was obtained using the Blender[13]according to the technical specifications of the dam.

    2. Material and methods

    A description of the numerical codes used to per- form the simulations and the parameters defined for these simulations is presented in this section.

    2.1 Iber

    Iber[5]is a numerical code that solves the St. Venant 2-D Equations (Eq. (1)) by means of a finite volume scheme. The model consists of three modules: hydrodynamic, turbulence and sediment transport. Although only the hydrodynamic one was used in this work. The code can be freely downloaded from http://iberaula.es/web/index.php.

    The assumptions of the St. Venant 2-D Equations are: (1) the velocity vector varies only in the hori- zontal direction of the flow. (2) The slope of the bottom is small. (3) No erosion is considered. (4) The flow is considered as incompressible.

    The friction between the water and the bottom of the channel is an important parameter to model the hydrodynamics of the flow in a wide variety of app- lications. This parameter is usually modelled as

    Manning’s coefficients were assigned by means of a tool[14]implemented in Iber that automatically links the land uses defined in the Sistema de Infor- mación sobre Ocupación del Suelo de Espa?a (SIOSE)to the values of the Manning’s coefficients internally defined in Iber. More than 1 000 land uses were prescribed for the area under study with Manning?s coefficients ranging from 0.002 s/m1/3to 0.073 s/m1/3. Figure 2 shows the land uses defined for this simula- tion.

    Fig.2(Color online) Land uses automatically assigned

    Two numerical experiments were carried using Iber. In the first one, the entire area of the impound- ment was analysed considering the crest of the dam to be 350 m.a.s.l. (18 m above its real value) and the gates of the spillways were closed. The boundary con- dition was an inlet flow of 4 000 m3/s located 50 km upstream, which was kept constant during the si- mulation. This inlet flow corresponds to the maxi- mum expected flow of the Mi?o river defined in the technical specifications of the dam. This experiment allows analyzing the time needed for water to reach the top of the real structure (332 m.a.s.l.) under extre- me inflow conditions. In the second experiment a more detailed simulation of the area near the dam was considered by reconstructing the original bathymetry of the impoundment using old topographic maps and QGIS. The inlet condition in the vicinity of the dam (see Fig. 3, upper panel) corresponds to the values provided by the first experiment. The second experi- ment was split into two steps. In the first step the gates of the spillways were closed and they were opened in the second step once water elevation reached the crest of the original dam (332 m.a.s.l.). The outflows were modelled by means the tool culvert defined by Iber, which computes the flow between the starting and the ending points of the culvert using Eq. (4) (Manning’s equation).

    Table1Main features of the numerical experiments carried out with Iber

    Figure 3 shows the area defined for the different experiments.

    2.2 DualSPHysics

    DualSPHysics is a numerical code based on the smoothed particle hydrodynamics (SPH) method con- ceived to be used for real engineering problems. The model is open source and can be freely downloaded from http://www.dual.sphysics.org. DualSPHysics includes a software that can be run on either CPUs or GPUs (graphics cards with powerful parallel compu- ting). GPUs offer greater computing power than CPUs, and they are a suitable an affordable option to accele- rate SPH modelling. The package also includes pre- processing and post-processing tools. A complete des- cription of DualSPHysics can be found in Crespo et al.[6].

    Fig.4 (Color online) Geometry of the left spillway ofBelesar dam obtained with Blender (upper panel) and real image of the spillway (lower panel)

    DualSPHysics has been widely used to analyse- water flows under extreme conditions.[9-11, 15-17]. The walls of the spillway were discretised using Dynamic Boundary Conditions[18]. A new functionality of DualSPHysics allows the user to define inlet condi- tions imposing velocity, density or water depth[19]. Inlet conditions with prescribed velocity were used in this work.

    Only the left spillway whose real and numerical geometry is shown in Fig. 4, was considered in the present study. The initial interparticle spacing defined for the numerical simulations carried out with DualSPHysics was equal to 0.3 m (1.76′105particles) being the physical time to be simulated 30 s.

    3. Results and discussions

    3.1 Simulation of the reservoir using Iber

    Figure 5 shows the time series of water elevation near the left spillway obtained in the first experiment with Iber. Water elevation was observed to be similar atbothspillways.Theelevationoftherealcrest(332 m.a.s.l.) was reached at time equal to 4.2 h, which marks the maximum time to open the flood- gates to prevent dam failure by overtopping under extreme river discharge.

    Fig.5Water elevation near the left spillway obtained in the first experiment using Iber. The dashed line represents the elevation of the real crest of the dam (332 m.a.s.l.)

    Fig.6Inflow condition for the detailed simulation of the dam area

    Once the water elevation was obtained, a second experiment was carried out considering only the area of the impoundment close to the dam. In this simula- tion the original bathymetry of the valley was re- constructed. The boundary condition (inflow) was obtained from the first experiment (Fig. 6). As we mentioned above, the second experiment was split into two steps: in the first one the gates of the spillways remained closed whilst in the second one the gates were opened.

    Figure 7 shows the water elevation and the velocity of the flow through the left spillway obtained in the second experiment. Water elevation is observed to reach the crest a time close to 2.5 h. During that interval, the velocity of the flow was equal to zero. At that moment, the gates of the spillways were opened and water elevation near the dam started to decrease and velocity reached its peak value (close to 3.2 m/s), decreasing from then on. The peak value of velocity obtained in this experiment was used as a boundary condition for the simulation of the left spillway using DualSPHysics.

    Fig.7Water elevation (upper panel) and velocity at the left spillway (lower panel) obtained in the second experiment. The shaded area represents the time interval when gates were closed. The dashed line in the upper panel repre- sents the crest elevation

    3.2Simulations of the left spillway using Dual- SPHysics

    3.2.1 Modelling simplified spillways

    Prior to compute the behavior of a real spillway, different simulations using simplified 2-D spillways were carried out to verify the accuracy of Dual- SPHysics. The first one corresponds to a typical ogee spillway and the second one corresponds to a crested weir. Numerical simulations obtained with Dual- SPHysics were compared with experimental data (Fig. 8). In the upper panel, the 0-line represents the vertical wall of the ogee spillway and in the lower panel the red rectangle represents the lateral view of the broad crested weir, being the water profiles provided by DualSPHysics similar to those obtained in the experi- mental tests. These results shows that DualSPHysics is a suited tool to analyse flows on spillways. Additional details on the experiment can be found in the work by Husain et al.[20].

    Fig.8 (Color online) Experimental free surface profile (dots) and obtained using DualSPHysics (solid line) for two different spillways: ogee spillway (upper panel) and broad crested weir (lower panel)

    3.2.2 Simulation of the left spillway

    Once the results of DualSPHysics were checked for simplified geometries, the numerical simulation of the Belesar spillway was carried out. The inlet con- dition in DualSPHysics is defined using the peak velocity obtained from the Iber outflow (see Fig. 7, lower panel). Figure 9 shows three different snapshots of the spillway simulated with DualSPHysics.

    Time series of water depth and velocity were computed at five different distances from the crest of the spillway. Two control points were defined for each distance, on the right and left side of the spillway. The location of the control points is shown in Fig. 10.

    Fig.9 (Color online) Different snapshots of the numerical si- mulation of the left spillway of Belesar dam using DualSPHysics

    Fig.10 Location of the control points on the spillway

    The time series of water depth and velocity obtained at three points on the right side of the spill- way are shown in Fig. 11. A steady state is reached for times longer than 11 s.

    The maximum values of water depth and velocity are shown in Fig. 12.

    Fig.11 Time series of water depth (upper panel) and velocity (lower panel) obtained with DualSPHyics at three locations on the right side of the spillway. The dotted line in the upper panel represents the height of the lateral walls of the spillway

    Fig.12 Maximum values of the water depth (upper panel) and velocity (lower panel) obtained on the right (cross) and left side (circle) of the spillway using DualSPHyics. The dotted line in the upper panel represents the height of the lateral walls of the spillway. Asterisks represent the theoretical values of velocity

    Water depth is clearly asymmetric, at least until the middle part of the spillway (P3). Water tends to accumulate on the rightside, with depth increasing from P1to P3. On the other hand, water depth is lower on the left side. Actually, pointP3remains dry during the whole simulation. After the middle part of the spillway (points P4and P5), water depth attains a steady value near 4 m on both sides. Note that water depth is considerably lower than the lateral walls of the spillway (10 m high) and no overtopping was observed during the under the analysed conditions.

    4. Conclusions

    In this work a mesh-based code, Iber, and a mesh-less code, DualSPHysics, were used together to analyse the safety of Belesar dam.

    The inlet conditions for DualSPHysics simulation were obtained from results previously obtained with Iber. DualSPHysics showed that the spillway works properly even under extreme conditions. Water depth was computed at five different positions inside the spillway, being the maximum water depth conside- rably lower than the height of the lateral walls of the spillway, so no overflow is observed.

    In summary, the paper shows that the combina- tion of Iber and DualSPHysics constitutes a reliable methodology that can be applied by engineers, nume- rical modelers and public institutions to analyse the hydrological safety of a wide range of dams.

    Acknowledgements

    This work is partially supported under projects IMDROFLOOD (Water JPI-WaterWorks 2014), Pro- grama de Consolidación e Estructuración de Uni- dades de Investigación Competitivas (ED431C 2017/ 64) and Risc ML (Interreg Program, European Regio- nal Development Fund, ERDF). One of the authors, A. J. C. C., is funded by a Ramón y Cajal grant of the Ministerio de Economía y Competitividad del Gobier- no de Espa?a (RYC-2013-12617). One of us, J. G. C., wants to acknowledge Dr. Luis Cea for helpful dis- cussions.

    [1] De Michele C., Salvadori G., Canossi M. et al. Bivariate statistical approach to check adequacy of dam spillway [J]., 2005, 10(1): 50-57.

    [2] Tung Y.K. Some recent progress im uncertainty analysis for hydraulic design [R]. Laramie, USA: University of Wyoming, 1993.

    [3] Brown C.A., Graham W. J. Assessing the threat to life from dam failure [J]., 1988, 24(6): 1303-1309.

    [4] Betamio de Almeida A., Viseu T. Dams and valleys safety: A present and future challenge [C].,Lisbon, Portugal, 1996.

    [5] Bladé E., Cea L., Corestein G. et al. Iber: Herramienta de simulación numérica del flujo en ríos [J]., 2014, 30(1): 1-10.

    [6] Crespo A.J.C., Domínguez J.M., Rogers B.D. et al. DualSPHysics: Open-source parallel CFD solver on SPH [J].,2015, 187: 204-216.

    [7] Bonasia R., Areu-Rangel O.S., Tolentino D. et al. Floo- ding hazard assessment at Tulancingo (Hidalgo, Mexico) [J]., 2017, https://doi.org/10.1111/jfr3.12312.

    [8] Areu-Rangel O.S., González-Cao J., Crespo A.J.C. et al. Numerical modelling of hydrological safety assignement in dams with IBER [J]., 2017, (4): 1-12.

    [9] Altomare C., Crespo A.J.C., Rogers B.D. et al. Nume- rical modelling of armour block sea breakwater with smoothed particle hydrodinamics [J].,2014, 130(1): 34-45.

    [10] Altomare C., Crespo A.J.C., Domíguez J.M. et al. App- licability of smoothed particle hydrodinamics for estima- tion of sea wave impact on coastal structures [J]., 2015, 96: 1-12.

    [11] Barreiro A., Domínguez J.M., Crespo A.J.C. et al. Inte- gration of UAV photogrammetry and SPH modelling of fluids to study runoff on real terrains [J]., 2014, 9(11): e111031.

    [12] QGIS Development Team. QGIS geographic information system [R]. Open Source Geospatial Foundation Project, 2016.

    [13] Blender. https: www.blender.org [EB/OL]. 2017.

    [14]González-Cao J., García-Feal O., Crespo A.J.C. et al. Predicción de inundaciones originadas por precipitaciones extremas mediante el módulo hidrológico de Iber [C]., La Coru?a, Spain, 2017.

    [15]Domínguez J.M., Crespo A.J.C. et al. New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters [J]., 2013, 184(8): 1848-1860.

    [16]Altomare C., Domínguez J.M., Crespo A.J.C. et al. Long- crested wave generation and absorption for SPH-based DualSPHysics model [J]., 2017, 127: 37-54.

    [17]Canelas R.B., Crespo A.J.C., Domínguez J.M. et al. SPH-DCDEM model for arbitrary geometries in free surface solid-fluid flows [J]., 2016, 202: 131-140.

    [18]Crespo A.J.C., Gómez-Gesteira M., Dalrymple R.A. Boundary conditions generated by dynamic particles in SPH methods [J]., 2007, 5(3): 173-184.

    [19] Tafuni A., Dominguez J.M., Vacondio R. et al. Accurate and efficient SPH open boundary conditions for real 3-D engineering problems [C]., Orense, Spain, 2017.

    [20] Husain S.M., Muhammed J.R., Karunarathna H.U. et al. Investigation of pressure variations over stepped spillways using smooth particle hydrodinamics [J]., 2014,66(2):52-69.

    [21] Bureau of Reclamations. Design of small dams [M]. Third Edition, Denver, Colorado, USA: Bureau of Reclamations, 1987.

    (October 30, 2017, Accepted December 19, 2017)

    ?China Ship Scientific Research Center 2018

    J. González-Cao (1976-), Male, Ph. D.

    J. González-Cao,

    E-mail:jgcao@uvigo.es

    国产成人啪精品午夜网站| 色婷婷久久久亚洲欧美| av福利片在线| 啦啦啦 在线观看视频| 精品少妇久久久久久888优播| 美女主播在线视频| 黑丝袜美女国产一区| 老司机午夜十八禁免费视频| 人人妻,人人澡人人爽秒播| 91大片在线观看| 青草久久国产| 91av网站免费观看| 欧美变态另类bdsm刘玥| 少妇 在线观看| 午夜福利影视在线免费观看| 狂野欧美激情性xxxx| 亚洲av欧美aⅴ国产| 欧美激情 高清一区二区三区| 亚洲专区中文字幕在线| 欧美日韩av久久| 高潮久久久久久久久久久不卡| av网站在线播放免费| 桃花免费在线播放| 性色av乱码一区二区三区2| 国产av一区二区精品久久| 欧美亚洲日本最大视频资源| 欧美日韩av久久| 人妻人人澡人人爽人人| 人妻久久中文字幕网| 女警被强在线播放| 在线看a的网站| 日韩三级视频一区二区三区| 另类亚洲欧美激情| 午夜福利乱码中文字幕| 丰满饥渴人妻一区二区三| 中文字幕精品免费在线观看视频| 午夜激情久久久久久久| 久久这里只有精品19| 伊人亚洲综合成人网| 在线看a的网站| 午夜久久久在线观看| 又黄又粗又硬又大视频| 成人三级做爰电影| 成人国产一区最新在线观看| 丝袜在线中文字幕| 亚洲五月色婷婷综合| 午夜激情av网站| 亚洲精品国产av成人精品| 欧美人与性动交α欧美软件| 免费日韩欧美在线观看| 波多野结衣一区麻豆| 国产av又大| 少妇 在线观看| 中文字幕色久视频| 波多野结衣av一区二区av| 精品国产一区二区三区久久久樱花| 涩涩av久久男人的天堂| 一本大道久久a久久精品| 久久久国产成人免费| 纵有疾风起免费观看全集完整版| 在线天堂中文资源库| 亚洲精品成人av观看孕妇| 热re99久久国产66热| 精品国产乱码久久久久久小说| 超碰97精品在线观看| 99热网站在线观看| 国产精品1区2区在线观看. | 久久久精品94久久精品| 国产精品亚洲av一区麻豆| 成人亚洲精品一区在线观看| 国产亚洲精品一区二区www | 亚洲精品第二区| 别揉我奶头~嗯~啊~动态视频 | 女人高潮潮喷娇喘18禁视频| 精品国产乱码久久久久久小说| 亚洲欧美色中文字幕在线| 一级毛片精品| 成人手机av| 精品一品国产午夜福利视频| 秋霞在线观看毛片| 黑人欧美特级aaaaaa片| 国产精品偷伦视频观看了| tube8黄色片| 久久中文看片网| 精品国产一区二区三区久久久樱花| 三级毛片av免费| 国精品久久久久久国模美| 美女视频免费永久观看网站| 国产亚洲欧美在线一区二区| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕av电影在线播放| 超碰97精品在线观看| 欧美激情 高清一区二区三区| 久久免费观看电影| 国产男人的电影天堂91| 97人妻天天添夜夜摸| 巨乳人妻的诱惑在线观看| 免费观看av网站的网址| av网站在线播放免费| av不卡在线播放| 国产野战对白在线观看| 国产免费福利视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 手机成人av网站| 精品一品国产午夜福利视频| 91国产中文字幕| 国产精品一区二区免费欧美 | bbb黄色大片| 脱女人内裤的视频| 老熟女久久久| 中文字幕人妻丝袜制服| 亚洲综合色网址| 国产精品久久久久成人av| 人妻人人澡人人爽人人| 伊人亚洲综合成人网| 国产免费视频播放在线视频| 日韩,欧美,国产一区二区三区| 国产免费视频播放在线视频| 欧美 日韩 精品 国产| 69av精品久久久久久 | 秋霞在线观看毛片| 国产亚洲av高清不卡| 男男h啪啪无遮挡| 国产男女内射视频| 国产精品一区二区在线不卡| 91精品伊人久久大香线蕉| av不卡在线播放| a 毛片基地| 下体分泌物呈黄色| 嫩草影视91久久| 青春草视频在线免费观看| 美女高潮喷水抽搐中文字幕| 在线看a的网站| 在线观看免费午夜福利视频| 色婷婷av一区二区三区视频| 亚洲情色 制服丝袜| 精品一区在线观看国产| 国产激情久久老熟女| xxxhd国产人妻xxx| netflix在线观看网站| 亚洲欧美精品综合一区二区三区| 99精品欧美一区二区三区四区| 欧美日韩福利视频一区二区| 不卡av一区二区三区| 一区福利在线观看| 最黄视频免费看| 久久精品国产综合久久久| 美女午夜性视频免费| 国产黄色免费在线视频| 热re99久久国产66热| 国产成人系列免费观看| 久久性视频一级片| 国产免费一区二区三区四区乱码| 考比视频在线观看| 精品久久久久久电影网| 亚洲欧美精品综合一区二区三区| 午夜福利免费观看在线| 国产亚洲午夜精品一区二区久久| av免费在线观看网站| av在线app专区| 亚洲专区国产一区二区| 中文字幕人妻丝袜制服| 亚洲av国产av综合av卡| 欧美日韩一级在线毛片| av网站在线播放免费| 国产成人精品久久二区二区免费| 一本久久精品| 亚洲精品国产av蜜桃| 国产野战对白在线观看| 欧美在线黄色| 啦啦啦免费观看视频1| 精品国产一区二区三区四区第35| 亚洲精品久久成人aⅴ小说| 亚洲精品一二三| 欧美日韩亚洲综合一区二区三区_| 精品福利永久在线观看| 久久九九热精品免费| 免费在线观看黄色视频的| 少妇的丰满在线观看| 亚洲欧洲日产国产| 啦啦啦视频在线资源免费观看| 亚洲专区国产一区二区| 日本五十路高清| 极品人妻少妇av视频| 人妻久久中文字幕网| xxxhd国产人妻xxx| 欧美日韩精品网址| 亚洲精品国产av蜜桃| 啦啦啦免费观看视频1| 国产91精品成人一区二区三区 | 一本大道久久a久久精品| 丰满饥渴人妻一区二区三| 久久久国产欧美日韩av| 十八禁网站免费在线| 欧美xxⅹ黑人| 99香蕉大伊视频| 亚洲avbb在线观看| 午夜福利视频精品| 黑人巨大精品欧美一区二区mp4| 国产深夜福利视频在线观看| 亚洲欧美色中文字幕在线| 女性生殖器流出的白浆| 色婷婷av一区二区三区视频| 一区二区三区激情视频| 51午夜福利影视在线观看| 男女高潮啪啪啪动态图| av天堂在线播放| 纵有疾风起免费观看全集完整版| 久久精品国产综合久久久| 他把我摸到了高潮在线观看 | 91精品伊人久久大香线蕉| 日韩精品免费视频一区二区三区| 色婷婷av一区二区三区视频| 飞空精品影院首页| 啪啪无遮挡十八禁网站| 亚洲欧美一区二区三区久久| 十八禁网站免费在线| 久久久久视频综合| 国产欧美日韩一区二区三区在线| 午夜福利在线观看吧| 真人做人爱边吃奶动态| 国产一卡二卡三卡精品| 亚洲avbb在线观看| 亚洲精品国产区一区二| 国产男女超爽视频在线观看| 亚洲欧美日韩高清在线视频 | 欧美精品人与动牲交sv欧美| 欧美国产精品一级二级三级| 亚洲av电影在线观看一区二区三区| 高清视频免费观看一区二区| 国产免费现黄频在线看| 国内毛片毛片毛片毛片毛片| 亚洲一码二码三码区别大吗| 日本撒尿小便嘘嘘汇集6| 久久99热这里只频精品6学生| 欧美日韩av久久| 天天影视国产精品| 美女脱内裤让男人舔精品视频| 精品国产一区二区久久| 啦啦啦中文免费视频观看日本| 精品国产超薄肉色丝袜足j| 欧美激情 高清一区二区三区| 久久久久国内视频| 久久久久精品国产欧美久久久 | 91字幕亚洲| 狠狠婷婷综合久久久久久88av| 中国国产av一级| 亚洲国产毛片av蜜桃av| bbb黄色大片| 精品少妇一区二区三区视频日本电影| 男女下面插进去视频免费观看| 久久 成人 亚洲| 日韩欧美一区二区三区在线观看 | 人人妻人人澡人人爽人人夜夜| 欧美国产精品一级二级三级| 午夜影院在线不卡| 国产精品秋霞免费鲁丝片| 亚洲中文字幕日韩| 亚洲欧美精品自产自拍| 一本久久精品| 午夜福利在线免费观看网站| 日日夜夜操网爽| 两个人免费观看高清视频| 国产区一区二久久| www.自偷自拍.com| 精品熟女少妇八av免费久了| 丰满饥渴人妻一区二区三| 亚洲欧美一区二区三区黑人| av电影中文网址| 中文字幕人妻丝袜一区二区| 成人18禁高潮啪啪吃奶动态图| 国产又爽黄色视频| 日本vs欧美在线观看视频| 丰满饥渴人妻一区二区三| 国产成人精品无人区| 色播在线永久视频| 日韩三级视频一区二区三区| 两个人看的免费小视频| 两个人免费观看高清视频| 亚洲成国产人片在线观看| 欧美 日韩 精品 国产| 中国美女看黄片| 成人18禁高潮啪啪吃奶动态图| 一区二区三区乱码不卡18| 国产精品国产三级国产专区5o| 80岁老熟妇乱子伦牲交| 99热国产这里只有精品6| 水蜜桃什么品种好| 欧美在线一区亚洲| 亚洲av欧美aⅴ国产| 久久 成人 亚洲| 久久亚洲国产成人精品v| 精品久久久久久电影网| 丝袜脚勾引网站| 捣出白浆h1v1| 一级毛片电影观看| 丝袜在线中文字幕| 天天操日日干夜夜撸| 99国产精品99久久久久| 91精品三级在线观看| 欧美另类亚洲清纯唯美| 国产精品麻豆人妻色哟哟久久| 女警被强在线播放| 在线观看www视频免费| 一级片免费观看大全| 我要看黄色一级片免费的| 日韩熟女老妇一区二区性免费视频| 9色porny在线观看| 蜜桃在线观看..| 少妇的丰满在线观看| 久久精品国产a三级三级三级| 国产色视频综合| 欧美精品亚洲一区二区| 男女下面插进去视频免费观看| 国产在视频线精品| 国产男女超爽视频在线观看| 久久精品国产综合久久久| 美女高潮到喷水免费观看| 亚洲欧美日韩高清在线视频 | 日韩人妻精品一区2区三区| 一本久久精品| 国产亚洲精品久久久久5区| 美女福利国产在线| 国产精品.久久久| 日本av手机在线免费观看| 亚洲视频免费观看视频| 两人在一起打扑克的视频| 9热在线视频观看99| 成人免费观看视频高清| 欧美一级毛片孕妇| 无遮挡黄片免费观看| 色婷婷av一区二区三区视频| 国产野战对白在线观看| 国产精品亚洲av一区麻豆| 十八禁高潮呻吟视频| 国产精品秋霞免费鲁丝片| 亚洲专区中文字幕在线| 精品国产一区二区久久| 极品少妇高潮喷水抽搐| 操美女的视频在线观看| 精品人妻一区二区三区麻豆| 国产97色在线日韩免费| 一个人免费看片子| 亚洲精品乱久久久久久| 天天影视国产精品| 777米奇影视久久| 午夜影院在线不卡| 欧美另类亚洲清纯唯美| 精品一区二区三卡| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av日韩精品久久久久久密| 国产99久久九九免费精品| 在线精品无人区一区二区三| 久久综合国产亚洲精品| www.999成人在线观看| 人人妻人人添人人爽欧美一区卜| 国产欧美亚洲国产| 日日摸夜夜添夜夜添小说| www.999成人在线观看| 黄色a级毛片大全视频| 中文字幕人妻丝袜一区二区| 啦啦啦在线免费观看视频4| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品一区三区| 亚洲男人天堂网一区| 久久久久久久久免费视频了| 亚洲国产日韩一区二区| 亚洲中文日韩欧美视频| 黑丝袜美女国产一区| 午夜日韩欧美国产| 黄色视频,在线免费观看| 欧美乱码精品一区二区三区| 亚洲欧美精品自产自拍| 水蜜桃什么品种好| 日韩大码丰满熟妇| 国产成人欧美| 一区二区av电影网| 97在线人人人人妻| 777米奇影视久久| 青春草视频在线免费观看| av网站在线播放免费| 国产淫语在线视频| 国产高清国产精品国产三级| 精品人妻熟女毛片av久久网站| 脱女人内裤的视频| 亚洲国产精品999| 久久午夜综合久久蜜桃| 亚洲精品美女久久久久99蜜臀| 精品国内亚洲2022精品成人 | 天天躁夜夜躁狠狠躁躁| 亚洲av男天堂| 精品国产一区二区三区四区第35| 国产精品亚洲av一区麻豆| 婷婷成人精品国产| 亚洲人成77777在线视频| 人妻久久中文字幕网| 热re99久久精品国产66热6| 亚洲性夜色夜夜综合| 国产日韩一区二区三区精品不卡| 在线观看人妻少妇| 两性夫妻黄色片| 久久久久网色| 18禁国产床啪视频网站| 最新在线观看一区二区三区| 一本久久精品| 岛国毛片在线播放| 夫妻午夜视频| 人人妻,人人澡人人爽秒播| 久久精品亚洲av国产电影网| 老司机影院成人| 亚洲精品粉嫩美女一区| 亚洲精品国产一区二区精华液| av天堂在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜激情av网站| 狠狠狠狠99中文字幕| 免费在线观看视频国产中文字幕亚洲 | 最黄视频免费看| 伊人久久大香线蕉亚洲五| 国产精品秋霞免费鲁丝片| 国产亚洲av片在线观看秒播厂| 欧美一级毛片孕妇| 亚洲视频免费观看视频| 亚洲精品av麻豆狂野| 国产亚洲欧美在线一区二区| 超碰成人久久| 又大又爽又粗| 午夜精品国产一区二区电影| 夜夜夜夜夜久久久久| 国产成人系列免费观看| av一本久久久久| 亚洲久久久国产精品| 真人做人爱边吃奶动态| 精品免费久久久久久久清纯 | av电影中文网址| 99国产精品一区二区蜜桃av | 五月天丁香电影| 最近最新免费中文字幕在线| 黄色 视频免费看| 久久这里只有精品19| 亚洲国产毛片av蜜桃av| 成人影院久久| av有码第一页| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲一区中文字幕在线| 汤姆久久久久久久影院中文字幕| 18禁观看日本| 各种免费的搞黄视频| 精品人妻在线不人妻| 青青草视频在线视频观看| 国产三级黄色录像| 国产精品久久久久成人av| 久久人妻福利社区极品人妻图片| 亚洲欧洲日产国产| 欧美中文综合在线视频| av免费在线观看网站| 在线观看免费午夜福利视频| 午夜免费鲁丝| 国产精品香港三级国产av潘金莲| 老司机午夜十八禁免费视频| 蜜桃国产av成人99| 老鸭窝网址在线观看| 亚洲精品国产av成人精品| 亚洲中文av在线| 夜夜骑夜夜射夜夜干| 人成视频在线观看免费观看| 老汉色∧v一级毛片| 亚洲欧美成人综合另类久久久| 国产亚洲av片在线观看秒播厂| 夫妻午夜视频| 亚洲精品国产精品久久久不卡| 午夜91福利影院| 伊人亚洲综合成人网| 亚洲精品国产区一区二| 在线av久久热| 宅男免费午夜| 精品国产国语对白av| 欧美在线一区亚洲| 美女视频免费永久观看网站| 一本色道久久久久久精品综合| 人妻 亚洲 视频| 国产99久久九九免费精品| 欧美激情高清一区二区三区| 一边摸一边做爽爽视频免费| 国产麻豆69| 日韩 欧美 亚洲 中文字幕| 两个人看的免费小视频| 99国产综合亚洲精品| 一二三四在线观看免费中文在| 久久香蕉激情| 国产xxxxx性猛交| 久久久久久久久免费视频了| 美女脱内裤让男人舔精品视频| 国产精品一区二区精品视频观看| 99热国产这里只有精品6| 免费少妇av软件| 久久久久久久久免费视频了| 国产有黄有色有爽视频| 国产精品国产三级国产专区5o| 国产精品秋霞免费鲁丝片| avwww免费| 国产99久久九九免费精品| 成年美女黄网站色视频大全免费| 一边摸一边做爽爽视频免费| 色婷婷av一区二区三区视频| 欧美午夜高清在线| 国产免费一区二区三区四区乱码| 1024视频免费在线观看| 韩国精品一区二区三区| svipshipincom国产片| 国产一区二区激情短视频 | 最近中文字幕2019免费版| 久热爱精品视频在线9| 99精品久久久久人妻精品| tube8黄色片| 国产一区二区 视频在线| 国产av精品麻豆| 久久人人爽人人片av| 国产麻豆69| 少妇被粗大的猛进出69影院| 99久久综合免费| 欧美精品一区二区大全| 每晚都被弄得嗷嗷叫到高潮| 亚洲综合色网址| 一二三四社区在线视频社区8| 超碰成人久久| 免费观看a级毛片全部| 国产又爽黄色视频| 国产99久久九九免费精品| 亚洲精品中文字幕一二三四区 | 亚洲av美国av| 搡老熟女国产l中国老女人| 男女边摸边吃奶| 亚洲专区中文字幕在线| 欧美另类一区| 国产精品自产拍在线观看55亚洲 | 男人爽女人下面视频在线观看| 欧美成狂野欧美在线观看| 欧美精品高潮呻吟av久久| 制服人妻中文乱码| 国产精品自产拍在线观看55亚洲 | 欧美日韩av久久| 久久精品久久久久久噜噜老黄| 午夜福利乱码中文字幕| 日日摸夜夜添夜夜添小说| 伊人亚洲综合成人网| 日韩制服丝袜自拍偷拍| 亚洲欧洲精品一区二区精品久久久| 久久国产精品大桥未久av| 久久人人爽人人片av| 夜夜夜夜夜久久久久| 人妻一区二区av| av不卡在线播放| 免费观看a级毛片全部| 美女中出高潮动态图| 久久国产亚洲av麻豆专区| 亚洲精华国产精华精| 自线自在国产av| 久久ye,这里只有精品| 欧美日韩亚洲综合一区二区三区_| 一区二区三区激情视频| 精品欧美一区二区三区在线| 黄色视频不卡| 下体分泌物呈黄色| 精品一区二区三区四区五区乱码| 国产91精品成人一区二区三区 | 国产真人三级小视频在线观看| 国精品久久久久久国模美| 国产成人精品在线电影| 免费在线观看视频国产中文字幕亚洲 | 搡老岳熟女国产| 男人操女人黄网站| 狂野欧美激情性bbbbbb| 超色免费av| 成人av一区二区三区在线看 | 曰老女人黄片| 大香蕉久久成人网| 久久久久久久大尺度免费视频| 人人妻人人澡人人看| 国产一区有黄有色的免费视频| 欧美少妇被猛烈插入视频| 热99久久久久精品小说推荐| 脱女人内裤的视频| 99国产综合亚洲精品| 欧美日韩av久久| 欧美精品一区二区免费开放| 日韩制服丝袜自拍偷拍| 老司机福利观看| 欧美午夜高清在线| 日日爽夜夜爽网站| 国产亚洲精品久久久久5区| 亚洲精品一卡2卡三卡4卡5卡 | 日日爽夜夜爽网站| 国内毛片毛片毛片毛片毛片| av免费在线观看网站| 免费观看a级毛片全部| 精品亚洲成a人片在线观看| 老司机福利观看| 一二三四社区在线视频社区8| 免费在线观看视频国产中文字幕亚洲 | av一本久久久久| 性高湖久久久久久久久免费观看| 亚洲欧美激情在线| 成人三级做爰电影| 国产男女超爽视频在线观看| 蜜桃国产av成人99| 欧美少妇被猛烈插入视频| 免费观看av网站的网址| 天天躁夜夜躁狠狠躁躁| 国产日韩一区二区三区精品不卡| 高清黄色对白视频在线免费看| 亚洲伊人色综图| 久久99热这里只频精品6学生| 亚洲精品自拍成人| 亚洲第一av免费看|