• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SPH modeling of fluid-structure interaction*

    2018-04-13 12:23:40LuhuiHanXiangyuHu

    Luhui Han, Xiangyu Hu

    ?

    SPH modeling of fluid-structure interaction*

    Luhui Han, Xiangyu Hu

    This work concerns numerical modeling of fluid-structure interaction (FSI) problems in a uniform smoothed particle hydrodynamics (SPH) framework. It combines a transport-velocity SPH scheme, advancing fluid motions, with a total Lagrangian SPH formulation dealing with the structure deformations. Since both fluid and solid governing equations are solved in SPH framework, while coupling becomes straightforward, the momentum conservation of the FSI system is satisfied strictly. A well-known FSI benchmark test case has been performed to validate the modeling and to demonstrate its potential.

    Fluid-structure interaction (FSI), smoothed particle hydrodynamics (SPH), total Lagrangian formulation

    Introduction

    Fluid-structure interaction (FSI) can be found in many natural phenomena, such as birds flying and fish swimming. Meanwhile, it also plays a very important role in the design of many engineering systems, e.g., aircrafts, engines and bridges. Although the mechani- cal behaviors of the FSI systems are quite different, their common essentials are interactions between movable or deformable structures and internal or external fluid flows[1].

    Since FSI problems usually involve nonlinear fluid and solid dynamics, which are too complex to be solved analytically, they mostly have to be analyzed by means of experiments or numerical simulations, and the individual maturity of computational fluid dynamics (CFD) and computational solid dynamics (CSD) in past decades enables it[2]. Accordingly, a number of individual CFD or CSD approaches have already been developed, such as the space-time finite-element method (FEM)[3]and arbitrary Lagrangian Eulerian formulation (ALE)[4]. Because all of these methods are mesh-based, i.e., require that the domain is discretized into individual mesh-elements, they have to take significant efforts on re-meshing to prevent the occurrence of severe mesh distortion[5]. In comparison to conventional mesh-based methods, particle-based meshless methods are intended to approximate the equations of continuum mechanics in the domain only by nodes (particles) without being connected by meshes[6]. Typical meshless methods, which have already been used successfully in solving FSI, are coupled models like smoothed particle hydro- dynamics and discrete element method (SPH-DEM)[6]and lattice Boltzmann method-discrete element me- thod (LBM-DEM)[7]. A common advantage of all these meshless methods is that the identification of moving interfaces and deformable boundaries can be handled straightforwardly[8]. Nevertheless, these coup- led methods for FSI are still limited for more general applications. They both chose partitioned coupling in the form of “CFD-CSD” by using different discretiza- tion schemes to simulate separately the behaviors of fluid and structure, and usually require elaborate consideration for the momentum conservation at fluid-structure interfaces.

    SPH method was first developed for simulating astrophysics problems by Lucy[9]and by Gingold and Monaghan[10], and has recently been adapted to many relevant engineering problems, including heat and mass transfer, molecular dynamics, fluid and solid mechanics. Owing to both its significant advantages of handling large deformations in a purely Lagrangian frame in simulation of solid dynamics and its great convenience of capturing breaking, merging, and splashing features in simulation of free surface flows, Antoci et al.[11]successfully proposed an FSI mode- ling within a uniform SPH framework. Since the same type discretization methods are allowed for a common description of both the fluid and the solid dynamics in terms of pressure and velocity, both the kinematic and dynamic interface conditions at fluid and solid inter- faces became straightforward and easy to be imple- mented in conservative formulations. Like in Gray et al.’s work[12], the constitutive model, i.e. the linear elastic relation of Hooke’s law between stress and deformation tensors, was applied with the incremental Jaumann formulation. As pointed out in Ref.[11], this relation is rate-independent, incrementally linear and reversible. If it is integrated in time with a sufficiently small time step, it can be adopted as a constitutive model when small finite deformations are considered. Other applications by using the same constitutive formulation in solving solid dynamics problems can be found in Refs. [13,14]. However, observing their simulation results in Refs. [11, 14], one can clearly see that the particle distributions have been shifted after a period of simulation. The initial uniformly distributed particles finally formed into another pattern even in areas without stresses. That is because the conventional SPH method has a shortcoming of inconsistency and the fore-mentioned incremental constitutive model is just an approximation of Hooke’s law. To overcome this limit, Vignjevic et al.[15]proposed a total Lagrangian framework for simulating solid dynamics, where Lagrangian kernels were employed directly to solve momentum equation with respect to the reference configuration. Besides, this total Lagrangian formalism takes another ad- vantage of not suffering from tensile instability problems[16].

    Inherited from Antoci et al.’s work[11], we pro- posed a new numerical modeling for FSI problems in this work, where fluid dynamics equations are dis- cretized with conventional Eulerian kernels in current configuration while solid governing equations are solved with Lagrangian kernels in the reference configuration. Finally, a well-known FSI benchmark test case has been performed to validate the current SPH modeling and to demonstrate its potential.

    1. Governing equations

    1.1 Fluid equations

    The governing equations for the motion of an isothermal, Newtonian fluid in a Lagrangian frame of current configuration are the continuity equation

    and the momentum-conservation equation

    Based on the weakly compressible SPH ap- proach[11, 17], which is often used to simulate incom- pressible flows, a linearized equation of state is introduced to estimate the pressure from the density field via

    1.2 Structure equations

    In this work, the solid model of structure is con- sidered to be elastic and compressible. The governing equations for the motion of a structure have the form ofbalance laws including the balance of mass and momentum.

    From a total Lagrangian point of view, the ba- lance of mass adopts the algebraic form given by

    and

    In particular, for isotropic materials under Hooke?s law, Eq. (11) simplifies to

    2. Numerical modeling

    2.1 SPH discretization for fluid equations

    (1)Density evolution equation

    (2) Momentum equation

    Using the inter-particle-averaged shear viscosity

    Based on the analysis of Turek et al.[20], the boundary condition on the fluid-structure interface can be achieved by exerting a no-slip condition for the flow with moving boundaries. Following the imple- mentation of Adami et al.’s wall boundary condition[21]and assuming the dummy particles in structure region used to mimic the interaction on the fluid-structure interface just coincide with the real structure particles, for each interacting particle pair, we can simply approximate the imagining pressureand velocityon dummy particlewith

    and

    Alternatively, one can also choose the same extra- polation scheme proposed in Ref. [21] to evaluate them.

    and

    Since the negative pressure occurs in the wake in the FSI benchmark cases, which usually leads to particle clumping and void regions during the simulation, one also needs a remedy to solve this tensile instability problem in fluid regions. A number of solutions have already been proposed and validated, such as in Refs. [16, 17]. In this work, we choose transport-velocity scheme exactly the same as that in Ref. [17] (see details therein).

    2.2 SPH dicretization for structure equations

    where

    is the gradient of a Lagrangian kernel function. Note that Eqs. (28) and (29) are only calculated once at the beginning as it is only related to the initial or reference configuration.

    (1) Density evolution equation:

    (2) Momentum balance equation:

    with the 1st Piola-Kirchhoff stress tensor of particlebeing

    and Green-Lagrange strain tensor

    Finally, according to the Newton’s third law of motion, each structure particle involved in Eqs. (26) and (27) takes an equal and opposite reaction from the interacting fluid particle, therefore, the forces per unit mass owing to fluid-structure interactions can be given easily by

    and

    Notice that, the gradient of elastic stress in struc- tures is calculated in the reference configuration within the total Lagrangian formulation, however, the fluid-structure interaction forces must be obtained in the current configuration.

    3. Numerical test

    In this section, we present the validation results for the well-known 2-D benchmark FSI problem, defined by Turek and Hron[20], as shown in the Fig. 1, where the flow passes a fixed circular cylinder with a flexible beam attached to its downstream side. This test model has been frequently used as a large- displacement benchmark validation case for 2-D FSI solvers[5, 23].

    Fig. 1 Model setup for flow-induced vibration of a flexible beam attached to a rigid cylinder[5]

    Concerning boundary conditions, no-slip walls are exerted on the top and bottom sides of the domain while outflow condition on the right side. Fluid flows into the domain from the left side with a parabolic velocity profile

    where denotes the end time of the starting proce- dure.

    Fig. 3 Trajectory of Point A

    Table1Comparison results for FSI2 test case

    Fig. 4 (Color online) The fluid velocity field and beam defor- mation at different time instances marked in Fig. 2. The top panel of each subfigure shows the deformation of the beam with solid particles colored by contours of von Mises stress. The bottom panel presents the distribution of axial velocity component of the fluid

    In Fig.4 we show the beam deformation at four different time instances in a typical oscillation cycle. Note that, since there is no elastic stress at the free end of the beam,particles in that region keep regular distribution all the time. This is not able to achieve by the previous SPH formulations based the incremental Jaumann formulation which uses Eulerian kernel in current configuration.

    4. Conclusion

    In this paper, we have proposed a numerical modeling approach for simulating FSI problems in a SPH framework, where the fluid governing equations are discretized with conventional Eulerian kernel in current configuration and the solid governing equa-tions with Lagrangian kernel in the reference con-figuration. To avoid tensile instability in fluid regions, a transport-velocity technique is employed to remedy the distribution of fluid particle. By using a total Lagrangian SPH formulation dealing with the structure deformations, we also apply a correction matrix to restore first order consistency and rotational invariance. It successfully avoids the occurrence of artificial strain and stress when a rigid coordinate transformation occurs on structures. Since both fluid and solid governing equations are discretized with SPH formulation, coupling becomes straightforward and meanwhile the momentum of an FSI system is strictly conserved. In order to validate the modeling and demonstrate its potential, a typical FSI benchmark test case is carried out.

    Acknowledgement

    The authors gratefully acknowledge the financial support by Deutsche Forschungsgemeinschaft (Grant No. DFG HU1527/6-1) for the present work.

    [1] Bungartz H. J., Sch?fer M. Fluid-structure interaction. Modelling, simulation, optimisation [M]. Berlin, Heidelberg, Germany: Springer Science and Business Media, 2006.

    [2] Sigrist J. F. Fluid-structure interaction: An introduction to finite element coupling [J]., 2015, 69(10): 1167-1188.

    [3] Tezduyar T. E., Sathe S., Keedy R. Space–time finite element techniques for computation of fluid–structure interactions [J]., 2006,195(17): 2002-2027.

    [4] Ahn H. T., Kallinderis Y. Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes [J]., 2006, 219(2): 671-696.

    [5] TianF. B., DaiH., Luo H. Fluid–structure interaction in- volving large deformations: 3D simulations and applica- tions to biological systems [J]., 2014, 258(2): 451-469.

    [6] Wu K., Yang D., Wright N. A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure [J]., 2016, 177: 141-161.

    [7] Han K., Feng Y.T., Owen D.R. J. Numerical simulations of irregular particle transport in turbulent flows using coupled LBM-DEM [J]., 2007, 18(2):87-100.

    [8] Liu G. R., Liu M. B. Smoothed particle hydrodynamics: A meshfree particlemethod [M]. Singopare: World Scienti- fic, 2003.

    [9] Lucy L. B. A numerical approach to the testing of the fissionhypothesis [J]., 1977, 82: 1013-1024.

    [10]Gingold R. A., Monaghan J. J. Smoothed particle hydro- dynamics: Theory and application to non-spherical stars [J]., 1977, 181(3): 375-389.

    [11]Antoci C., Gallati M., Sibilla S. Numerical simulation of fluid–structure interaction by SPH [J]., 2007, 85(11-14): 879-890.

    [12]Gray J. P., Monaghan J. J., Swift R. P. SPH elastic dyna- mics [J]., 2001, 190(49): 6641-6662.

    [13] Zhang C., Hu Y., Adams N. A. A generalized transport- velocity formulation for smoothed particle hydrodynamics [J]., 2017, 337: 216-232.

    [14]Libersky L. D., Petschek A. G., Carney T. C. et al. High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response [J]., 1993, 109(1): 67-75.

    [15]Vignjevic R., Reveles J. R., Campbell J. SPH in a total Lagrangian formalism [J]., 2006, 14(3): 181-198.

    [16]Monaghan J. J. SPH without a tensile instability [J]., 2000, 159(2): 290-311.

    [17]Adami S., Hu X. Y., Adams N. A. A transport-velocity formulation for smoothed particle hydrodynamics [J]., 2013, 241(5): 292-307.

    [18]Monaghan J. J. Simulating free surface flows with SPH [J]., 1994, 110(2): 399-406.

    [19] Hu X. Y., Adams N. A. A multi-phase SPH method for macroscopic and mesoscopic flows [J]., 2006, 213(2): 844-861.

    [20]Turek S., Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow (Bungartz H. J., Sch?fer M. Fluid-structure interaction: Modeling, simulation, optimi- sation) [M]. Berlin, Heidelberg, Germany: Springer, 2006, 371-385.

    [21]Adami S., Hu X. Y., Adams N. A. A generalized wall boundary condition for smoothed particle hydrodynamics [J]., 2012, 231(21): 7057-7075.

    [22]Bonet J., Kulasegaram S. A simplified approach to en- hance the performance of smooth particle hydrodynamics methods [J]., 2002, 126(2): 133-155.

    [23]Bhardwaj R., Mittal R. Benchmarking a coupled immer- sed-boundary-finite-element solver for large-scale flow- induced deformation [J]., 2012, 50(7): 1638-1642.

    [24]Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree [J]., 1995, 4(1): 389-396.

    [25]Gaster M. Vortex shedding from circular cylinders at low Reynolds numbers [J]., 1971, 46: 749-756.

    [26]Roshko A. On the development of turbulent wakes from vortex streets [R]. Technical Report Archive and Image Library, 1954.

    (October 22, 2017, Accepted December 7, 2017)

    ?China Ship Scientific Research Center 2018

    Luhui Han (1985-), Male, Ph. D. Candidate,

    E-mail: Luhui.han@tum.de

    Xiangyu Hu,

    E-mail: Xiangyu.hu@tum.de

    大片免费播放器 马上看| 亚洲精品国产av成人精品| 国产精品成人在线| 免费日韩欧美在线观看| 在现免费观看毛片| 免费在线观看视频国产中文字幕亚洲 | 热99国产精品久久久久久7| 91老司机精品| 午夜免费鲁丝| 久久综合国产亚洲精品| 国产精品一区二区在线不卡| 悠悠久久av| 高潮久久久久久久久久久不卡| 夫妻午夜视频| 精品国产乱码久久久久久小说| 美女高潮到喷水免费观看| 精品视频人人做人人爽| 国产成人欧美| 一级黄色大片毛片| 亚洲精品中文字幕在线视频| av电影中文网址| 高清不卡的av网站| 国产亚洲欧美精品永久| 日韩一本色道免费dvd| 久久99一区二区三区| 久久久久精品人妻al黑| 国产一区二区激情短视频 | 日本wwww免费看| 男女边摸边吃奶| 美女高潮到喷水免费观看| 久久久欧美国产精品| 波多野结衣av一区二区av| 黄色 视频免费看| 国产精品久久久久久精品电影小说| 五月天丁香电影| netflix在线观看网站| 久久ye,这里只有精品| av一本久久久久| 亚洲欧美成人综合另类久久久| 久久精品成人免费网站| 大香蕉久久网| 国产伦理片在线播放av一区| 欧美在线黄色| 在线观看人妻少妇| 亚洲 国产 在线| 国产爽快片一区二区三区| 老司机亚洲免费影院| 精品高清国产在线一区| 中文字幕av电影在线播放| 人人妻人人添人人爽欧美一区卜| 国产国语露脸激情在线看| 纵有疾风起免费观看全集完整版| 亚洲成av片中文字幕在线观看| 亚洲精品中文字幕在线视频| 黄色视频在线播放观看不卡| 丰满少妇做爰视频| 亚洲欧洲精品一区二区精品久久久| 亚洲精品乱久久久久久| 亚洲色图 男人天堂 中文字幕| 精品少妇黑人巨大在线播放| 久久亚洲国产成人精品v| 亚洲国产精品999| 中文字幕人妻丝袜制服| 亚洲天堂av无毛| 可以免费在线观看a视频的电影网站| 国产人伦9x9x在线观看| 男女高潮啪啪啪动态图| 伦理电影免费视频| 精品久久久精品久久久| tube8黄色片| 亚洲成av片中文字幕在线观看| 男女下面插进去视频免费观看| 国产亚洲精品久久久久5区| 日本wwww免费看| av国产精品久久久久影院| 国产精品熟女久久久久浪| 欧美日韩黄片免| 一区福利在线观看| 国产欧美亚洲国产| 欧美日韩视频精品一区| 日韩av免费高清视频| 国产成人a∨麻豆精品| 97精品久久久久久久久久精品| 老汉色∧v一级毛片| 夜夜骑夜夜射夜夜干| 一本大道久久a久久精品| 午夜精品国产一区二区电影| 人妻 亚洲 视频| 亚洲av电影在线进入| 美女大奶头黄色视频| 亚洲熟女精品中文字幕| 免费av中文字幕在线| 亚洲精品av麻豆狂野| 一边摸一边抽搐一进一出视频| 18禁观看日本| 深夜精品福利| 成人亚洲欧美一区二区av| 亚洲五月婷婷丁香| 国产成人一区二区三区免费视频网站 | 欧美黄色片欧美黄色片| 欧美日韩亚洲综合一区二区三区_| 久久久亚洲精品成人影院| 高清视频免费观看一区二区| 黄色视频在线播放观看不卡| 国产成人免费无遮挡视频| 天天躁日日躁夜夜躁夜夜| 丝袜美足系列| 91九色精品人成在线观看| 最近手机中文字幕大全| 精品国产国语对白av| 久久久久精品国产欧美久久久 | av欧美777| 久久天堂一区二区三区四区| 亚洲久久久国产精品| 亚洲中文av在线| 久久久国产精品麻豆| 久久中文字幕一级| 国产福利在线免费观看视频| 久久久久久久久久久久大奶| 中国美女看黄片| 麻豆国产av国片精品| 极品人妻少妇av视频| 国产97色在线日韩免费| 久久久精品94久久精品| 国产精品一区二区免费欧美 | bbb黄色大片| 国产一区亚洲一区在线观看| av一本久久久久| 国产精品亚洲av一区麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 最新在线观看一区二区三区 | 在线观看免费午夜福利视频| 看十八女毛片水多多多| 欧美黑人欧美精品刺激| 欧美精品亚洲一区二区| 九色亚洲精品在线播放| 丁香六月欧美| 99久久综合免费| 老司机深夜福利视频在线观看 | 老司机午夜十八禁免费视频| 菩萨蛮人人尽说江南好唐韦庄| 日韩一卡2卡3卡4卡2021年| 亚洲国产av新网站| 国产精品人妻久久久影院| 国产激情久久老熟女| 国产精品欧美亚洲77777| 亚洲激情五月婷婷啪啪| 一级,二级,三级黄色视频| 国产女主播在线喷水免费视频网站| 男女免费视频国产| 欧美黑人欧美精品刺激| 成人午夜精彩视频在线观看| 国产伦理片在线播放av一区| 亚洲视频免费观看视频| 国产xxxxx性猛交| 久久精品熟女亚洲av麻豆精品| 一级黄色大片毛片| 久久久久国产精品人妻一区二区| 在线观看www视频免费| 亚洲 国产 在线| 欧美精品高潮呻吟av久久| 熟女av电影| 啦啦啦 在线观看视频| 成人亚洲精品一区在线观看| 色网站视频免费| 国产熟女欧美一区二区| 亚洲七黄色美女视频| 亚洲国产欧美一区二区综合| 久久99精品国语久久久| 国产成人av教育| 国产精品亚洲av一区麻豆| 亚洲国产av新网站| 亚洲精品国产一区二区精华液| 夜夜骑夜夜射夜夜干| 黑人巨大精品欧美一区二区蜜桃| 日本黄色日本黄色录像| 免费高清在线观看视频在线观看| 亚洲国产中文字幕在线视频| 不卡av一区二区三区| 日本av手机在线免费观看| 国产精品 欧美亚洲| 国产1区2区3区精品| 超碰97精品在线观看| 91成人精品电影| 国产伦人伦偷精品视频| 视频在线观看一区二区三区| 99热网站在线观看| 国产麻豆69| 99久久精品国产亚洲精品| 美女扒开内裤让男人捅视频| 在线观看国产h片| 两个人看的免费小视频| 青春草亚洲视频在线观看| 久久久久精品国产欧美久久久 | 精品人妻在线不人妻| 999精品在线视频| 亚洲自偷自拍图片 自拍| 亚洲午夜精品一区,二区,三区| 黄色视频在线播放观看不卡| 狂野欧美激情性bbbbbb| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲av成人精品一二三区| 国产黄频视频在线观看| 亚洲美女黄色视频免费看| 免费在线观看黄色视频的| 亚洲av成人精品一二三区| 国产精品亚洲av一区麻豆| 国产亚洲欧美精品永久| 丰满人妻熟妇乱又伦精品不卡| xxx大片免费视频| 免费不卡黄色视频| 亚洲免费av在线视频| 成年女人毛片免费观看观看9 | 久久精品熟女亚洲av麻豆精品| 久久国产精品男人的天堂亚洲| 国产淫语在线视频| 久久精品aⅴ一区二区三区四区| 欧美97在线视频| 午夜福利一区二区在线看| 国产成人一区二区在线| 视频区欧美日本亚洲| 性色av乱码一区二区三区2| 一级毛片黄色毛片免费观看视频| 国产亚洲精品久久久久5区| 国产福利在线免费观看视频| 日韩大码丰满熟妇| 后天国语完整版免费观看| 国产精品.久久久| 国产成人精品在线电影| 亚洲欧美一区二区三区黑人| 日韩大码丰满熟妇| 在线观看免费午夜福利视频| 十分钟在线观看高清视频www| 午夜激情久久久久久久| 亚洲精品乱久久久久久| 2018国产大陆天天弄谢| 啦啦啦在线观看免费高清www| 夫妻午夜视频| 亚洲精品久久午夜乱码| 热re99久久国产66热| 一本综合久久免费| 日本欧美国产在线视频| 超碰成人久久| 国产亚洲av高清不卡| 亚洲精品久久成人aⅴ小说| 国语对白做爰xxxⅹ性视频网站| 各种免费的搞黄视频| 久久综合国产亚洲精品| 久久久久久免费高清国产稀缺| 精品人妻在线不人妻| 久久天躁狠狠躁夜夜2o2o | 久久精品国产综合久久久| 亚洲精品一区蜜桃| 午夜福利在线免费观看网站| bbb黄色大片| 亚洲国产最新在线播放| 一二三四在线观看免费中文在| 精品人妻一区二区三区麻豆| 国产男女超爽视频在线观看| 18在线观看网站| 一本—道久久a久久精品蜜桃钙片| xxxhd国产人妻xxx| 亚洲欧美一区二区三区国产| 日韩中文字幕欧美一区二区 | 成人午夜精彩视频在线观看| 99国产精品99久久久久| 日韩免费高清中文字幕av| 精品国产国语对白av| 久久久久网色| 在线亚洲精品国产二区图片欧美| 日本欧美视频一区| 日韩 欧美 亚洲 中文字幕| 精品国产一区二区三区四区第35| 赤兔流量卡办理| 午夜福利,免费看| 国产高清不卡午夜福利| 肉色欧美久久久久久久蜜桃| 国产成人精品无人区| 免费高清在线观看视频在线观看| 免费观看a级毛片全部| 精品国产乱码久久久久久小说| 777米奇影视久久| 脱女人内裤的视频| 9热在线视频观看99| 99久久人妻综合| a级片在线免费高清观看视频| 亚洲av日韩精品久久久久久密 | 男女免费视频国产| 99香蕉大伊视频| 一边亲一边摸免费视频| 色视频在线一区二区三区| 久久精品亚洲熟妇少妇任你| 丝袜在线中文字幕| 亚洲精品久久成人aⅴ小说| 亚洲人成77777在线视频| 只有这里有精品99| 久久免费观看电影| 国产精品国产三级专区第一集| 日韩伦理黄色片| 精品久久蜜臀av无| av国产精品久久久久影院| 亚洲国产最新在线播放| 亚洲精品一卡2卡三卡4卡5卡 | 在线av久久热| 久久久久久久久免费视频了| 五月天丁香电影| 三上悠亚av全集在线观看| 日韩 亚洲 欧美在线| 飞空精品影院首页| 日韩 欧美 亚洲 中文字幕| 看免费成人av毛片| av网站免费在线观看视频| 美女大奶头黄色视频| 亚洲国产av新网站| 久久99热这里只频精品6学生| 国产精品久久久久成人av| 免费在线观看影片大全网站 | 中文字幕人妻丝袜一区二区| 大型av网站在线播放| 大码成人一级视频| 99久久综合免费| 99国产精品一区二区三区| 一本综合久久免费| 国产视频一区二区在线看| 久久国产精品影院| 搡老岳熟女国产| 大陆偷拍与自拍| 亚洲美女黄色视频免费看| 免费不卡黄色视频| 中文字幕av电影在线播放| 亚洲精品第二区| 国产亚洲精品第一综合不卡| 成在线人永久免费视频| 69精品国产乱码久久久| 国产成人免费无遮挡视频| 亚洲av电影在线进入| 午夜免费鲁丝| 成人国产一区最新在线观看 | 午夜久久久在线观看| 亚洲欧美一区二区三区国产| 国产欧美亚洲国产| 免费av中文字幕在线| 精品人妻1区二区| 国产熟女欧美一区二区| 亚洲综合色网址| 欧美成人精品欧美一级黄| 天堂中文最新版在线下载| 2018国产大陆天天弄谢| 亚洲成人手机| 国产一区有黄有色的免费视频| 成年美女黄网站色视频大全免费| 国产亚洲欧美精品永久| 精品国产超薄肉色丝袜足j| 性色av乱码一区二区三区2| 啦啦啦视频在线资源免费观看| 日本欧美视频一区| 国产精品一国产av| 日本欧美国产在线视频| 老汉色av国产亚洲站长工具| 一本色道久久久久久精品综合| 黄网站色视频无遮挡免费观看| 国产成人精品无人区| 午夜日韩欧美国产| 久久亚洲精品不卡| 亚洲国产av新网站| 亚洲中文字幕日韩| 黄频高清免费视频| 热re99久久国产66热| 91麻豆精品激情在线观看国产 | 最近中文字幕2019免费版| 久久午夜综合久久蜜桃| 午夜福利乱码中文字幕| 操出白浆在线播放| av电影中文网址| 亚洲中文av在线| 高清av免费在线| 老熟女久久久| 亚洲熟女精品中文字幕| 欧美人与性动交α欧美软件| 亚洲人成网站在线观看播放| 久久久久国产一级毛片高清牌| 久久精品国产a三级三级三级| 中国美女看黄片| 咕卡用的链子| 黄片小视频在线播放| 18禁裸乳无遮挡动漫免费视频| 国产无遮挡羞羞视频在线观看| 亚洲视频免费观看视频| 大香蕉久久成人网| 老司机深夜福利视频在线观看 | 久久人妻熟女aⅴ| 亚洲 欧美一区二区三区| 午夜福利一区二区在线看| 精品熟女少妇八av免费久了| 下体分泌物呈黄色| 亚洲av综合色区一区| 成人国产一区最新在线观看 | 一级毛片我不卡| 国产精品麻豆人妻色哟哟久久| 岛国毛片在线播放| 大片电影免费在线观看免费| 日韩一区二区三区影片| 黄色视频不卡| 亚洲欧美成人综合另类久久久| 欧美国产精品va在线观看不卡| 久久天堂一区二区三区四区| 亚洲熟女精品中文字幕| 好男人视频免费观看在线| 97精品久久久久久久久久精品| 午夜免费男女啪啪视频观看| 另类精品久久| 国产在线观看jvid| 高清视频免费观看一区二区| 亚洲精品日韩在线中文字幕| 久久久国产一区二区| 亚洲av片天天在线观看| 国产一区有黄有色的免费视频| 美女大奶头黄色视频| 日韩一卡2卡3卡4卡2021年| 热99国产精品久久久久久7| 久热这里只有精品99| 国产一区二区三区av在线| 久久久久久久精品精品| 新久久久久国产一级毛片| 交换朋友夫妻互换小说| 精品第一国产精品| 亚洲国产欧美日韩在线播放| 国产av精品麻豆| 免费不卡黄色视频| 国产黄色视频一区二区在线观看| 精品人妻熟女毛片av久久网站| 99香蕉大伊视频| 高清不卡的av网站| 国产在线视频一区二区| 午夜免费鲁丝| 在线精品无人区一区二区三| 久久久久精品国产欧美久久久 | 久久久国产一区二区| 自线自在国产av| 麻豆国产av国片精品| 午夜两性在线视频| 这个男人来自地球电影免费观看| 亚洲精品一卡2卡三卡4卡5卡 | 成年动漫av网址| 国产成人一区二区三区免费视频网站 | 国产1区2区3区精品| 丰满人妻熟妇乱又伦精品不卡| 日本五十路高清| 后天国语完整版免费观看| 欧美日韩黄片免| 国产精品成人在线| 麻豆乱淫一区二区| 1024视频免费在线观看| 欧美日韩av久久| 黄频高清免费视频| 久久精品亚洲熟妇少妇任你| 大话2 男鬼变身卡| 男人爽女人下面视频在线观看| 成人亚洲欧美一区二区av| 99久久综合免费| 国产免费现黄频在线看| 男男h啪啪无遮挡| 老汉色av国产亚洲站长工具| 50天的宝宝边吃奶边哭怎么回事| 日本五十路高清| 国产国语露脸激情在线看| 欧美 日韩 精品 国产| 亚洲精品自拍成人| 亚洲精品第二区| 交换朋友夫妻互换小说| 一边摸一边抽搐一进一出视频| 国产成人精品久久久久久| 我要看黄色一级片免费的| 国产熟女欧美一区二区| 国产在视频线精品| 午夜福利在线免费观看网站| 真人做人爱边吃奶动态| av有码第一页| 中文字幕高清在线视频| 国产精品一区二区在线观看99| xxxhd国产人妻xxx| 18禁国产床啪视频网站| 一本—道久久a久久精品蜜桃钙片| 亚洲专区中文字幕在线| 欧美精品一区二区免费开放| 欧美成人精品欧美一级黄| 欧美人与性动交α欧美精品济南到| 蜜桃国产av成人99| 国产色视频综合| 热re99久久精品国产66热6| 国产黄频视频在线观看| 精品国产超薄肉色丝袜足j| 欧美激情高清一区二区三区| 欧美 亚洲 国产 日韩一| 中文字幕人妻丝袜制服| 在线 av 中文字幕| 天天躁夜夜躁狠狠久久av| 97精品久久久久久久久久精品| 亚洲激情五月婷婷啪啪| 一级a爱视频在线免费观看| 麻豆av在线久日| 国产亚洲av高清不卡| 国产精品国产三级专区第一集| 国产亚洲一区二区精品| 青草久久国产| 欧美日韩亚洲高清精品| 久久精品亚洲av国产电影网| 9热在线视频观看99| 男女免费视频国产| 色婷婷久久久亚洲欧美| 90打野战视频偷拍视频| 国产片内射在线| 免费在线观看完整版高清| 午夜免费鲁丝| 视频区欧美日本亚洲| av国产久精品久网站免费入址| 国产熟女欧美一区二区| www日本在线高清视频| 日韩熟女老妇一区二区性免费视频| 99九九在线精品视频| 90打野战视频偷拍视频| 婷婷色综合www| 亚洲av日韩在线播放| 在现免费观看毛片| cao死你这个sao货| 狂野欧美激情性bbbbbb| 国产成人影院久久av| 婷婷成人精品国产| 午夜老司机福利片| 精品亚洲成a人片在线观看| 少妇的丰满在线观看| 国产xxxxx性猛交| 免费久久久久久久精品成人欧美视频| 久久久精品免费免费高清| 成人18禁高潮啪啪吃奶动态图| 精品少妇黑人巨大在线播放| 亚洲精品av麻豆狂野| 人人妻人人澡人人爽人人夜夜| 一级毛片我不卡| 亚洲国产精品一区二区三区在线| 亚洲精品一卡2卡三卡4卡5卡 | 精品少妇黑人巨大在线播放| 国产99久久九九免费精品| 看十八女毛片水多多多| 人妻人人澡人人爽人人| 国产成人精品久久久久久| 亚洲欧美中文字幕日韩二区| 天天躁夜夜躁狠狠久久av| 欧美日韩国产mv在线观看视频| 黄频高清免费视频| 亚洲欧美一区二区三区国产| 成年人黄色毛片网站| 亚洲 国产 在线| 桃花免费在线播放| 美女中出高潮动态图| 亚洲情色 制服丝袜| 高清视频免费观看一区二区| 免费久久久久久久精品成人欧美视频| 免费av中文字幕在线| av视频免费观看在线观看| 国产男女内射视频| 亚洲av美国av| 青春草亚洲视频在线观看| 亚洲精品美女久久av网站| 美女扒开内裤让男人捅视频| kizo精华| 青青草视频在线视频观看| 亚洲国产日韩一区二区| a 毛片基地| 极品人妻少妇av视频| 欧美黄色片欧美黄色片| 色婷婷久久久亚洲欧美| 国精品久久久久久国模美| 亚洲久久久国产精品| 天天躁日日躁夜夜躁夜夜| 只有这里有精品99| 国产又爽黄色视频| 国产成人免费无遮挡视频| 1024视频免费在线观看| 在线观看人妻少妇| 久久久久久久精品精品| 国产精品 国内视频| 精品人妻一区二区三区麻豆| 色视频在线一区二区三区| 欧美精品一区二区大全| 成人国产一区最新在线观看 | 欧美人与善性xxx| 亚洲午夜精品一区,二区,三区| 国产成人一区二区三区免费视频网站 | 国产精品久久久久久人妻精品电影 | 两个人看的免费小视频| 久久人妻熟女aⅴ| 少妇粗大呻吟视频| 夫妻午夜视频| 久久中文字幕一级| 欧美成人精品欧美一级黄| 欧美少妇被猛烈插入视频| 久久人妻福利社区极品人妻图片 | 中文字幕色久视频| 国产在线免费精品| 秋霞在线观看毛片| 91麻豆av在线| 波野结衣二区三区在线| 另类精品久久| 国产精品欧美亚洲77777| 一级毛片黄色毛片免费观看视频| 久久久久久人人人人人| av天堂久久9| 国产成人精品无人区| 婷婷成人精品国产| 国产亚洲午夜精品一区二区久久| 丝袜美腿诱惑在线| 美女视频免费永久观看网站| www.精华液| 肉色欧美久久久久久久蜜桃|