• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction *

    2018-04-13 12:23:43AbbasKhayyerHitoshiGotohHoseinFalahatyYumaShimizu
    水動力學研究與進展 B輯 2018年1期

    Abbas Khayyer, Hitoshi Gotoh, Hosein Falahaty, Yuma Shimizu

    ?

    Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction*

    Abbas Khayyer, Hitoshi Gotoh, Hosein Falahaty, Yuma Shimizu

    Simulation of incompressible fluid flow-elastic structure interactions is targeted by using fully-Lagrangian mesh-free computational methods. A projection-based fluid model (moving particle semi-implicit (MPS)) is coupled with either a Newtonian or a Hamiltonian Lagrangian structure model (MPS or HMPS) in a mathematically-physically consistent manner. The fluid model is founded on the solution of Navier-Stokes and continuity equations. The structure models are configured either in the framework of Newtonian mechanics on the basis of conservation of linear and angular momenta, or Hamiltonian mechanics on the basis of variational principle for incompressible elastodynamics. A set of enhanced schemes are incorporated for projection-based fluid model (Enhanced MPS), thus, the developedcoupled solvers for fluid structure interaction (FSI) are referred to as Enhanced MPS-MPS and Enhanced MPS-HMPS. Besides, two smoothed particle hydrodynamics (SPH)-based FSI solvers, being developed by theauthors, are considered and their potential applicability and comparable performance are briefly discussed in comparison with MPS-based FSI solvers. The SPH-based FSI solvers are established through coupling of projection-based incompressible SPH (ISPH) fluid model and SPH-based Newtonian/Hamiltonian structure models, leading to Enhanced ISPH-SPH and Enhanced ISPH-HSPH. A comparative study is carried out on the performances of the FSI solvers through a set of benchmark tests, including hydrostatic water column on an elastic plate, high speed impact of an elastic aluminum beam, hydroelastic slamming of a marine panel and dam break with elastic gate.

    Fluid structure interaction (FSI), projection-based method, moving particle semi-implicit, incompressible smoothed particle hydrodynamics (ISPH), Hamiltonian MPS (HMPS), Hamiltonian SPH (HSPH)

    Introduction

    Fluid structure interactions (FSI) are often en- countered in various engineering fields, including coastal and ocean engineering. A great number of problems in coastal/ocean engineering involve highly interactive systems corresponding to violent fluid flows and deformable structures. Examples include tsunami/storm surge impact on coastal structures, wave interactions with floating structures, hydroelas- tic slamming of marine vessels. In such cases, precise information on spatial/temporal distributions of hydro- dynamic pressures and structural stresses/responses will be of crucial importance. Hence, accurate simu- lations of FSI problems corresponding to incompressi- ble fluid flows interacting with deformable elastic structures are of significant importance in coastal/ ocean engineering.

    In view of intrinsic difficulties of numerical modeling of FSI problems usually encountered in coastal/ocean engineering, e.g., existence of violent free-surface flows as well as presence of large/abrupt hydrodynamics loads and consequently large structu- ral deformations, Lagrangian mesh-free methods (e.g., smoothedparticlehydrodynamics(SPH)[1,2]or moving particle semi-implicit (MPS)[3]) appear to be capable candidates for computational modeling of such im- portant phenomena. Accordingly, in several studies, simulations of FSI problems have been targeted by taking advantage of mesh-free methods[4-15]. In speci- fic, a number of fully-Lagrangian mesh-free coupled FSI solvers have been developed during the last decade[8-15]. However, most of the coupled FSI solvers have been founded on fully-explicit computations in which the stability of calculations is guaranteed through incorporation of numerical stabilizers that often require tuning and usually result in an unphysi- cal gap between fluid and structure. In addition, the instabilities associated with the state of stress in the structure models have been conventionally treated by using artificial terms rather than robust, mathemati- cally-sound and physically-consistent schemes e.g., Lagrangian kernel.

    Considering the aforementioned challenges, a number of studies have targeted the development of fully-Lagrangian computational methods based on coupling between projection-based fluid models and Lagrangian structure models for simulation of FSI problems[12-15]. One of the distinct advantages that projection-based particle methods bring about for coupled FSI solvers corresponds to their prediction- correction solution process on the basis of Helmholtz- Leray decomposition[16]. Accordingly, continuity of normal stresses, velocities and volume can be gua- ranteed in a momentum-conservative manner[15]and without any artificial numerical treatment. Projection- based particle methods, such as ISPH or MPS can be coupled with Lagrangian structure models described in either Newtonian or Hamiltonian frameworks. The choice of Newtonian/Hamiltonian would depend on several aspects including the FSI problem of interest. Theoretically, Hamiltonian and Newtonian mechanics are equivalent. Numerically, however, Hamiltonian framework may provide advantages in strictly preser- ving conserved physical quantities such as energy, linear and angular momenta[17]as well as providing more flexibility for extensions to model complex physical systems[18]. Although the achievement of stable and precise numerical results in a Hamiltonian framework may require more careful considera- tions[19].

    In this paper, four fully-Lagrangian mesh-free FSI solvers resulting from consistent coupling of projection-based fluid models and Lagrangian struc- ture models are considered. Two MPS-based FSI solvers are first introduced and then comparatively applied for simulation of four FSI benchmark tests. The fluid models are founded on the projection-based solutions of Navier-Stokes and continuity equations through a semi-implicit procedure. The Lagrangian structure models are established in the frameworks of either Newtonian, e.g., Kondo et al.[20], or Hamiltonian mechanics, e.g., Suzuki et al.[21]. The coupling between projection-based fluid model (MPS) and Lagrangian structural models (MPS or HMPS) is conducted in a mathematically-physically consistent manner via a careful attention to the concept of projection-based methods, i.e., Helmholtz-Leray de- composition[16]. A set of previously developed enhan- ced schemes are incorporated for projection-based fluid models[22-25], hence, the developed FSI solvers are referred to as Enhanced MPS-MPS and Enhanced MPS-HMPS FSI solvers. Besides, enhanced versions of SPH-based FSI solvers, currently being developed by authors, are considered and their potential applica- bility and comparable performance are portrayed and briefly discussed in comparison with MPS-based FSI solvers for one of the benchmark tests. The SPH- based FSI solvers are established through consistent coupling of incompressible SPH (ISPH)[26]and Newtonian or Hamiltonian SPH-based formulations of structural dynamics (leading to Enhanced ISPH-SPH and Enhanced ISPH-HSPH, respectively). The SPH- based FSI solvers, currently being developed by the authors, are not introduced in this paper and will be presented, validated and applied for simulation of FSI problems in our future papers. It should be noted that the fundamentals of MPS and SPH are comprehen- sively described in papers by Gotoh and Okayasu[23]and Gotoh et al.[27], Liu and Liu[28]and Violeau[29]. In addition, there have been excellent and comprehensive review papers on SPH[30, 31], MPS[32]as well as their applications for FSI[33].

    The paper is organized as follows. In Section 1, MPS-based FSI solvers are concisely introduced. In Section 2, first the performances of MPS and HMPS structure models are verified in reproduction of the dynamic response of a free oscillating cantilever plate[34]. Then in Section 2.2, MPS-based FSI solvers are first verified through the simulation of hydrostatic water column on an elastic plate[4, 7]and then further verified in simulations of high speed impact of an elastic aluminum beam on undisturbed water sur- face[10, 35](Section 2.3), hydroelastic slamming of a marine panel[36-38](Section 2.4) and dam break with elastic gate[8](Section 2.5). Validations and compari- sons are conducted both qualitatively and quantita- tively in terms of reproduced hydrodynamic pressure fields as well as structural stresses and deflections. Finally, in Section 3, a set of concluding remarks are presented.

    1. MPS-based FSI solvers

    In this section, general descriptions are presented for the governing equations of MPS-based fluid and structure models incorporated in the developed FSI solvers. In addition, differential operator models applied for discretization of governing equations of structural dynamics corresponding to structure models are explained in sufficient details. In Section 1.3, the fluid-structure coupling scheme is briefly discussed.

    1.1 Fluid model

    The fluid model is founded on the solution of continuity and Navier-Stokes equations (Eqs. (1) and (2)) in the framework of projection-based methods, i.e., MPS or ISPH.

    The MPS-based fluid model (as well as ISPH- based one) benefits from a set of enhanced schemes, i.e., the so-called higher-order source term of PPE (HS), higher-order Laplacian of PPE (HL), error com- pensating source of PPE (ECS), gradient correction (GC) and dynamic stabilization (DS). A fifth order Wendland kernel is utilized in all performed simu- lations, similar to that applied in Khayyer et al.[24, 25]. The mentioned schemes are described compre- hensively by Gotoh and Khayyer[22], Gotoh and Okayasu[23]and Khayyer et al.[24, 25].

    1.2 Structure models

    The fully-Lagrangian structure models are confi- gured either in the framework of Newtonian mecha- nics (so-called MPS-based or ISPH-based structure model) or Hamiltonian one (so-called HMPS or HSPH).

    1.2.1 Newtonian dynamics - MPS structure model

    The structure model in the context of Newtonian mechanics is set by MPS-based (or SPH-based) dis- cretization of equations for conservation of linear and angular momenta in a Lagrangian form[20]. The equa- tions for conservation of linear and angular momenta are described as:

    Fig. 1 (Color online) Verification of MPS-based and HMSP- based structure models: (a) Set up of the benchmark test, (b) Snapshots corresponding to the reproduced stress fields at by MPS and HMPS structure models, respectively, (c) Time histories of the deflec- tion of the plate in the case of particle diameter , dynamic response of a free oscillating cantilever plate[34]

    1.2.2 Hamiltonian dynamics-HMPS structure model

    Fig. 2 (Color online) Snapshots of particles together with stress/pressure fields at reproduced by En- hancedMPS-MPS,MPS-HMPS,ISPH-SPHand ISPH- HSPH,?hydrostatic water column on elastic plate[4, 6, 7]

    where and refer to the target structure particle and its neighboring structure particle, “” signifies double product of two tensors, denotes deforma- tion gradient tensor and represents the first Piola- Kirchhoff stress tensor whichis obtained based on Eq. (13)

    where

    With respect to the Hamiltonian-based formula- tion, a symplectic scheme as St?rmer-Verlet is used for time integration of Hamiltonian structure models.

    1.3 Fluid-structure coupling

    2. Verifications and comparisons

    2.1 Dynamic response of a free oscillating cantilever elastic plate

    In Fig.1(c), the simulated time histories of deflections of the plate?s free end, simulated by MPS andHMPS structure models, areshowntobeingood agreements with the analytical solution. In terms of amplitude, the displacements reproduced by HMPS are slightly more consistent with analytical solution in comparison to that of MPS, however, in terms of the period of oscillations, a slightly larger phase lag is observed in time history of HMPS with respect to that by MPS. Table 1 presents the root mean square error (RMSE) and normalized root mean square error (NRMSE) corresponding to the simulation results of dynamic response of the plate by MPS and HMPS structure models, respectively. The MPS structure modelhasresultedinsmallerRMSEduetosmaller phase lag in time history.

    Table 1RMSE and NRMSE for dynamic response of the free oscillating cantilever plate by MPS and HMPS structure models

    2.2 Hydrostatic water column on elastic plate

    In order to investigate the robustness and accu- racyoffluid-structurecouplingscheme,theprojec- tion-based FSI solvers, i.e., Enhanced MPS-MPS and Enhanced MPS-HMPS, are employed in simulation of a simple but computationally challenging benchmark test corresponding to a hydrostatic water column on an elastic aluminum plate[4, 7].

    After a few initial oscillations, the system will finally approach an equilibrium state. According to the theoretical solution[4, 44], at the equilibrium state, the magnitude of static displacement at the mid-span of aluminum plate due to the loading of 2 m high water column should be equal to-6.85′10-5m[4, 44].

    Figure 3(b) presents the simulated time histories of plate’s midpoint displacement simulated by En- hanced ISPH-SPH and Enhanced ISPH-HSPH with respect to those of MPS-based FSI solvers. The results by the SPH and MPS-based solvers are comparable, despite slight overestimations by SPH-based ones.

    2.3 High speed impact of elastic wedge on undistur- bed water surface

    The Enhanced MPS-MPS and MPS-HMPS FSI solvers are applied for simulation of a high speed impact of an elastic aluminum beam wedge on undisturbed water surface, for which semi-analytical solutions exist[10, 35].

    2.4 Hydroelastic slamming of a marine panel

    For further validation of the developed FSI solvers, hydroelastic slamming of a homogeneous marinepanel,correspondingtotheexperimentsby Allen[36], is considered. These tests were conducted using a servo-hydraulic slam testing system (SSTS) with a set of different panels. In the present study, the hydroelastic slamming corresponding to a Solid Glass-fiber single skin panel[36-38]is reproduced.

    Fig. 8(Color online) Qualitative comparison in between experimental photos and their corresponding snapshots by Enhanced MPS-MPS and Enhanced MPS-HMPS FSI solversdam break with elastic gate[8]

    Fig. 9(Color online) Time histories of horizontal/vertical dis- placements of the free end of elastic gate by Enhanced MPS-MPS and Enhanced MPS-HMPSdam break with elastic gate[8]

    2.5 Dam break with elastic gate

    Figure 8 presents typical snapshots correspon- ding to the simulation of dam break with elastic gate by using Enhanced MPS-MPS and Enhanced MPS- HMPS together with their corresponding experimental photos[8].According to Fig. 8, both solvers have provided qualitatively accurate pressure/stress fields at fluid and structure partitions. The deformations of elastic gate are well consistent with fluid flow without formation of an unphysical gap between fluid and structure particles at the fluid-structure interface.

    Figure 9 presents time histories of the horizontal and vertical displacements at the end point of rubber gate. From the presented figure, the reproduced displacements by Enhanced MPS-HMPS FSI solver are larger with respect to those by Enhanced MPS- MPS and more consistent with the experiment[8].

    3. Concluding remarks

    The paper aims at highlighting the potential capa- bilities of fully-Lagrangian mesh-free computational methods, established through consistent coupling of projection-based fluid models with Lagrangian struc- ture models, in providing stable/accurate simulation results for incompressible Fluid flow-elastic Structure Interactions (FSI). A distinct feature of proposed FSI solvers corresponds to their mathematically sound and physically consistent formulations, in absence of any artificial numerical stabilizers with tuning parameters.

    The main considered projection-based fluid and Lagrangian structure models are discretized within the framework of MPS[3]through consideration of either Newtonian or Hamiltonian formulations of structural dynamics. A set of enhanced schemes[23-25], previously developed by authors, are incorporated to improve the accuracy of MPS fluid model. Thus, the coupled FSI solvers are referred to as Enhanced MPS-MPS and Enhanced MPS-HMPS (Hamiltonian MPS). Besides, potential applicability and comparable performance of enhanced versions of two SPH-based FSI solvers, currently being developed by authors, are briefly discussed. Followed by a simple validation of MPS- based structure models, the Enhanced MPS-MPS, MPS-HMPS, ISPH-SPH and ISPH-HSPH FSI solvers are applied for simulation of hydrostatic water column on an elastic plate[4, 7]. The fully-Lagrangian mesh- free FSI solvers with projection-based fluid models are allshown to possess appropriate and comparable levels of stability and accuracy, without the need for any artificial numerical stabilization schemes that may suffer from absence of a rigorous physical back- ground.

    The Enhanced MPS-MPS and MPS-HMPS FSI solvers are employed in simulation of FSI benchmark tests including high speed impact of an elastic alumi- num beam on undisturbed water surface[10,35], hydroe- lastic slamming of a homogeneous marine panel[36-38]and dam break with an elastic gate[8]. Both MPS-based FSI solvers are shown to possess acceptable stability and accuracy. Despite significant potential advantages of Hamiltonian framework for describing the structural dynamics, at least for the considered benchmark test cases, almost comparable stability and accuracy are achieved for both HMPS and MPS as well as coupled MPS-HMPS and MPS-MPS FSI solvers. In future we need to extend this comparative study by considering highly non-linear elastic defor- mations as well as test cases of longer physical time in which preservations of conservative properties tend to become more challenging.

    Other future works comprise of further valida- tions[45], extensions[46], enhancements, conservation studies[47]considerations of convergence tests, appli- cations to more violent fluid-structure interactions with turbulence[48]and air phase[49]modelings, leading to development of reliable multi-physics, multi-scale particle-based computational methods for practical scientific and engineering applications.

    [1] Lucy L. B. A numerical approach to the testing of fission hypothesis [J]., 1997, 82: 1013-1024.

    [2] Gingold R. A., Monaghan J. J. Smoothed particle hydro- dynamics: Theory and application to non-spherical stars [J]., 1977, 181: 375-389.

    [3] Koshizuka S., Oka Y. Moving-particle semi-implicit me- thod for fragmentation of incompressible fluid [J]., 1996, 123: 421-434.

    [4] Fourey G. Développement d’une méthode de couplage fluide structure SPH Eléments Finis en vue de son appli- cation à l’hydrodynamique navale [D]. Doctoral Thesis, Nantes, France: Ecole Centralede Nantes, 2012.

    [5] Fourey G., Oger G., Le Touzé D. et al.Violent fluid- structure interaction simulations using a coupled SPH/ FEM method [J]., 2010, 10(1): 012041.

    [6] Li Z., Leduc J., Nunez-Ramirez J. et al. A non-intrusive partitioned approach to couple smoothed particle hydrody- namics and ?nite element methods for transient ?uid- structure interaction problems with large interface motion [J]., 2015, 55(4): 697-718.

    [7] Fourey G., Hermange C., Le Touzé D. et al.An efficient FSI coupling strategy between smoothed particle hydro- dynamics and finite element methods [J]., 2017, 217: 66-81.

    [8] Antoci C., Gallati M., Sibilla S. Numerical simulation of fluid-structure interaction by SPH [J]., 2007, 85(11-14): 879-890.

    [9] Rafiee A., Thiagarajan K. P. An SPH projection method for simulating fluid-hypoelastic structure interaction [J]., 2009, 198(33-36): 2785-2795.

    [10] Oger G., Brosset L., Guilcher P. M. et al. Simulations of hydro-elastic impacts using a parallel SPH model [J]., 2010, 20(3): 181-189.

    [11]Eghtesad A., Shafiei A. R., Mahzoon M. A new fluid– solid interface algorithm for simulating fluid structure problems in FGM plates [J].2012, 30: 141-158.

    [12] Hwang S. C., Khayyer A., Gotoh H. et al.Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems [J]., 2014, 50: 497-511.

    [13] Hwang S. C., Park J. C., Gotoh H. et al. Numerical simula- tions of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method [J]., 2016, 118: 227-241.

    [14]Khayyer A., Falahaty H., Gotoh H. et al.An enhanced coupled Lagrangian solver for incompressible fluid and non-linear elastic structure interactions [J]., 2016, 72(2): 1117-1122.

    [15]Khayyer A., Gotoh H., Falahaty H. et al. Towards deve- lopment of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming [J]., 2017, 7(3): 299-318.

    [16]Foias C., Manley O., Rosa R. et al. Navier-Stokes equa- tions and turbulence [M]. Cambridge, UK: Cambridge University Press, 2001, 364.

    [17] Bonet J., Lok T. S. L. Variational and momentum preser- vation aspects of smooth particle hydrodynamic formula- tions [J]., 1999, 180(1-2): 97-115.

    [18] Marsden J. E., Hughes T. J. R. Mathematical foundations of elasticity [M]. NewYork, USA: Dover publication Inc., 1983, 556.

    [19] Kondo M., Suzuki Y., Koshizuka S. Suppressing localpar- ticle oscillations in the Hamiltonian particle method for elasticity [J]., 2010, 81: 1514-1528.

    [20] Kondo M., Tanaka M., Harada T. et al.Elastic objects for computer graphic field using MPS method [C]., San Diego, USA, 2007.

    [21]Suzuki Y., Koshizuka S. A Hamiltonian particle method for non-linear elastodynamics [J]., 2008, 74(8): 1344-1373.

    [22]Gotoh H., Khayyer A. Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering [J]., 2016, 2(3): 251-278.

    [23]Gotoh H., Okayasu A. Computational wave dynamics for innovative design of coastal structures [J]., 2017, 93(9): 525-546.

    [24] Khayyer A., Gotoh H., Shimizu Y. et al.On enhancement of energy conservation properties of projection-based particle methods [J]., 2017, 66: 20-37.

    [25] Khayyer A., Gotoh H., Shimizu Y. Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context [J]., 2017, 332: 236-256.

    [26]Shao S., Lo E. Y. M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface [J]., 2003, 26(7): 787-800.

    [27] Gotoh H., Okayasu A.,? Watanabe Y. Computational wave dynamics (Advanced series on ocean engineering) [M]. Singapore: World Scientific, 2013, 234.

    [28] Liu G. R., Liu M. B. Smoothed particle hydrodynamics: A meshfree particle method [M]. Singapore: World Scienti- fic, 2003, 472.

    [29]Violeau D. Fluid mechanics and the SPH method, theory and applications [M]. Oxford, UK: OxfordUniversity Press, 2012, 616.

    [30]Monaghan J. J. Smoothed particle hydrodynamics [J].,2005, 68(8): 1703-1759.

    [31]Liu M. B., Li S. M. On the modeling of viscous incom- pressible flows with smoothed particle hydrodynamics [J]., 2016, 28(5): 731-745.

    [32]Koshizuka S. Current achievements and future perspec- tives on particle simulation technologies for ?uid dynamics and heat transfer [J]., 2011, 48(2):155-168.

    [33]Zhang A. M., Sun P. N., Ming F. R. et al. Smoothed particle hydrodynamics and its applications in fluid- structure interactions [J].2017, 29(2): 187-216.

    [34]Gray J. P., Monaghan J. J., Swift R. P. SPH elastic dy- namics [J].,2001, 190(49-50): 6641-6662.

    [35]Scolan Y. M. Hydroelastic behavior of a conical shell impacting on a quiescent-free surface of an incompressible liquid [J]., 2004, 277(1-2): 163-203.

    [36] Allen T. Mechanics of flexible composite hull panels sub- jected to water impacts [D]. Doctoral Thesis, Auckland, New Zealand:University of Auckland, 2013.

    [37] Stenius I., Rosén A., Battley M. et al. Experimental hydro- elastic characterization of slamming loaded marine panels [J]., 2013, 74: 1-15.

    [38]Battley M., Allen T., Pehrson P. et al. Effects of panel stiffness on slamming responses of composite hull panels [C]., Edinburgh, UK, 2009.

    [39]Koshizuka S. Ryushiho (Particle method) [M]. Tokyo, Japan: Maruzen, 2005(in Japanese).

    [40] Belytschko T., Guo Y., Liu W. K. et al.A unified stability analysis of meshless particle methods [J]., 2000, 48(9): 1359-1400.

    [41] Belytschko T., Xiao S. P. Stability analysis of particle me- thods with corrected derivatives [J]., 2002, 43(3-5): 329-350.

    [42] Vignjevic R., Campbell J., Libersky L. D. A treatment of zero-energy modes in the smoothed particle hydrody- namics method [J]., 2000, 184(1): 67-85.

    [43] Randles P. W., Libersky L. D. Normalized SPH with stress points [J]., 2000, 48(10): 1445-1462.

    [44]Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells [M].Second Edition, New York, USA: McGraw-Hill, 1959.

    [45] Long T., Hu D., Wan D. et al.An arbitrary boundary with ghost particles incorporated incoupled FEM-SPH model for FSI problems [J]., 2017, 350: 166-183.

    [46] Liang D., He X., Zhang J. X. An ISPH model for flow-like landslides and interaction with structures [J]., 2017, 29(5): 894-897.

    [47] Cercos-Pita J. L., Antuono M., Colagrossi A. et al. SPH energy conservation for fluid-solid interactions [J]., 2017, 317: 771-791.

    [48] Gotoh H., Shibahara T., Sakai T. Sub-particle-scale turbu- lence model for the MPS method-Lagrangian flow model for hydraulic engineering [J].,2001,9(4): 339-347.

    [49] Khayyer A., Gotoh H. Enhancement of performance and stability of MPS meshfree particle method for multiphase flows characterized by high density ratios [J]., 2013, 242: 211-233.

    (October 22, 2017, Accepted December 14, 2017)

    ?China Ship Scientific Research Center 2018

    Abbas Khayyer (1979-), Male, Ph. D.,

    Associate Professor

    Abbas Khayyer,

    E-mail: khayyer@particle.kuciv.kyoto-u.ac.jp

    久久久久免费精品人妻一区二区| 国产精品一区二区三区四区免费观看 | 午夜精品在线福利| 色综合欧美亚洲国产小说| 成人一区二区视频在线观看| 激情在线观看视频在线高清| 日本与韩国留学比较| 香蕉av资源在线| 99国产综合亚洲精品| 麻豆国产av国片精品| 欧洲精品卡2卡3卡4卡5卡区| 无限看片的www在线观看| 久久香蕉精品热| 国产精品久久久av美女十八| 俄罗斯特黄特色一大片| 成人鲁丝片一二三区免费| 精品久久久久久久久久免费视频| 老熟妇乱子伦视频在线观看| 亚洲美女黄片视频| 成在线人永久免费视频| 97超级碰碰碰精品色视频在线观看| 国产在线精品亚洲第一网站| 亚洲欧美精品综合一区二区三区| 在线观看一区二区三区| 日韩欧美免费精品| 日本黄色片子视频| netflix在线观看网站| 国产一区二区三区视频了| 草草在线视频免费看| 免费观看人在逋| 国产麻豆成人av免费视频| 久久久久久久久免费视频了| 两个人的视频大全免费| 国产黄a三级三级三级人| 一边摸一边抽搐一进一小说| 欧美大码av| 日本熟妇午夜| 国内揄拍国产精品人妻在线| 免费看十八禁软件| 久久人妻av系列| 曰老女人黄片| 婷婷六月久久综合丁香| 十八禁人妻一区二区| 精品午夜福利视频在线观看一区| 制服人妻中文乱码| 老司机深夜福利视频在线观看| 午夜福利18| 精品久久久久久久毛片微露脸| 成人av在线播放网站| 国产精品一区二区免费欧美| 亚洲一区二区三区色噜噜| 精品国产美女av久久久久小说| a级毛片在线看网站| 熟女少妇亚洲综合色aaa.| 特级一级黄色大片| 午夜福利欧美成人| 色播亚洲综合网| 成熟少妇高潮喷水视频| 亚洲色图av天堂| 一级a爱片免费观看的视频| 一个人免费在线观看的高清视频| 成年免费大片在线观看| 日韩国内少妇激情av| 国产爱豆传媒在线观看| 国产男靠女视频免费网站| 91字幕亚洲| 大型黄色视频在线免费观看| 国产午夜精品论理片| 成年免费大片在线观看| 一进一出抽搐动态| 俺也久久电影网| 久久精品91无色码中文字幕| 在线观看午夜福利视频| 18美女黄网站色大片免费观看| 欧美日韩一级在线毛片| 热99re8久久精品国产| 狂野欧美白嫩少妇大欣赏| 亚洲avbb在线观看| 久久久久精品国产欧美久久久| 夜夜夜夜夜久久久久| 欧美日韩福利视频一区二区| 欧美3d第一页| 午夜激情福利司机影院| 亚洲成人久久爱视频| 午夜福利成人在线免费观看| 美女扒开内裤让男人捅视频| 级片在线观看| 一级毛片高清免费大全| 一个人看视频在线观看www免费 | 在线观看舔阴道视频| 日本熟妇午夜| 日韩欧美 国产精品| 精品国产三级普通话版| a级毛片在线看网站| 国内久久婷婷六月综合欲色啪| 老司机在亚洲福利影院| 亚洲av美国av| 国产精品美女特级片免费视频播放器 | 美女大奶头视频| 亚洲精品中文字幕一二三四区| 99久国产av精品| 欧美乱色亚洲激情| 搡老岳熟女国产| 国产成人精品久久二区二区91| 欧美3d第一页| 亚洲av五月六月丁香网| 中文字幕人妻丝袜一区二区| 18禁黄网站禁片午夜丰满| 丁香六月欧美| 男人舔奶头视频| 亚洲狠狠婷婷综合久久图片| 精品午夜福利视频在线观看一区| 黄色日韩在线| 亚洲国产欧洲综合997久久,| 一进一出抽搐动态| 韩国av一区二区三区四区| 日韩欧美精品v在线| 日韩欧美免费精品| av黄色大香蕉| 国产三级中文精品| 91在线精品国自产拍蜜月 | 婷婷亚洲欧美| 亚洲国产欧洲综合997久久,| 国产单亲对白刺激| 午夜两性在线视频| 嫩草影院精品99| 久久久国产成人精品二区| 757午夜福利合集在线观看| 日本 av在线| 老鸭窝网址在线观看| 亚洲第一电影网av| 国产高清视频在线播放一区| 一夜夜www| 亚洲av电影不卡..在线观看| 成人av一区二区三区在线看| 在线观看美女被高潮喷水网站 | 精品国内亚洲2022精品成人| 国产亚洲av高清不卡| 婷婷六月久久综合丁香| 97超视频在线观看视频| 91久久精品国产一区二区成人 | 最新中文字幕久久久久 | 亚洲成人久久爱视频| 成人一区二区视频在线观看| 一二三四在线观看免费中文在| 神马国产精品三级电影在线观看| 18禁国产床啪视频网站| 一级作爱视频免费观看| 免费看日本二区| 男女那种视频在线观看| 国产精品亚洲美女久久久| 一区二区三区激情视频| 亚洲真实伦在线观看| 亚洲,欧美精品.| 欧美性猛交黑人性爽| 丝袜人妻中文字幕| x7x7x7水蜜桃| 国产av一区在线观看免费| 亚洲国产日韩欧美精品在线观看 | 97碰自拍视频| 国产成年人精品一区二区| a在线观看视频网站| www国产在线视频色| 成人高潮视频无遮挡免费网站| 亚洲美女视频黄频| 日韩有码中文字幕| 欧美乱码精品一区二区三区| 欧美午夜高清在线| 老司机午夜十八禁免费视频| 在线观看免费视频日本深夜| 久久中文字幕一级| 最近最新中文字幕大全电影3| 免费在线观看影片大全网站| 日日干狠狠操夜夜爽| 99久久成人亚洲精品观看| 每晚都被弄得嗷嗷叫到高潮| www日本在线高清视频| 可以在线观看毛片的网站| 婷婷亚洲欧美| 伊人久久大香线蕉亚洲五| 一a级毛片在线观看| 99在线人妻在线中文字幕| 丰满人妻一区二区三区视频av | 老汉色∧v一级毛片| 成人国产一区最新在线观看| 美女免费视频网站| 长腿黑丝高跟| 色精品久久人妻99蜜桃| 美女高潮的动态| 脱女人内裤的视频| 一个人看视频在线观看www免费 | 色在线成人网| 天堂√8在线中文| 麻豆av在线久日| 精品日产1卡2卡| 韩国av一区二区三区四区| 我的老师免费观看完整版| 色在线成人网| www.999成人在线观看| 视频区欧美日本亚洲| 91在线精品国自产拍蜜月 | 后天国语完整版免费观看| 99精品在免费线老司机午夜| 午夜a级毛片| 最近在线观看免费完整版| 亚洲成av人片在线播放无| 男人舔女人下体高潮全视频| 很黄的视频免费| 一个人看的www免费观看视频| 亚洲熟妇熟女久久| 校园春色视频在线观看| 国产乱人视频| 国产成人影院久久av| 国产午夜精品论理片| 国产精品久久久久久精品电影| 黄色片一级片一级黄色片| 亚洲最大成人中文| 亚洲精品美女久久久久99蜜臀| 欧美3d第一页| 嫩草影视91久久| 日本 欧美在线| 国产探花在线观看一区二区| 久久亚洲精品不卡| 日韩有码中文字幕| 女同久久另类99精品国产91| 我要搜黄色片| 免费一级毛片在线播放高清视频| 99re在线观看精品视频| 别揉我奶头~嗯~啊~动态视频| 搞女人的毛片| 波多野结衣高清作品| 国产69精品久久久久777片 | 国产成人欧美在线观看| 国产极品精品免费视频能看的| 在线观看美女被高潮喷水网站 | av女优亚洲男人天堂 | 亚洲色图 男人天堂 中文字幕| 搡老熟女国产l中国老女人| 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 熟女电影av网| 欧美黑人巨大hd| 丁香六月欧美| 1024香蕉在线观看| 99热6这里只有精品| 亚洲欧美精品综合一区二区三区| 一个人免费在线观看电影 | 欧美日韩乱码在线| 窝窝影院91人妻| 亚洲片人在线观看| 日韩有码中文字幕| 成年女人看的毛片在线观看| 91在线精品国自产拍蜜月 | 成人国产一区最新在线观看| 两性夫妻黄色片| 国产免费男女视频| 日韩欧美三级三区| 国产成人一区二区三区免费视频网站| 欧美成人免费av一区二区三区| 天堂网av新在线| 欧美日韩瑟瑟在线播放| 神马国产精品三级电影在线观看| 国产精品久久久久久精品电影| 免费看美女性在线毛片视频| 久久这里只有精品19| 国产亚洲精品综合一区在线观看| 三级国产精品欧美在线观看 | 色综合欧美亚洲国产小说| 成人国产综合亚洲| 男女下面进入的视频免费午夜| 麻豆av在线久日| 久久人妻av系列| 曰老女人黄片| 国产亚洲精品久久久com| 日本三级黄在线观看| 麻豆成人av在线观看| 国产精品免费一区二区三区在线| 一本一本综合久久| 国产 一区 欧美 日韩| 变态另类成人亚洲欧美熟女| 久久精品国产亚洲av香蕉五月| 啪啪无遮挡十八禁网站| bbb黄色大片| 免费在线观看日本一区| 亚洲电影在线观看av| 中文字幕人妻丝袜一区二区| 亚洲人成电影免费在线| netflix在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 男女之事视频高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品1区2区在线观看.| 欧美午夜高清在线| 国产精品久久久av美女十八| 长腿黑丝高跟| 国产真实乱freesex| 波多野结衣巨乳人妻| 亚洲美女黄片视频| 国产精品 国内视频| 日日夜夜操网爽| 国产精品久久久久久精品电影| 老司机午夜福利在线观看视频| 日韩免费av在线播放| 国产成人影院久久av| 成人高潮视频无遮挡免费网站| 99精品欧美一区二区三区四区| 久久久色成人| 午夜精品一区二区三区免费看| 色在线成人网| 亚洲精品久久国产高清桃花| 少妇的逼水好多| 日韩欧美精品v在线| 精品久久久久久久末码| 啦啦啦观看免费观看视频高清| ponron亚洲| 国产精品 国内视频| 国产在线精品亚洲第一网站| 午夜视频精品福利| 亚洲九九香蕉| 成熟少妇高潮喷水视频| 中文亚洲av片在线观看爽| 九色成人免费人妻av| 国产日本99.免费观看| 精品不卡国产一区二区三区| а√天堂www在线а√下载| netflix在线观看网站| 成年女人永久免费观看视频| 日韩大尺度精品在线看网址| 亚洲18禁久久av| 伦理电影免费视频| 国产精品久久久av美女十八| 少妇的丰满在线观看| 神马国产精品三级电影在线观看| 后天国语完整版免费观看| 九九在线视频观看精品| 欧美激情在线99| 无限看片的www在线观看| 午夜福利免费观看在线| 看黄色毛片网站| 国产三级黄色录像| 真人做人爱边吃奶动态| 久久久久久国产a免费观看| 精品一区二区三区av网在线观看| 亚洲精品色激情综合| 在线播放国产精品三级| 色噜噜av男人的天堂激情| 国产精品亚洲av一区麻豆| 亚洲电影在线观看av| 久久精品综合一区二区三区| 精品一区二区三区四区五区乱码| 亚洲自偷自拍图片 自拍| avwww免费| 男插女下体视频免费在线播放| 成人精品一区二区免费| 成人国产一区最新在线观看| 舔av片在线| 首页视频小说图片口味搜索| 欧美日韩精品网址| 日韩三级视频一区二区三区| 成年人黄色毛片网站| 亚洲国产欧美网| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久视频播放| 亚洲欧美日韩高清在线视频| 日本五十路高清| 免费搜索国产男女视频| 免费一级毛片在线播放高清视频| 免费av毛片视频| 亚洲国产精品久久男人天堂| 国产精品久久久人人做人人爽| 日本三级黄在线观看| 久久精品夜夜夜夜夜久久蜜豆| 特大巨黑吊av在线直播| www日本黄色视频网| 日本黄色片子视频| 人人妻人人澡欧美一区二区| 在线看三级毛片| 日本与韩国留学比较| 97超级碰碰碰精品色视频在线观看| 日韩精品青青久久久久久| 国产精品久久久久久人妻精品电影| 中出人妻视频一区二区| 99热只有精品国产| 国产精品 国内视频| 99精品在免费线老司机午夜| 久久精品国产清高在天天线| 一进一出抽搐动态| h日本视频在线播放| 亚洲精品国产精品久久久不卡| 国产视频内射| 一个人看的www免费观看视频| 国产午夜精品久久久久久| 国产精品亚洲av一区麻豆| 全区人妻精品视频| 色综合站精品国产| 亚洲欧洲精品一区二区精品久久久| 国产三级中文精品| 久久久久九九精品影院| 久久久久免费精品人妻一区二区| 亚洲av美国av| 人妻久久中文字幕网| 伊人久久大香线蕉亚洲五| www.www免费av| 亚洲va日本ⅴa欧美va伊人久久| 免费高清视频大片| 国产av一区在线观看免费| 久久人人精品亚洲av| 亚洲精品久久国产高清桃花| 亚洲午夜理论影院| 美女午夜性视频免费| 两性夫妻黄色片| 精品久久久久久久人妻蜜臀av| 日本与韩国留学比较| 性色avwww在线观看| 在线国产一区二区在线| 久久久成人免费电影| 很黄的视频免费| 人妻夜夜爽99麻豆av| 免费人成视频x8x8入口观看| 人人妻人人看人人澡| 在线免费观看的www视频| 亚洲精品456在线播放app | 性色avwww在线观看| 亚洲国产高清在线一区二区三| 首页视频小说图片口味搜索| 免费看光身美女| 变态另类丝袜制服| 欧美极品一区二区三区四区| 12—13女人毛片做爰片一| 日日干狠狠操夜夜爽| 免费一级毛片在线播放高清视频| 国产精品九九99| 国产av一区在线观看免费| 国产精品久久久久久久电影 | 欧美日韩中文字幕国产精品一区二区三区| 99久久综合精品五月天人人| 亚洲精品在线美女| 免费观看人在逋| 久久久久久久久免费视频了| 日本a在线网址| 中文字幕最新亚洲高清| 国产私拍福利视频在线观看| 99热这里只有是精品50| 久久久久久久午夜电影| 在线观看舔阴道视频| 51午夜福利影视在线观看| 手机成人av网站| 国产精品久久视频播放| 999精品在线视频| 成人性生交大片免费视频hd| 男女午夜视频在线观看| 亚洲男人的天堂狠狠| 国产野战对白在线观看| 黄色片一级片一级黄色片| 久久国产精品影院| 国产一区二区三区在线臀色熟女| 欧美国产日韩亚洲一区| 91av网一区二区| 国产日本99.免费观看| 国产高潮美女av| 久久九九热精品免费| 国产精品1区2区在线观看.| 亚洲av熟女| 国产亚洲精品一区二区www| 欧美一区二区国产精品久久精品| 免费在线观看日本一区| 欧美黑人欧美精品刺激| 国产综合懂色| 色综合亚洲欧美另类图片| 欧美中文综合在线视频| 巨乳人妻的诱惑在线观看| 国产美女午夜福利| 国产精品亚洲一级av第二区| 一夜夜www| 免费一级毛片在线播放高清视频| 美女午夜性视频免费| 中文字幕精品亚洲无线码一区| 亚洲一区二区三区色噜噜| 欧美成人性av电影在线观看| 黄色丝袜av网址大全| av中文乱码字幕在线| 又大又爽又粗| 国产午夜精品论理片| 天堂√8在线中文| 国产av一区在线观看免费| 国产一区二区在线观看日韩 | 国产伦人伦偷精品视频| 在线观看舔阴道视频| 久久中文字幕一级| 亚洲人成网站在线播放欧美日韩| 熟女人妻精品中文字幕| 在线视频色国产色| 中文字幕最新亚洲高清| 久久久精品欧美日韩精品| 国产精品亚洲美女久久久| 欧美成人一区二区免费高清观看 | 国产单亲对白刺激| 精品乱码久久久久久99久播| 亚洲国产欧美网| 久久亚洲真实| 亚洲成人久久性| 国产97色在线日韩免费| 丰满人妻一区二区三区视频av | 国产精品一区二区精品视频观看| 久久久色成人| 一级a爱片免费观看的视频| 两个人看的免费小视频| 噜噜噜噜噜久久久久久91| 亚洲午夜精品一区,二区,三区| 久久久久久久精品吃奶| 搞女人的毛片| 中文字幕熟女人妻在线| 久久久精品大字幕| 色噜噜av男人的天堂激情| 热99re8久久精品国产| 97碰自拍视频| 亚洲人与动物交配视频| 成年女人看的毛片在线观看| 午夜福利在线观看吧| 国产精品乱码一区二三区的特点| 视频区欧美日本亚洲| 精品国内亚洲2022精品成人| 99热只有精品国产| 国产aⅴ精品一区二区三区波| 国产免费av片在线观看野外av| 亚洲国产精品久久男人天堂| 国内揄拍国产精品人妻在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产看品久久| 国产成人啪精品午夜网站| 久久婷婷人人爽人人干人人爱| 在线播放国产精品三级| 18禁国产床啪视频网站| 国产成人av激情在线播放| 长腿黑丝高跟| 超碰成人久久| 久久久国产成人免费| 日韩 欧美 亚洲 中文字幕| 亚洲 欧美一区二区三区| 欧美zozozo另类| 久久久久久九九精品二区国产| 午夜福利成人在线免费观看| 一进一出好大好爽视频| 午夜日韩欧美国产| 亚洲精华国产精华精| 亚洲专区中文字幕在线| 夜夜夜夜夜久久久久| 在线观看一区二区三区| 波多野结衣巨乳人妻| 精品久久久久久久末码| 女人高潮潮喷娇喘18禁视频| 久久热在线av| 日日干狠狠操夜夜爽| 国产精品综合久久久久久久免费| 法律面前人人平等表现在哪些方面| 亚洲av日韩精品久久久久久密| 免费av不卡在线播放| 三级毛片av免费| 久久天堂一区二区三区四区| 91在线观看av| 桃红色精品国产亚洲av| 91av网一区二区| 可以在线观看毛片的网站| 天天躁日日操中文字幕| 日本五十路高清| 99热这里只有是精品50| 99国产精品一区二区蜜桃av| 成人国产一区最新在线观看| 亚洲天堂国产精品一区在线| 少妇裸体淫交视频免费看高清| 人妻夜夜爽99麻豆av| 蜜桃久久精品国产亚洲av| 噜噜噜噜噜久久久久久91| 日本黄色视频三级网站网址| 特大巨黑吊av在线直播| 成人特级av手机在线观看| 熟女电影av网| 99久久综合精品五月天人人| 国产三级黄色录像| 国产亚洲av高清不卡| 女人被狂操c到高潮| 九色成人免费人妻av| av福利片在线观看| 99久久精品国产亚洲精品| 丰满人妻一区二区三区视频av | 国产精品98久久久久久宅男小说| 久久这里只有精品19| 亚洲av美国av| 午夜久久久久精精品| 天天添夜夜摸| 精品国产亚洲在线| 99国产精品99久久久久| 欧美激情久久久久久爽电影| 国产一区二区在线av高清观看| www日本在线高清视频| 国产成人aa在线观看| 国产私拍福利视频在线观看| 无限看片的www在线观看| 欧美色视频一区免费| 精品国产三级普通话版| 亚洲无线观看免费| 欧美成狂野欧美在线观看| 精品国产三级普通话版| 好看av亚洲va欧美ⅴa在| 成在线人永久免费视频| 亚洲人成网站在线播放欧美日韩| 婷婷丁香在线五月| 亚洲av电影在线进入| 好看av亚洲va欧美ⅴa在| 一边摸一边抽搐一进一小说| 亚洲国产精品sss在线观看| 看片在线看免费视频| 国产免费av片在线观看野外av| 真实男女啪啪啪动态图| 亚洲中文av在线|