• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-speed water impacts of flat plates in different ditching configuration through a Riemann-ALE SPH model *

    2018-04-13 12:23:32MarroneColagrossiChironDeLeffeLeTouz

    S. Marrone, A. Colagrossi,L. Chiron,M. De Leffe,D. Le Touzé

    ?

    High-speed water impacts of flat plates in different ditching configuration through a Riemann-ALE SPH model*

    S. Marrone1, A. Colagrossi1,L. Chiron2,M. De Leffe2,D. Le Touzé3

    1.2.3.

    Aircraft ditching, high-speed water entry, smoothed particle hydrodynamics (SPH)

    Introduction

    The problem of the high-speed water entry is classically of interest in the naval field as far as slamming loads on ships are concerned. In this context several theoretical solution have been derived for simplified conditions and a large literature of experi- mental data is available. Water-entry problems are also very important in the aircraft ditching, that is, the emergency landing on water. The response of the vehicle to this kind of water impact is critical in terms of safety of the passengers and certifications issued by airworthiness authorities includes the success of the airframe in ditching tests. In this context few high- fidelity numerical methods have been developed so far[1, 2].

    The smoothed particle hydrodynamics (SPH) method has already shown promising results for the simulation of violent water impacts thanks to its accuracy and easiness in following the free-surface deformations[3-5]. In the present work an in-depth study and validation of the SPH model is provided for 2-D water entries of flat panels with small deadrise angle. Both purely vertical and oblique impact velo- city with high horizontal velocity component are studied (Sections 2 and 3). These conditions are of interest for, respectively, helicopter and airplane ditching situations. To this aim the numerical outcome will be compared to experimental measurements and analytical solutions when available. The influence of the 3-D effects are also addressed for the oblique water entry through a 3-D SPH model. In order to accurately resolve the high and localized pressure peaks developed at the impact a Riemann-based SPH solver is used within an arbitrary Eulerian-Lagrangian (ALE) framework. The choice of the numerical para- meters to be adopted, as e.g., the liquid compressi- bility, is critically and extensively discussed on the base of physical considerations peculiar of water- impact flows.

    1. Adopted SPH scheme

    In the present work Euler equations for com- pressible fluids are solved. Indeed, since the Reynolds number of the flow is quite high and only the impact stage is simulated (short time-range regime) viscous effects can be considered negligible. The weakly-com- pressible model is adopted, the fluid is, therefore, assumed to be barotropic and a classical stiffened state equation is used

    In the present work the Riemann-based solver described in Ref. [7] is adopted. In that work the ALE formalism is used allowing for maintaining a regular particle spatial distribution and smooth pressure fields while preserving the whole scheme conservation and consistency of the classical SPH scheme. The intro- duction of the Riemann-based solver in the SPH scheme leads to an increased stability and robustness of the scheme with respect to the standard SPH formulation. The formalism proposed by Ref. [8], Thanks to the introduction of Riemann-solvers the fluxes between particles are upwind oriented and the resulting scheme is characterized by good stability properties. The discrete Euler equations are written as follows:

    2. Vertical water entry of a flat panel

    As described in the theoretical work by Ref. [10], for these small deadrise angles a very thin, high-speed jet of water is formed, and the time-spatial gradients of the pressure field are extremely high. This makes the test conditions very demanding for numerical solvers. From the potential flow theory by Ref. [10], the jet thickness at model scale is about 0.1 mm. It is worth noting that the theory in Ref. [10] is formulated for symmetric wedge impacts whereas in the present casetheimpactofan inclined single plate is consi- dered. More details about the reference solution to be adopted are given in Section 2.2.

    Fig. 1 (Color online) Vertical impact of a flat panel. Contour lines are representative of the SPH velocity intensity. Pressure probe number 12, which is the gauge used for the comparison with the experimental data, is also depicted

    As noted in Ref. [11], this very thin, high-speed jet disintegrates at some distance from the root due to interaction with both the surrounding air and the surface of the body. In this case surface tension plays an important role on the jet evolution. This local and complex physics is not taken into account in the present numerical method but it is not supposed to play are relevant role on the pressure distribution.

    2.1 Selection of the speed of sound for the SPH model

    corresponding to about 9.1′106Pa in our experiment.

    Fig. 2 (Color online) Vertical impact of a flat panel: Contour lines are representative of the SPH pressure field. Red solid line is the free surface extracted from Ref. [10]

    Fig. 3 Vertical impact of a flat panel: Enlarged view of the impact zone. The size of the pressure gauges used in the experiments is also depicted

    Fig. 4 (Color online) Vertical impact of a flat panel: SPH pressure time histories at probe P12 compared with experimentaldataandwithanalyticalsolution (Wagner theory)

    2.2 Comparison between SPH results, analytical solution and experimental data

    In the right plot of the same figure an enlarged view of the pressure field is shown (in this case the displayed pressure range is enlarged too). From this plot it is seen that the high-pressure region is limited to an area of 1 mm2with a pressure peak of about 6.0′106Pa. In the same figure the size of the probe used in the experiments is depicted. Clearly, the pressure sensor or has a size much larger than the pressure bulb formed below the water-jet root. This aspect will be discussed in the following section.

    In Fig. 4 the time histories of the pressure mea- sured at probe P12 are shown. This probe is posi- tioned 0.236 m from the left-hand edge of the panel (see Fig. 1). The SPH solution is compared with the experiments and with the pressure peak predicted by Wagner theory. The SPH prediction is between the two reference data sets, and is characterized by high-frequency components due to the fragmented jet of water that pass over the numerical pressure probe. The latter has a dimension of 0.125 mm (which is the size of the SPH kernel support) and the SPH sampling rate is 25 MHz. Both the SPH and the analytical predictions overestimate the experimental data for which the maximum pressure recorded is 3.4′106Pa (in the SPH solution the pressure peak reaches 7.0′106Pa whereas the analytical prediction is 9.1′106Pa). It has to be noted that, even though the Wagner theory is referred to the case of asymmetric wedge entry, according to Refs. [14] and [15] the value of the pressure peak should be substantially the same of the case of an oblique flat panel impact (it will be shown in Section 2.3 that this approximation can be quite rough for the present case).

    (1)Changes of the body velocity during the impact stage.

    (2)Rotations of the body during the impact stage.

    (3)Deformations of the wedge surface.

    (4)Sampling rate of the pressure signals.

    (5)Size of the pressure gauge.

    Thanks to the experimental setup adopted the first three points can be neglected, while the last two can play an important role. In order to take into account the experimental sampling rate, the SPH signal has first been filtered using a moving average filter (MAF) reducing the numerical sampling rate from 25 MHz to 100 kHz. The result is illustrated in Fig. 5. The reduction of the SPH peak due to this filtering procedure is not enough to get a good agree- ment with the experimental data. As a further step the SPH pressure has been measured integrating on a circular area equal to the size of the experimental pressure probes and then filtered at 100 kHz. This result is shown in Fig. 6. In this case the SPH output is much closer to the pressure recorded in the experi- ment.

    Fig. 5 Vertical impact of a flat panel: SPH pressure time histories versus experimental data. The SPH signal is filteredwitharunningaveragefilters(MAF)at100 kHz (dashed-dotted line)

    Fig. 6 Vertical impact of a flat panel: SPH pressure time histories versus experimental data. The SPH signal recorded using the size of the experimental pressure gauges and filtered at 100 kHz is also shown

    Fig. 7 Vertical impact of a flat panel: experimental data for the pressure time histories on a row of probes (not equi- spaced). The time history from the first and last probes on the panel impacting the water are represented with dashed-dotted line. The time history in dash dot-dot line is from probe P12 , used in the previous figures for comparison with the SPH solution

    Fig.9 Vertical impact of a flat panel: Peak propagation velocity calculated on several positions along the panel for the experiment (triangles), SPH simulation at (circles) and (squares), and analyti- cal value from potential flow theory (dashed line). The origin of the axis is set at the left-hand edge of the panel

    Table 1 Average of the peak propagation velocity plotted in Fig. 9. The corresponding pressure peak , the actual average pressure peak measured at the probes and the related pressure coefficient (Eq. (4)) are also reported

    2.3 Comparison between symmetric and asymmetric water entry

    Fig.10 (Color online) Vertical impact of a flat panel: fluid domain adopted in the symmetric problem configura- tion. Contours refer to the module of the velocity field

    Fig.12Vertical impact of a flat panel: pressure time histories of symmetric (solid line) and asymmetric (dashed) solutions measured at 0.16 m from the left-hand edge of the panel. Analytical solutions by Ref. [21] (dash-dot line) and by Ref. [10] (dash dot-dot line) are also reported

    3. Water entry with high horizontal speed

    In this section the ditching problem including a large horizontal velocity component is studied, com- paring the SPH out come to model test experiments. Given the higher complexity of the problem, in this section also possible 3-D effects are investigated, as their role is expected to be not negligible for this case.

    3.1 Description of the experimental data

    Guided ditching impact experiments[19, 23]were performed in the CNR-INSEAN towing tank, which is 470 m long, 13.5 m wide and 6.5 m deep. The dimension of the flat plate were 0.5 m by 1 m (Fig. 13). Pressures at 18 points are measured through Kulite XTL123B pressure transducers. The sampling rate of the latter is 200 kHz while their dimension is 3.8 mm. The horizontal and vertical velocities at the impact are respectively 40 m/s and ?1.5 m/s. In the experiments, these velocities are assumed to remain constant during the whole ditching impact.

    Fig.13(Color online) Top view of the plate adopted in the ditching experiments. The ellipse shows pressure probes considered for 2-D SPH simulations (mm)

    3.2 Numerical methodology

    In this second test case series, simulations have been conducted using adaptive particle refinement (APR) technique[24]. This technique allows keeping a high spatial resolution around the flat plate during the simulation as the refinement areas move at the same speed of the plate. In order to avoid the pressure filtering described in Section 2, the numerical adopted pressure sensor size is the same as in the experiments (i.e., 3.8 mm).

    3.3 Impact at pitch angle

    Another important aspect to discuss is the ampli- tude of the pressure peak. Indeed, looking at top plots of Fig. 16, one could be induced to conclude that the 2-D SPH matches very well the 3-D experimental measurements. This would be a misleading judgement since it would be in contrast with the different peak propagation velocities (according to correlation pro- vided in Eq. (4)). This apparent contradiction can be explained observing that at probe P16 (bottom plot of Fig. 16) the SPH pressure peak is about 50% higher than at probes P4 and P8. The latter presents also more noisy signals and a less clear convergence. The reason is linked to the fact that at the beginning of the impact there are only few particles to resolve the impact region, while going forward in time the peak region grows in amplitude, i.e., it is better resolved.

    Fig.14(Color online) Sketch of the oblique ditching simulation involving 8 refinement levels. Contours refer to refine- ment level

    Fig.16(Color online) Comparison between experimental data and 2-D SPH simulations with different refinement levels at probes P4, P8, P16

    3.4 Impact at pitch angle: 2-D and 3-D solu- tions

    Fig.19(Color online) 3-D SPH simulation with APR. Contours refer to the local particle size

    The latter can be also observed in Fig. 21, where a top view of the pressure field is provided. The delay of the spray root close to the lateral edges of the plate is visible in then nearly-parabolic shape of pressure peak front.

    In Fig. 22 the comparison between 2-D and 3-D SPH pressure signal at P16 is provided. The 3-D solution is much closer to the experimental data with respect to the 2-D simulation. It can be clearly seen that the 3-D effects induce a decrease of the peak amplitude and a delay of the peak occurrence, as consequence of the lower peak propagation velocity. This confirms the conjecture in Ref. [19] regarding the large discrepancies between 2-D potential flow solu- tion and experiments.

    Fig.22(Color online) Comparison of the pressure signal registered at probe P16 between experiments, 2-D and 3-D SPH simulations

    4. Concluding remarks

    High speed ditching problems, in both vertical and oblique entry velocity have been discussed. All along the paper the main flow characteristics consi- dered are the pressure signal and the jet propagation velocity (i.e., pressure peak propagation velocity) which are strictly correlated.

    Then, analysis has been focused on ditching problems of flat plates with high horizontal velocity, comparing to the experimental data and potential flow solution in Refs. [23] and [19]. For this case, an Adaptive Particle Refinement strategy has been adopted to limit the computational costs.

    Then, a 3-D simulation for the case at 10° is performed recovering the agreement with the experi- mental data and showing that, as speculated in Ref. [19], 3-D effects are substantial for this problem for both the pressure peak amplitude and the jet propagation velocity.

    Acknowledgements

    The research leading to these results has partially received funding from the European Union’s Horizon 2020 Research and Innovation Programme (Grant No. 724139). The SPH simulations performed under the present research have been obtained using the SPHFlow solver, software developed within a collaborative consortium composed of Ecole Centrale de Nantes, Next Flow Software company and CNR-INSEAN.

    [1] Streckwall H., Lindenau O., Bensch L. Aircraft ditching: A free surface/free motion problem [J]., 2007, 7(3): 177-190.

    [2] Guo B., Liu P., Qu Q. et al. Effect of pitch angle on initialstage of a transport airplane ditching [J]., 2013, 26(1): 17-26.

    [3] Oger G., Doring M., Alessandrini B. et al. Two-dimen- sional SPH simulations of wedge water entries [J]., 2006, 213(2): 803-822.

    [4] Meringolo D. D., Colagrossi A., Marrone S. et al. On the filtering of acoustic components in weakly-compressible SPH simulations [J]., 2017, 70: 1-23.

    [5] Lind S., Stansby P., Rogers B. D. In compressible-com- pressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH) [J]., 2016, 309: 129-147.

    [6] Marrone S., Colagrossi A., Di Mascio A. et al. Prediction of energy losses in water impacts using incompressible and weakly compressible models [J]., 2015, 54: 802-822.

    [7] Oger G., Marrone S., Le Touzé D. et al. SPH accuracy improvement through the combination of a quasi- Lagrangian shifting transport velocity and consistent ALE formalisms [J]., 2016, 313: 76-98.

    [8] Vila J. On particle weighted methods and smooth particle hydrodynamics [J]., 1999, 9(2): 161-209.

    [9] Marrone S., Colagrossi A., Park J. et al. Challenges on the numerical prediction of slamming loads on LNG tank insulation panels [J]., 2017, 141: 512-530.

    [10] Zhao R., Faltinsen O. M. Water entry of two-dimensional bodies [J]., 1993, 246: 593-612.

    [11] Korobkin A. A., Iafrati A. Numerical study of jet flow generated by impact on weakly compressible liquid [J]., 2006, 18(3): 032108.

    [12] Campana E., Carcaterra A., Ciappi E. et al. Some insights into slamming forces: compressible and incompressible phases [J]., 2000, 214(6): 881-888.

    [13] Korobkin A., Pukhnachov V. Initial stage of water impact [J]., 1988, 20: 159-185.

    [14]Faltinsen O. M., Semenov Y. A. Nonlinear problem of flat-plate entry into an incompressible liquid [J]., 2008, 611: 151-173.

    [15]Okada S., Sumi Y. On the water impact and elastic response of a flatplate at small impact angles [J]., 2000, 5(1): 31-39.

    [16]Chuang S. L. Experiments on slamming of wedge-shaped bodies [J]., 1967, 11(3): 190-198.

    [17]Mizoguchi S., Tanizawa K. Impact wave loads due to slamming-A review [J]., 1996, 43(4): 139-154.

    [18]Tenzer M., Moctar O. E., Schellin T. E. Experimental investigation of impact loads during water entry [J]., 2015, 62(1): 47-59.

    [19] Iafrati A. Experimental investigation of the water entry of a rectangular plate at high horizontal velocity [J]., 2016, 799: 637-672.

    [20]Armand J., Cointe R. Hydrodynamic impact analysis of a cylinder [J]., 1987, 109(3): 237-243.

    [21] Watanabe T. Analytical expression of hydrodynamic im- pact pressureby matched asymptotic expansion technique [J]., 1986, 71: 77-85.

    [22]Semenov Y. A., Iafrati A. On the nonlinear water entry problem of asymmetric wedges [J]., 2006, 547: 231-256.

    [23]Iafrati A., Grizzi S., Siemann M. et al. High-speedditching of a flat plate: Experimental data and uncertainty assess- ment [J]., 2015, 55: 501-525.

    [24] Chiron L., Oger G., de Leffe M. et al. Analysis and impro- vements of adaptive particle refinement (APR) through CPU time, accuracy and robustness considerations [J]., 2018, 354: 552-575.

    (October 22, 2017, Accepted December 21, 2017)

    ?China Ship Scientific Research Center 2018

    S. Marrone (1983-), Male, Ph. D.

    S. Marrone,

    E-mail:salvatore.marrone@cnr.it

    久久中文字幕一级| 欧美中文综合在线视频| 精品一区二区三区av网在线观看 | 久久99热这里只频精品6学生| 亚洲自偷自拍图片 自拍| 999久久久精品免费观看国产| 日韩欧美一区视频在线观看| 亚洲欧美精品自产自拍| 高清av免费在线| 亚洲国产欧美网| 国产一级毛片在线| 高清视频免费观看一区二区| 一区在线观看完整版| 伦理电影免费视频| 夜夜骑夜夜射夜夜干| 亚洲国产欧美日韩在线播放| 99re6热这里在线精品视频| 天天操日日干夜夜撸| 国产成人欧美在线观看 | 黄片播放在线免费| 一边摸一边做爽爽视频免费| 国产不卡av网站在线观看| 交换朋友夫妻互换小说| 多毛熟女@视频| 亚洲va日本ⅴa欧美va伊人久久 | 青草久久国产| 国产精品一区二区免费欧美 | 欧美日韩一级在线毛片| 国产av国产精品国产| 另类精品久久| 国产在线视频一区二区| 人人妻人人澡人人看| 我的亚洲天堂| 好男人电影高清在线观看| 中文字幕另类日韩欧美亚洲嫩草| 自拍欧美九色日韩亚洲蝌蚪91| 咕卡用的链子| 免费少妇av软件| 成在线人永久免费视频| av片东京热男人的天堂| av电影中文网址| 午夜精品国产一区二区电影| 啦啦啦 在线观看视频| 久久性视频一级片| 精品少妇久久久久久888优播| 日韩 亚洲 欧美在线| 久久狼人影院| 交换朋友夫妻互换小说| 欧美精品av麻豆av| 久久人人爽人人片av| 国产精品国产av在线观看| 狠狠狠狠99中文字幕| 99热网站在线观看| 国产99久久九九免费精品| 亚洲中文字幕日韩| 亚洲成av片中文字幕在线观看| 成年人黄色毛片网站| 丰满迷人的少妇在线观看| 亚洲中文字幕日韩| 亚洲av日韩精品久久久久久密| 在线观看免费午夜福利视频| 精品卡一卡二卡四卡免费| 18禁观看日本| 性色av乱码一区二区三区2| 日本一区二区免费在线视频| 国产免费一区二区三区四区乱码| 巨乳人妻的诱惑在线观看| 欧美日韩亚洲综合一区二区三区_| 久久久久久亚洲精品国产蜜桃av| 免费在线观看视频国产中文字幕亚洲 | 精品国产乱码久久久久久男人| 夜夜夜夜夜久久久久| 欧美日韩国产mv在线观看视频| 亚洲全国av大片| 老汉色av国产亚洲站长工具| 日韩一卡2卡3卡4卡2021年| 亚洲av成人一区二区三| 欧美精品高潮呻吟av久久| 丝袜美腿诱惑在线| 2018国产大陆天天弄谢| 秋霞在线观看毛片| 欧美黄色片欧美黄色片| 国产欧美日韩一区二区精品| 99九九在线精品视频| 精品亚洲成a人片在线观看| 叶爱在线成人免费视频播放| 国产亚洲欧美精品永久| 精品国产超薄肉色丝袜足j| 在线精品无人区一区二区三| 亚洲国产av新网站| 不卡av一区二区三区| 成年动漫av网址| 母亲3免费完整高清在线观看| 2018国产大陆天天弄谢| 国产一级毛片在线| 免费观看人在逋| 色综合欧美亚洲国产小说| a级毛片黄视频| 欧美黑人精品巨大| 麻豆国产av国片精品| 91精品国产国语对白视频| 在线亚洲精品国产二区图片欧美| 国产一区二区激情短视频 | 极品少妇高潮喷水抽搐| 狠狠婷婷综合久久久久久88av| 国产成人欧美在线观看 | 国产免费一区二区三区四区乱码| av欧美777| 久久久久国内视频| 黑人欧美特级aaaaaa片| 亚洲伊人色综图| 久久中文字幕一级| av天堂久久9| 999精品在线视频| 大香蕉久久网| 大片电影免费在线观看免费| 亚洲三区欧美一区| 俄罗斯特黄特色一大片| 国产精品一区二区在线不卡| 国产高清视频在线播放一区 | 九色亚洲精品在线播放| 国产在线视频一区二区| 免费不卡黄色视频| 久久国产精品影院| 啦啦啦 在线观看视频| 三级毛片av免费| 搡老熟女国产l中国老女人| 天天影视国产精品| 久久性视频一级片| 久久久久久久久免费视频了| 国产欧美日韩一区二区三区在线| 免费观看av网站的网址| 国产精品一区二区在线不卡| 乱人伦中国视频| 美女脱内裤让男人舔精品视频| 欧美日韩亚洲国产一区二区在线观看 | 99国产精品一区二区蜜桃av | 各种免费的搞黄视频| 又黄又粗又硬又大视频| kizo精华| 久久久精品国产亚洲av高清涩受| 99国产精品一区二区三区| 国产av一区二区精品久久| 制服诱惑二区| 亚洲精品国产av成人精品| 一区二区日韩欧美中文字幕| 如日韩欧美国产精品一区二区三区| 久久国产亚洲av麻豆专区| 欧美av亚洲av综合av国产av| 欧美日韩视频精品一区| 精品少妇内射三级| 久久久欧美国产精品| 亚洲天堂av无毛| 亚洲av片天天在线观看| 欧美老熟妇乱子伦牲交| 精品久久久久久电影网| 黄网站色视频无遮挡免费观看| 啦啦啦 在线观看视频| 国产精品亚洲av一区麻豆| 老司机在亚洲福利影院| 女人久久www免费人成看片| av又黄又爽大尺度在线免费看| 一二三四在线观看免费中文在| 人人妻人人爽人人添夜夜欢视频| 国产精品亚洲av一区麻豆| 亚洲欧美日韩另类电影网站| 国产精品自产拍在线观看55亚洲 | 免费不卡黄色视频| 日日夜夜操网爽| 精品亚洲成国产av| 免费观看a级毛片全部| 一区二区三区乱码不卡18| h视频一区二区三区| tocl精华| 亚洲国产精品成人久久小说| 久久久国产精品麻豆| 婷婷丁香在线五月| 亚洲专区中文字幕在线| 久久免费观看电影| 亚洲精品国产av成人精品| 亚洲视频免费观看视频| 亚洲成国产人片在线观看| 久热爱精品视频在线9| 国产欧美亚洲国产| 丰满人妻熟妇乱又伦精品不卡| 老熟妇仑乱视频hdxx| 亚洲欧美精品自产自拍| 在线观看免费高清a一片| 久久狼人影院| 在线观看免费午夜福利视频| 99热全是精品| 国产福利在线免费观看视频| 久久 成人 亚洲| 成年动漫av网址| 99精品久久久久人妻精品| 一本大道久久a久久精品| 亚洲精品一二三| 久久这里只有精品19| 老司机亚洲免费影院| 久久毛片免费看一区二区三区| 免费在线观看黄色视频的| 超碰成人久久| 五月开心婷婷网| 欧美一级毛片孕妇| 91字幕亚洲| 男女免费视频国产| 精品一区在线观看国产| 无遮挡黄片免费观看| 国产精品成人在线| 一边摸一边抽搐一进一出视频| 十八禁网站免费在线| 亚洲国产欧美在线一区| 亚洲精品国产区一区二| 交换朋友夫妻互换小说| 美国免费a级毛片| kizo精华| 2018国产大陆天天弄谢| 久久久国产欧美日韩av| 精品熟女少妇八av免费久了| 国产视频一区二区在线看| 国产精品自产拍在线观看55亚洲 | 欧美日韩亚洲国产一区二区在线观看 | 最新在线观看一区二区三区| 性色av一级| 中文字幕人妻丝袜制服| 黄色毛片三级朝国网站| 两个人免费观看高清视频| 久久这里只有精品19| 国产日韩欧美视频二区| 啪啪无遮挡十八禁网站| 中文字幕高清在线视频| 美女高潮喷水抽搐中文字幕| 国产成人欧美在线观看 | 一区二区三区激情视频| 亚洲欧美一区二区三区黑人| 午夜日韩欧美国产| 啦啦啦 在线观看视频| www.精华液| 亚洲av成人不卡在线观看播放网 | www.自偷自拍.com| 欧美成狂野欧美在线观看| 五月天丁香电影| 女人久久www免费人成看片| 欧美国产精品一级二级三级| 免费少妇av软件| 国产极品粉嫩免费观看在线| 国产精品免费视频内射| 肉色欧美久久久久久久蜜桃| 精品国产国语对白av| 高清视频免费观看一区二区| svipshipincom国产片| 久久精品国产a三级三级三级| 国产黄色免费在线视频| 色老头精品视频在线观看| 日韩熟女老妇一区二区性免费视频| 正在播放国产对白刺激| 男女无遮挡免费网站观看| 午夜精品久久久久久毛片777| 五月天丁香电影| 美女高潮到喷水免费观看| 欧美另类一区| 国产亚洲av片在线观看秒播厂| 成人手机av| 下体分泌物呈黄色| 丝袜美腿诱惑在线| 国产成人a∨麻豆精品| 亚洲精品一二三| 精品欧美一区二区三区在线| av在线app专区| 亚洲色图 男人天堂 中文字幕| 久久久久网色| 国产男女超爽视频在线观看| 免费一级毛片在线播放高清视频 | 国产免费福利视频在线观看| 咕卡用的链子| 日韩熟女老妇一区二区性免费视频| 久久影院123| 久久国产精品男人的天堂亚洲| 国产极品粉嫩免费观看在线| 免费在线观看影片大全网站| 亚洲五月婷婷丁香| 侵犯人妻中文字幕一二三四区| 俄罗斯特黄特色一大片| 亚洲av成人一区二区三| 精品少妇黑人巨大在线播放| 青春草亚洲视频在线观看| 亚洲专区中文字幕在线| 午夜精品久久久久久毛片777| 久久久久国产精品人妻一区二区| 伊人亚洲综合成人网| 91九色精品人成在线观看| 在线精品无人区一区二区三| 久久人人爽av亚洲精品天堂| 久久久欧美国产精品| 久久久久视频综合| 国产成人欧美| 男人操女人黄网站| 婷婷成人精品国产| 国产黄频视频在线观看| 欧美成人午夜精品| 亚洲激情五月婷婷啪啪| 777久久人妻少妇嫩草av网站| 国产av精品麻豆| 免费一级毛片在线播放高清视频 | 操出白浆在线播放| 老汉色∧v一级毛片| a级毛片在线看网站| 免费日韩欧美在线观看| 免费女性裸体啪啪无遮挡网站| 少妇猛男粗大的猛烈进出视频| 欧美黄色片欧美黄色片| 国产精品一区二区免费欧美 | 久久国产亚洲av麻豆专区| 久久中文看片网| svipshipincom国产片| 免费少妇av软件| 国产成人免费观看mmmm| 伊人久久大香线蕉亚洲五| 制服诱惑二区| 亚洲精品中文字幕在线视频| 国产色视频综合| 97人妻天天添夜夜摸| 国产亚洲精品久久久久5区| 热re99久久国产66热| 美女高潮喷水抽搐中文字幕| 91老司机精品| 国产一卡二卡三卡精品| 国产片内射在线| 一区在线观看完整版| 国产精品国产三级国产专区5o| 国产免费福利视频在线观看| 黑人操中国人逼视频| 女性生殖器流出的白浆| 国产1区2区3区精品| 99国产精品免费福利视频| 国产欧美日韩一区二区精品| 国产成+人综合+亚洲专区| 久久精品人人爽人人爽视色| 国产免费视频播放在线视频| 国产一区二区激情短视频 | 中文字幕人妻丝袜制服| 美国免费a级毛片| 老司机影院毛片| 91麻豆精品激情在线观看国产 | 欧美激情极品国产一区二区三区| 我的亚洲天堂| 亚洲国产精品999| 精品一区在线观看国产| 亚洲成人国产一区在线观看| 久久人人爽av亚洲精品天堂| 久久精品国产亚洲av香蕉五月 | 夜夜夜夜夜久久久久| 亚洲av成人不卡在线观看播放网 | avwww免费| 中文字幕色久视频| 天天影视国产精品| 精品久久蜜臀av无| 在线观看一区二区三区激情| 精品欧美一区二区三区在线| 成年动漫av网址| 熟女少妇亚洲综合色aaa.| 亚洲国产毛片av蜜桃av| 亚洲综合色网址| 亚洲欧美色中文字幕在线| 首页视频小说图片口味搜索| 欧美97在线视频| 久久久国产一区二区| 日韩视频在线欧美| 久久久精品94久久精品| 国产不卡av网站在线观看| 国产高清videossex| av欧美777| 欧美中文综合在线视频| 亚洲精品一二三| 青春草亚洲视频在线观看| 亚洲国产精品999| 国产精品一区二区免费欧美 | 人妻人人澡人人爽人人| 亚洲国产精品一区二区三区在线| 亚洲一区中文字幕在线| 一级,二级,三级黄色视频| 久久久久国产精品人妻一区二区| 国产精品偷伦视频观看了| 一区二区三区激情视频| 美女主播在线视频| 日韩欧美国产一区二区入口| 两人在一起打扑克的视频| 无遮挡黄片免费观看| 老司机午夜福利在线观看视频 | 亚洲精品美女久久久久99蜜臀| 久久99热这里只频精品6学生| 日韩,欧美,国产一区二区三区| 日日爽夜夜爽网站| 最近中文字幕2019免费版| 午夜福利影视在线免费观看| 成年美女黄网站色视频大全免费| 亚洲国产精品成人久久小说| 丝袜人妻中文字幕| 不卡一级毛片| 一区二区av电影网| 免费黄频网站在线观看国产| 国产精品免费大片| 亚洲视频免费观看视频| 脱女人内裤的视频| 国产免费现黄频在线看| 一本综合久久免费| 国产福利在线免费观看视频| 亚洲五月色婷婷综合| 免费高清在线观看视频在线观看| 成人av一区二区三区在线看 | 在线观看免费视频网站a站| 法律面前人人平等表现在哪些方面 | 国产麻豆69| 精品亚洲乱码少妇综合久久| 可以免费在线观看a视频的电影网站| 美女午夜性视频免费| 亚洲精品国产一区二区精华液| 国产免费av片在线观看野外av| 91大片在线观看| www.999成人在线观看| 一区二区三区四区激情视频| 俄罗斯特黄特色一大片| 9热在线视频观看99| 国产黄色免费在线视频| 欧美 日韩 精品 国产| 国产精品秋霞免费鲁丝片| 97在线人人人人妻| 中文精品一卡2卡3卡4更新| 人妻 亚洲 视频| 两个人看的免费小视频| av有码第一页| 99国产精品一区二区三区| 欧美精品人与动牲交sv欧美| 日本91视频免费播放| 一本色道久久久久久精品综合| 日本欧美视频一区| 久久ye,这里只有精品| 欧美黑人欧美精品刺激| 亚洲国产欧美网| 欧美xxⅹ黑人| 亚洲专区国产一区二区| 美女主播在线视频| 一个人免费看片子| 亚洲精品国产色婷婷电影| 十八禁网站网址无遮挡| 王馨瑶露胸无遮挡在线观看| 国产福利在线免费观看视频| 在线观看www视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美黄色淫秽网站| 在线观看一区二区三区激情| 中文字幕最新亚洲高清| 欧美激情极品国产一区二区三区| 中文字幕高清在线视频| 高清黄色对白视频在线免费看| 亚洲专区国产一区二区| 精品熟女少妇八av免费久了| 亚洲欧美色中文字幕在线| 丰满人妻熟妇乱又伦精品不卡| 91精品三级在线观看| 精品国产国语对白av| 男女下面插进去视频免费观看| 久久国产精品影院| 精品国产乱码久久久久久小说| 日本五十路高清| 亚洲国产欧美在线一区| 美女高潮喷水抽搐中文字幕| netflix在线观看网站| 在线看a的网站| 侵犯人妻中文字幕一二三四区| 久久香蕉激情| 午夜影院在线不卡| 9色porny在线观看| 99精国产麻豆久久婷婷| 国产精品1区2区在线观看. | 大香蕉久久网| 老司机亚洲免费影院| 超色免费av| 狠狠精品人妻久久久久久综合| svipshipincom国产片| h视频一区二区三区| 亚洲欧美日韩高清在线视频 | 99热网站在线观看| 另类亚洲欧美激情| 国产成人a∨麻豆精品| 亚洲一码二码三码区别大吗| 热re99久久精品国产66热6| 三级毛片av免费| 国产成人系列免费观看| 国产高清国产精品国产三级| 女人久久www免费人成看片| 久久精品亚洲熟妇少妇任你| 久久九九热精品免费| av线在线观看网站| www.精华液| 捣出白浆h1v1| 超碰成人久久| 欧美精品一区二区免费开放| 日本91视频免费播放| 久久ye,这里只有精品| 久久久国产精品麻豆| 曰老女人黄片| 精品熟女少妇八av免费久了| 精品国产一区二区三区四区第35| 9色porny在线观看| 欧美激情高清一区二区三区| 日韩中文字幕欧美一区二区| e午夜精品久久久久久久| 日韩欧美一区二区三区在线观看 | 桃红色精品国产亚洲av| 午夜精品国产一区二区电影| 婷婷丁香在线五月| 精品人妻熟女毛片av久久网站| 精品久久久精品久久久| 免费看十八禁软件| 国产深夜福利视频在线观看| 高清在线国产一区| 国产成人精品在线电影| 一级a爱视频在线免费观看| 欧美日韩福利视频一区二区| 国产真人三级小视频在线观看| 国产精品一区二区免费欧美 | 黄色视频在线播放观看不卡| 制服诱惑二区| 啦啦啦免费观看视频1| 亚洲情色 制服丝袜| 欧美日韩亚洲综合一区二区三区_| 国产亚洲av高清不卡| 桃红色精品国产亚洲av| 丝瓜视频免费看黄片| 午夜激情久久久久久久| 岛国毛片在线播放| 黄色视频在线播放观看不卡| 三级毛片av免费| 欧美变态另类bdsm刘玥| 久久精品国产综合久久久| 丝袜人妻中文字幕| 91成人精品电影| 久久综合国产亚洲精品| 少妇裸体淫交视频免费看高清 | 免费看十八禁软件| 女人高潮潮喷娇喘18禁视频| 亚洲av电影在线观看一区二区三区| 国产成人精品在线电影| 欧美成人午夜精品| 成人国语在线视频| 美女高潮喷水抽搐中文字幕| 国产精品熟女久久久久浪| 国产熟女午夜一区二区三区| 精品视频人人做人人爽| 国产av国产精品国产| 老鸭窝网址在线观看| 丝瓜视频免费看黄片| 亚洲欧洲精品一区二区精品久久久| 成在线人永久免费视频| 动漫黄色视频在线观看| 91麻豆av在线| 国产精品九九99| av免费在线观看网站| 日韩一卡2卡3卡4卡2021年| 欧美老熟妇乱子伦牲交| 高清欧美精品videossex| 国产欧美日韩一区二区精品| 一区福利在线观看| 亚洲中文日韩欧美视频| a在线观看视频网站| 少妇精品久久久久久久| 亚洲 欧美一区二区三区| 永久免费av网站大全| 丝袜在线中文字幕| 国产精品欧美亚洲77777| 国产男女超爽视频在线观看| 在线观看www视频免费| 中文精品一卡2卡3卡4更新| 美女高潮到喷水免费观看| 久久久久国产精品人妻一区二区| 两人在一起打扑克的视频| 99国产精品免费福利视频| 曰老女人黄片| 精品久久久久久电影网| 深夜精品福利| 成年人午夜在线观看视频| 精品国产一区二区久久| 午夜福利,免费看| 五月天丁香电影| 久久久精品国产亚洲av高清涩受| 久久亚洲国产成人精品v| 热99国产精品久久久久久7| 在线观看免费午夜福利视频| 亚洲视频免费观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲专区国产一区二区| 最新在线观看一区二区三区| 日本黄色日本黄色录像| 亚洲专区国产一区二区| 一本色道久久久久久精品综合| 在线天堂中文资源库| 亚洲精品第二区| 久久久久国产一级毛片高清牌| 女人久久www免费人成看片| 亚洲欧美激情在线| 亚洲综合色网址| 亚洲av电影在线进入| 不卡一级毛片| svipshipincom国产片| 中文字幕另类日韩欧美亚洲嫩草| 午夜视频精品福利| 久久午夜综合久久蜜桃| 国产成人精品久久二区二区91| 黑人巨大精品欧美一区二区蜜桃| 久久热在线av| 69av精品久久久久久 | 视频区欧美日本亚洲| 国产亚洲一区二区精品| 午夜激情久久久久久久|