• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    碳布負載的缺氧型Na2Ti3O7納米帶陣列作為高性能柔性鈉離子電池負極材料

    2018-03-29 03:12:20張熙悅黃雅蘭吳樹煒曾銀香于明浩程發(fā)良盧錫洪童葉翔中山大學化學學院生物無機和合成化學重點實驗室廣州5075
    物理化學學報 2018年2期
    關(guān)鍵詞:雅蘭吳濤物理化學

    張熙悅,黃雅蘭,,吳樹煒,曾銀香,于明浩,程發(fā)良,盧錫洪,,*,童葉翔,*中山大學化學學院,生物無機和合成化學重點實驗室,廣州 5075

    2南開大學,高級能源材料化學(教育部)重點實驗室,天津 300071

    3東莞理工學院,廣東省先進納米材料技術(shù)研究中心,廣東 東莞 523808

    1 Introduction

    Continuous innovation in portable, wearable, and flexible electronics burns the further demands for flexible highperformance energy storage devices with good deformation tolerance1–3. With the similar electrochemical properties, more natural resources, lower price to lithium ion battery (LIB),sodium ion batteries (SIBs) have been boomed in recent years4,5. However, the larger Na+ionic radius (0.026 nm larger than Li+), and the relatively greater volume change in the process of Na+intercalation/extraction from the electrode materials generate a significant challenge to identification of a suitable negative electrode. Thus, one of the most challenges for SIBs is to explore stable anodes with high Na+storage capacity. Of the available anode materials, intercalation-type anode materials are capable to allow reversible ion intercalation/deintercalation and fast electron transfer, thus hold great promise to present satisfactory electrochemical performance6–10. Among them, titanium-based systems, as one of early 3d metal oxides that favor the insertion reactions, can be the attractively alternative one. Therefore, sodium titanate(Na2Ti3O7, NTO) is capturing increasing attention due to its unique zigzag layered framework, inherent chemical stability,abundant resources and environmental benignity11–16.Moreover, the low intercalation potential of the NTO (178 mAh·g?1at 0.3 V (vs Na+/Na)) that lies beyond the potential of Na dendrite growth17may guarantee the safety of the battery.However, NTO suffers from low electronic conductivity and poor structure stability, which severely triggers the full exploitation of its theoretical capacity (310 mAh·g?1) and compromises its cycling life17–26.

    Toward these issues, considerable attempts have been devoted to the fabrication of various NTO nanostructures for SIBs. For instance, binder-free hydrogenated NTO nanoarrays on Ti foil achieved a reversible capacity of 227 mAh·g?127.Ultra-long NTO nanowires prepared by a hydrothermal method exhibited a stable discharge capacity of 211.9 mAh·g?1at 177 mA·g?1when used as SIBs anode28. N-doped carbon-coated NTO hollow spheres have been synthesized and showed a capacity of 210 mAh·g?1at 177 mA·g?129. However, the electrochemical performance of most current Na2Ti3O7 electrodes is yet below the expectation, which is due to their sluggish Na reaction kinetics as a result of the limited acceptable Na+active site and large bandgap of 3.7 eV23. In this regard, it remain a striking challenge and scientifically important to explore new effective method to design stable state-of-the-art NTO electrodes for SIBs.

    In this work, we demonstrate that the electrochemical performance of NTO nanobelts can be significantly boosted by engineering oxygen vacancies, and their potential implementation as flexible anode for SIBs. Free-standing Na2Ti3O7nanobelts with oxygen vacancy were directly grown on carbon cloth (CC) through a simple hydrothermal and thermal reduction process (denoted as R-NTO/CC). The advanced three-dimensional (3D) textile electrode architecture with ordered configuration and nano-sized electrochemically active NTO enables short ion diffusion pathways and fast electron transport. The as-obtained R-NTO/CC depicted a remarkable areal specific capacity of 210.6 mAh·cm?2at 20 mA·cm?2. When the current density increased to 400 mA·cm?2,a high capacity of 69.7 mAh·cm?2was still retained, which is three times as high as bare NTO/CC. This 3D oxygen-deficient electrode could significantly promote Na+and electron transport, leading to remarkably improved electrochemical property. Furthermore, this material engineering holds great promise to modulating other electrodes and facilitate the large-scale implementation of high-performance and flexible SIBs.

    2 Experimental

    2.1 Preparation of NTO/CC

    Na2Ti3O7(NTO) was synthesized directly on carbon cloth(CC) by a simple hydrothermal reaction. Briefly, CC was first activated by 8 mol·L?1HNO3at 80 °C for 10 h refluxing under moderate stirring. After washing by distilled water and ethyl alcohol respectively for 10 min, a 2.5 cm × 3 cm CC was conducted in an aqueous solution of 20 mL 1 mol·L?1sodium hydroxide (NaOH), 0.43 mL 30% hydrogen peroxide (H2O2)and 0.22 mL Titanium(IV) isopropoxide (C12H28O4Ti, TIP).The solution was placed into a 30 mL Teflon-lined stainless steel autoclave, and then kept at 140 °C for 20 h. After hydrothermal reaction, the NTO nanobelt was uniformly grown on CC. The mass of NTO (0.41 mg·cm?2) was obtained by electronic scales (BT25S, 0.01 mg). The pristine NTO powder was prepared under the same conditions but without the addition of carbon cloth.

    2.2 Preparation of R-NTO/CC

    The NTO/CC was further thermally annealed at a temperature of 400 °C in mixed NH3and H2(5 : 95 by flow)atmosphere for 1 h using a ramp rate of 5 °C·min?1to obtain R-NTO/CC. The mass of R-NTO (0.41 mg·cm?2) was obtained by electronic scales (BT25S,0.01 mg).

    2.3 Material Characterization

    The microstructures and compositions of the electrode materials were analyzed using field-emission SEM (FE-SEM,JSM-6330F), transmission electron microscopy (TEM, FEI Tecnai G2F30) equipped with an EMSA/MAS energy dispersive spectroscope (EDS), Raman spectroscopy(Renishaw inVia), X-ray photoelectron spectroscopy (XPS,ESCALab250, Thermo VG) and X-ray diffractometry (XRD,D8 ADVANCE).

    2.4 Electrochemical Measurement

    All the half-cell tests were performed in standard CR2032-type coin cells and used sodium metal foils as counter electrodes. The R-NTO/CC and NTO/CC samples are directly acted as the working electrodes without conventional metal current collectors and any ancillary materials. All the cells were assembled in an Ar-filled glove box with a glass microfiber filter (Whatman GF/D) as the separator, and 1 mol?L?1NaClO4in ethylene carbonate and diethyl carbonate (with volume ratio of 1 : 1) as electrolyte. A 2% (volume fraction) fluoroethylene carbonate was used as electrolyte additives. The charge/discharge cycles were performed at different current densities at room temperature. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were measured on an electrochemical workstation (CHI 1040c, Chenhua,Shanghai). The current densities and capacities were normalized by the geometric area of flexible electrode(constant 0.8 cm × 0.8 cm).

    3 Results and discussion

    3.1 Structure of R-NTO/CC

    The Na2Ti3O7nanobelts with oxygen vacancy were characterized by scanning electron microscopy (SEM),transmission electron microscopy (TEM), and X-ray diffraction(XRD). Firstly, ultrathin NTO nanobelts arrays were uniformly grown on the glossy CC through a facile hydrothermal reaction(see the Experimental Section, Fig.S1, Supporting Information). And after thermal reduction process, R-NTO/CC was obtained without the morphologic change (Fig.1a). The randomly oriented nanobelts can form a unique 3D structure,which is of help in the penetration of electrolyte and the transmission of Na+/electrons. High-magnification SEM image(Fig.1b) further indicates that NTO nanobelts have an average diameter of about 50 nm and length up to 300 nm. TEM images(Fig.1c) are used to detail the structural properties of R-NTO scratched down from the CC substrate, which clearly shows that it consists of ultrathin nanobelts. Further elemental analysis confirms the homogeneous presence of Na, Ti, and O elements within the overall nanobelts (Fig.1d). Unlike the high-quality crystallinity structure, we can see the stacking faults existing in R-NTO (Fig.1e), which possibly arose due to the vacancy introduction. Moreover, Fig.1f shows the regionally distributed lattice fringes of the square region marked in Fig.1e. Lattice spacing of 0.20 and 0.34 nm were measured, corresponding to the (020) and (011) planes of Na2Ti3O7(JCPDS card No.31-1329) respectively. In addition, Fig.1g shows the XRD patterns of NTO/CC and R-NTO/CC. The XRD patterns of oxygen-deficient Na2Ti3O7powder (synthesized under similar conditions apart from the absence of CC substrate, denoted as R-NTO), Na2Ti3O7powder (denoted as NTO) and pure CC(Fig.S2, Supporting Information) was also collected for comparison. As versified, the reflections of R-NTO/CC excluding the peaks owning to CC could be indexed to the layered monoclinic Na2Ti3O7phase (JCPDS card No. 31-1329)21,25. Note that the R-NTO sample has broader diあraction peaks compared to NTO. It suggests that the crystallinity of NTO degrades after reduction, which could be due to the formation of defects30. To gain insight into the compositional evolution of Na2Ti3O7nanobelts upon thermally reduction process, Raman and X-ray photoelectron spectra(XPS) were collected for the NTO/CC and R-NTO/CC samples. Both the samples exhibit five peaks, which are indicative of different Raman scattering modes of the layered Na2Ti3O7(Fig.2a). In detail, the bands at about 279 cm?1is attributed to the Na―O―Ti bonds31, the peaks at about 447,647, and 821 cm?1are assigned to the triply and doubly coordinated oxygen bending and stretching vibration mode respectively, while the peak at about 917 cm?1corresponds to Ti―O stretching vibration involving non-bridging oxygen32–35.Likewise, XPS spectra were used to further probe the chemical states of the products. As observed, a weak N 1s XPS peak was detected for R-NTO/CC, indicating the small number of N dopant (Fig.S3, Supporting Information)36. Specifically, Fig.2c shows the normalized Ti 2p core level spectra of NTO/CC and R-NTO/CC. The two apparent peaks at about 465.41 eV (Ti 2p1/2) and 459.65 eV (Ti 2p3/2) match well with previously reported peaks of Ti4+. Importantly, the peak centers of both Ti 2p1/2and Ti 2p3/2of R-NTO/CC sample shifted positively toward low binding energy, suggesting the decrease of Ti valence state due to the partial replace of lattice O by N or hydroxyl groups after thermally reduction. Moreover, the fitted difference curve in Fig.2c shows the additional peaks centered at 464.6 and 459.3 eV, correlating with the characteristic Ti 2p doublets of Ti3+37,38, again revealing the introduction of oxygen vacancies in the R-NTO/CC. As shown in Fig.2d, the O 1s peaks were well deconvoluted into lattice O peak (centered at 530.5, 531.0, and 531.4 eV)39, and broad Ti―OH peak(centered at 532.7 eV)28,40. The R-NTO/CC sample exhibited apparently higher intensity in the Ti―OH peak when compared with that of NTO/CC sample, implying that hydroxyl groups were generated to replace the lattice O and endow R-NTO/CC electrode with the increased deficiency.

    Fig.1 (a, b) SEM images, (c) TEM image, (d) elemental mapping images and (e, f) HRTEM images of the as-prepared R-NTO/CC sample.(g) XRD profiles of R-NTO, NTO, R-NTO/CC and NTO/CC samples.

    Fig.2 (a) Raman spectra and (b) XPS survey spectra of the R-NTO/CC and NTO/CC samples. (c) Overlay of normalized Ti 2p core level XPS spectra of R-NTO/CC (red solid line) and NTO/CC (green dashed line), together with their difference spectrum (“R-NTO/CC” minus “NTO/CC”).

    Fig.3 Representative cyclic voltammetry (CV) curves of R-NTO/CC obtained at a scan rate of 1 mV·s?1.

    3.2 Sodium storage performance

    To evaluate the sodium storage capability, both the NTO and R-NTO grown on CC were directly tested without any additives in a coin-type with sodium foil as both the counter electrode and reference electrode. Specifically, the electrochemical sodium insertion property of R-NTO/CC electrode was firstly evaluated by cyclic voltammetry (CV)curves in a range from 0.01 to 3.00 V at a scan rate of 1 mV·s?1(Fig.3). The CV profile shows obvious redox peaks at 0.25,0.79 and 0.77 V, the characteristic of Na+insertion/ extraction in the sodium titanate lattice18,24,41–43. Meanwhile, there is a sharp peak around 0 V, which can be attributed to Na+intercalation into CC. However, the first cycle oxidation process has a big, prominent peak at around 0.65 V, which is associated with the severe formation of SEI layer. The rate performance of both the NTO/CC and R-NTO/CC electrodes were further assessed at various current densities ranging from 20 to 600 mA·cm?2(Fig.4a). And according to the chargedischarge cycles in Fig.S4 (Supporting Information), all the curves depicted appear similar shapes, indicating the high reversibility of the sodium ion intercalation/extraction process.Apparently, the R-NTO/CC electrode shows a remarkable areal specific capacity of 210.6 mAh·cm?2at 20 mA·cm?2, which is higher than that of the NTO/CC electrode (170.5 mAh·cm?2at 20 mA·cm?2). If we deduct contributions of carbon cloth, the CC supported R-NTO shows a maximum capacity calculated to be 256.8 mAh·g?1at 50 mA·g?1(based on the mass loading of 0.41 mg·cm?2), which is much higher than those of recently reported sodium titanate based electrodes, like Na2Ti6O13(147 mAh·g?1at 70 mA·g?1)44, Na2Ti2O4(OH)2 (150 mAh·g?1at 177 mA·g?1)10, Na2Ti3O7/N-doped carbon (210 mAh·g?1at 177 mA·g?1)29, hydrogenated Na2Ti3O7/Ti foil (227 mAh·g?1at 35.4 mA·g?1)27, Na2Ti3O7/carbon textile (110 mAh·g?1at 1 A·g?1)45and Na2Ti3O7/carbon cloth (211.9 mAh·g?1at 177 mA·g?1)17,46. When the current density increases to 400 mA·cm?2, a high capacity of 69.7 mAh·cm?2is still remained,while the NTO/CC electrode owns only 22.9 mAh·cm?2,revealing the improved rate capability of the R-NTO/CC electrode. When the current density finally return to 20 mA·cm?2, a reversible discharge capacity of 198.2 mAh·cm?2was reached by the R-NTO/CC electrode, indicating the outstanding tolerance for the fast sodium ion insertion/extraction. In addition to the initial cycle, all the charge/discharge processes exhibit nearly 100% Columbic efficiencies, which can be also confirmed by the charge-discharge curves (Fig.S5a, Supporting Information),further demonstrating the excellent sodium storage ability of R-NTO/CC electrode. Notably, to exclude the capacity contribution of CC substrate, CC was directly tested as SIB anode (Fig.S5b). Evidently, over a half of the calculated areal capacities of the R-NTO/CC electrode is substantially offered by Na2Ti3O7. Furthermore, the long-term cyclic stability of the NTO/CC and R-NTO/CC electrodes was also evaluated. As expected, a high discharge capacity of 78.9 mAh·cm?2was still retained for R-NTO/CC after 200 cycles (Fig.4b), which means a good capacity retention of 72%, outperforming that of NTO/CC electrode (26%). To reach a better understanding of the improved electrochemical performance of R-NTO/CC electrode, electrochemical impedance spectra (EIS) were carried out for both samples under a fully charged state. As shown in Fig.4c, the charge-transfer resistance (Rct), which can be reflected by the semicircles located at medium-frequency,remarkably decreased for R-NTO/CC when compared with that of NTO/CC. The value of Rctfor NTO/CC electrode (3533 ?)is substantially larger than that of R-NTO/CC electrode (2041?), showing the enhanced diffusion of Na+in the R-NTO/CC.After a charge/discharge cycle at 200 mA·cm?2, the Rct of R-NTO/CC electrode is still much smaller than that of NTO/CC electrode. In addition, diffuse reflectance spectroscopy (DRS) was also conducted to gain insights into the influence of oxygen vacancies on the band gap of the NTO/CC and R-NTO/CC electrodes (Fig.S6, Supporting Information). Both samples show a drastic reflection in the ultraviolet range about 325 nm and 345 nm respectively, which are essentially in agreement with the corresponding valence-to-conduction band transitions of Na2Ti3O7. According to the formula of Kubelka–Munk function47:

    where R, K, and S are stand for the reflection, absorption, and scattering coefficient, respectively. After Kubelka-Munk treatment of the DRS, Fig.4d gives the specific energy gap using the following relations when the material scatters in perfectly diffuse manner:

    where hν is the photon energy, A1is a proportional constant and Eq.(3) was obtained by substituting Eq.(1) into Eq.(2)considering the S as constant with respect to wavelength. From Fig.4d, the calculated bandgap for R-NTO/CC is about 2.78 eV,smaller than that of NTO/CC (2.96 eV), again suggesting the enhanced conductivity of the R-NTO/CC48,49. And owing to the vacancy-hopping mechanism in Na2Ti3O723, Na+ion mainly transport along the energetically favorable trajectories with low energy barrier, which will facilitate the electrochemical reactions in sodium-ion batteries. Therefore,the superior electrochemical performance of R-NTO/CC is believed to be attributed to the rich accessible active sites and improved electrical conductivity in terms of the introduction of oxygen vacancy and 3D hierarchical electronic transport channels.

    Fig.4 (a) Rate capacity of NTO/CC and R-NTO/CC and corresponding Coulombic efficiency. (b) Cycling performance collected for NTO/CC and R-NTO/CC at 200mA cm?2. (c) EIS spectra of the R-NTO/CC and NTO/CC before and after cycle. (d) Specific energy gap after Kubelka-Munk treatment of the diffuse reflectance spectroscopy (DRS).

    4 Conclusions

    In summary, flexible free-standing oxygen-deficient NTO nanobelt arrays were successfully grown on CC through a simple hydrothermal process and thermal reduction process.The R-NTO/CC electrode yield a remarkable areal specific capacity of 210.6 mAh·cm?2at 20 mA·cm?2, which is three times as high as bare NTO/CC electrode. The enhanced electrochemical performance can be attributing to the advanced 3D array architecture, reduced energy band gap, improved charge transport and increased electronic conductivity. This work not only demonstrates a simple method to elaborately improve the electrochemical property for NTO as anode for SIBs, but also provides much needed inspiration to modulating other electrodes and facilitate the large-scale implementation of high-performance electrochemical energy storage systems.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Xiao, Y. M.; Wu, J. H.; Yue, G. T.; Lin, J. M.; Huang, M. L.; Fan,L. Q.; Lan, Z. Acta Phys. -Chim. Sin. 2012, 28 (3), 578. [肖堯明,吳季懷, 岳根田, 林建明, 黃妙良, 范樂慶, 蘭章. 物理化學學報, 2012, 28 (3), 578.] doi: 10.3866/PKU.WHXB201201032

    (2) Xia, K. L.; Jian, M. Q.; Zhang, Y. Y. Acta Phys. -Chim. Sin. 2016,32 (10), 2427. [夏凱倫, 蹇木強, 張瑩瑩. 物理化學學報, 2016,32 (10), 2427.] doi: 10.3866/PKU.WHXB201607261

    (3) Zhuang, L. Acta Phys. -Chim. Sin. 2017, 33, 655. [莊林. 物理化學學報, 2017, 33, 655.] doi: 10.3866/PKU.WHXB201703093

    (4) Huang, Z. L.; Wang, L. P.; Mou, C. X.; Li, J. Z. Acta Phys. -Chim.Sin. 2014, 30, 1787. [黃宗令, 王麗平, 牟成旭, 李晶澤. 物理化學學報, 2014, 30, 1787.] doi: 10.3866/PKU.WHXB20140852

    (5) Xu, J.; Yang, D. Z.; Liao, X. Z.; He, Y. S.; Ma, Z. F. Acta Phys. -Chim.Sin. 2015, 31, 913. [許婧, 楊德志, 廖小珍, 何雨石, 馬紫峰.物理化學學報, 2015, 31, 913.]doi: 10.3866/PKU.WHXB201503162

    (6) Zhang, W.; Liu,Y.; Chen, C.; Li, Z.; Huang, Y.; Hu, X. Small 2015,11 (31), 3822. doi: 10.1002/smll.201500783

    (7) Lamuel David, R. B.; Singh, G. ACS Nano 2014, 8 (2), 1759.doi: 10.1021/nn406156b

    (8) Yuan, S.; Huang, X. D.; Ma, H.; Wang, M. F.; Zhang, X. Adv.Mater. 2014, 26 (14), 2273. doi: 10.1002/adma.201304469

    (9) Wang, X.; Li, Y.; Gao, Y.; Wang, Z.; Chen, L. Nano Energy 2015,13, 687. doi: 10.1016/j.nanoen.2015.03.029

    (10) Zhang, Y.; Guo, L.; Yang, S. Nanoscale 2015, 7, 14618.doi: 10.1039/C5NR03076E

    (11) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon J. M.; Palacín,M. R. Chem. Mater. 2011, 23, 4109. doi: 10.1021/cm202076g

    (12) Chen, C.; Wen, Y.; Hu, X.; Ji, X.; Yan, M.; Mai, L.; Hu, P.; Shan,B.; Huang, Y. Nat. Commun. 2015, 6, 6929.doi: 10.1038/ncomms7929

    (13) Naeyaert, P. J. P.; Avdeev, M.; Sharma, N.; Yahia, H. B.; Ling, C.D. Chem. Mater. 2014, 26, 7067. doi: 10.1021/cm5035358

    (14) Ni, J.; Fu, S.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Adv. Mater. 2016,28, 2259. doi: 10.1002/adma.201504412

    (15) Liao, J. Y.; Manthiram, A. Nano Energy 2015, 18, 20.doi: 10.1016/j.nanoen.2015.09.014

    (16) Doeff, M. M.; Cabana, J.; Shirpour, M. J. Inorg. Organomet.Polym. Mater. 2013, 24, 5. doi: 10.1007/s10904-013-9977-8

    (17) Rousse, G.; Arroyo-de Dompablo, M. E.; Senguttuvan, P.;Ponrouch, A.; Tarascon, J. M.; Palacín, M. R. Chem. Mater. 2013,25, 4946. doi: 10.1021/cm4032336

    (18) Dong, S.; Shen, L.; Li, H.; Nie, P.; Zhu, Y.; Sheng, Q.; Zhang, X.;J. Mater. Chem. A 2015, 3, 21277. doi: 10.1039/C5TA05714K

    (19) Andersson, S.; Wadsley, A. D. Acta Cryst. 1961, 14, 1245.doi: 10.1107/S0365110X61003636

    (20) Xu, L.; Xia, J.; Wang, L.; Qian, J.; Li, H.; Wang, K.; Sun, K.; He,M. Chem. Eur. J. 2014, 20, 2244. doi: 10.1002/chem.201304312

    (21) Wang,W.; Yu, C.; Lin, Z.; Hou, J.; Zhu, H.; Jiao, S. Nanoscale 2013, 5, 594. doi: 10.1039/C2NR32661B

    (22) Zou, W.; Li, J.; Deng, Q.; Xue, J.; Dai, X.; Zhou, A.; Li, J. Solid State Ionics 2014, 262, 192. doi: 10.1016/j.ssi.2013.11.005

    (23) Pan, H.; Lu, X.; Yu, X.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.Adv. Energy Mater. 2013, 3, 1186. doi: 10.1002/aenm.201300139

    (24) Wang, W.; Yu, C.; Liu, Y.; Hou, J.; Zhu, H.; Jiao, S. RSC. Adv.2013, 3, 1041. doi: 10.1039/C2RA22050D

    (25) Yin, J.; Qi, L.; Wang, H. ACS. Appl. Mater. Interfaces 2012, 4,2762. doi: 10.1021/am300385r

    (26) Yan, Z.; Liu, L.; Shu, H.; Yang, X.; Wang, H.; Tan, J.; Zhou, Q.;Huang, Z.; Wang, X. J. Power Sources 2015, 274, 8.doi: 10.1016/j.jpowsour.2014.10.045

    (27) Fu, S.; Ni, J.; Xu, Y.; Zhang, Q.; Li, L. Nano Lett. 2016, 16, 7.doi: 10.1021/acs.nanolett.6b01805

    (28) Li, Z.; Shen, W.; Wang, C.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y.J. Mater. Chem. A 2016, 4, 17111. doi: 10.1039/C6TA08416H

    (29) Xie, F.; Zhang, L.; Su, D.; Jaroniec, M.; Qiao, S. Z. Adv. Mater.2017, doi: 10.1002/adma.201700989.

    (30) Lu, X.; Wang, G.; Xie, S.; Shi, J.; Li, W.; Tong, Y.; Li, Y. Chem.Commun. 2012, 48, 7717. doi: 10.1039/C2CC31773G

    (31) Chen, C.; Wang, J.; Zhao, Q.; Wang, Y.; Chen, J. ACS. Energy Lett. 2016, 1, 1165. doi: 10.1021/acsenergylett.6b00515

    (32) Zhang, Y.; Guo, L.; Yang, S. Chem. Commun. 2014, 50, 14029.doi: 10.1039/C4CC06451H

    (33) M, K. H.; Miyaji, F.; Kokubo, T.; Nakamura, T. J. Mater. Sci.Mater. Med., 1997, 8, 341. doi: 10.1023/A:1018524731409

    (34) Ma, K. F. R.; Sasaki, T.; Osada, M.; Bando, Y. J. Phys. Chem. B 2005, 109, 6210. doi: 10.1021/jp044282r

    (35) Dylla, A. G.; Xiao, P.; Henkelman, G.; Stevenson, K. J. J. Phys.Chem. Lett. 2012, 3(15), 2015. doi: 10.1021/jz300766a

    (36) Liu, C.; Sun, T.; Wu, L.; Liang, J.; Huang, Q.; Chen, J.; Hou,W.Appl. Catal. B: Environ. 2015, 170–171, 17.doi: 10.1016/j.apcatb.2015.01.026

    (37) Tang,Y.; Tao, J.; Zhang, Y.; Wu, T.; Tao, H.; Bao, Z. Acta Phys. -Chim. Sin. 2008, 24, 2191. [湯育欣, 陶杰, 張焱焱, 吳濤,陶海軍, 包祖國. 物理化學學報, 2008, 24, 2191.]doi: 10.1016/S1872-1508(08)60082-0

    (38) Li, X.; Liu, S. Acta Phys. -Chim. Sin. 2008, 24, 2019.doi: 10.1016/S1872-1508(08)60079-0

    (39) Ko, J. S.; Doan-Nguyen, V. V.; Kim, H. S.; Muller, G. A.; Serino,A. C.; Weiss, P. S.; Dunn, B. S. ACS. Appl. Mater. Interfaces 2017,9, 1416. doi: 10.1021/acsami.6b10790

    (40) Zhan, X.; Shirpour, M. Chem. Commun. 2017, 53, 204.doi: 10.1039/C6CC08901A

    (41) Ho, C. K.; Li, C. Y. V.; Chan, K. Y. Ind. Eng. Chem. Res., 2016,55, 10065. doi: 10.1021/acs.iecr.6b01867

    (42) Rudola, A.; Saravanan, K.; Mason, C. W.; Balaya, P. J. Mater.Chem. A 2013, 1, 2653. doi: 10.1039/C2TA01057G

    (43) Ge,Y.; Jiang, H.; Zhu, J.; Lu, Y.; Chen, C.; Hu, Y.; Qiu, Y.; Zhang,X. Electrochim. Acta 2015, 157, 142.doi: 10.1016/j.electacta.2015.01.086

    (44) Rudola, A.; Saravanan, K.; Devaraj, S.; Gong, H.; Balaya, P. Chem.Commun. 2013, 49, 3. doi: 10.1039/C3CC44381G

    (45) Dong, S.; Shen, L.; Li, H;. Pang, G.; Dou, H.; Zhang, X. Adv.Funct. Mater. 2016, 26, 3703. doi: 10.1002/adfm.201600264

    (46) Xu, X.; Yan, M.; Tian, X.; Yang, C.; Shi, M.; Wei, Q.; Xu, L.; Mai,L. Nano Lett. 2015, 15, 3879. doi: 10.1021/acs.nanolett.5b00705

    (47) Zhang, Z. J.; Feng, A.; Sun, X. Y.; Guo, K.; Man, Z. Y.; Zhao, J. T.J. Alloy. Compd. 2014, 592, 73. doi:10.1016/j.jallcom.2013.12.211

    (48) Yang, Q.; Chen, L.; Hu, C.; Wang, S.; Zhang, J.; Wu, W. J. Alloy.Compd. 2014, 612, 301. doi: 10.1016/j.jallcom.2014.05.193

    (49) Gu, Y.; Su, X.; Du, Y.; Wang, C. Appl. Surf. Sci. 2010, 256, 5862.doi: 10.1016/j.apsusc.2010.03.065

    猜你喜歡
    雅蘭吳濤物理化學
    Recent advances in quasi-2D superconductors via organic molecule intercalation
    雅蘭和她的《中國人在德國》
    華人時刊(2022年11期)2022-09-15 00:55:04
    室雅蘭花香
    毛南和歌
    歌海(2022年6期)2022-02-04 12:31:26
    觀巖畫
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Module 10 Units 3-4單元點撥
    Chemical Concepts from Density Functional Theory
    Module 10 Units 1—2 單元點撥
    青春草国产在线视频| 人成视频在线观看免费观看| 国产极品粉嫩免费观看在线| 天美传媒精品一区二区| 建设人人有责人人尽责人人享有的| 欧美97在线视频| 成人免费观看视频高清| 看非洲黑人一级黄片| 日韩大片免费观看网站| 一级毛片电影观看| 欧美精品国产亚洲| 女人精品久久久久毛片| av免费在线看不卡| 精品午夜福利在线看| 国产一区亚洲一区在线观看| 亚洲美女视频黄频| 国产一区二区在线观看av| 十分钟在线观看高清视频www| 日韩中文字幕视频在线看片| 国国产精品蜜臀av免费| 日本av手机在线免费观看| 亚洲,一卡二卡三卡| 最后的刺客免费高清国语| 99热全是精品| 午夜视频国产福利| 2022亚洲国产成人精品| 国产视频首页在线观看| 婷婷成人精品国产| www.av在线官网国产| 午夜av观看不卡| 男女高潮啪啪啪动态图| 97人妻天天添夜夜摸| 国产免费又黄又爽又色| 美女大奶头黄色视频| 亚洲综合色网址| 春色校园在线视频观看| 精品国产一区二区三区四区第35| 久久久亚洲精品成人影院| 亚洲综合色网址| 大香蕉97超碰在线| 精品一区二区三卡| 纵有疾风起免费观看全集完整版| 欧美少妇被猛烈插入视频| 丝袜脚勾引网站| 日韩视频在线欧美| 2022亚洲国产成人精品| 国产综合精华液| 麻豆乱淫一区二区| 亚洲成av片中文字幕在线观看 | 亚洲av国产av综合av卡| 国产亚洲最大av| 国产 精品1| 男女无遮挡免费网站观看| 日本-黄色视频高清免费观看| 中国三级夫妇交换| 9热在线视频观看99| 男女无遮挡免费网站观看| 最近最新中文字幕大全免费视频 | 亚洲成人av在线免费| 成人国产麻豆网| 高清不卡的av网站| 亚洲少妇的诱惑av| 亚洲一码二码三码区别大吗| www.熟女人妻精品国产 | 哪个播放器可以免费观看大片| 青青草视频在线视频观看| 天堂俺去俺来也www色官网| 亚洲欧美成人精品一区二区| 国产精品国产三级专区第一集| 中文字幕最新亚洲高清| 亚洲国产欧美日韩在线播放| videosex国产| 又大又黄又爽视频免费| 亚洲四区av| 国产xxxxx性猛交| 精品福利永久在线观看| 国产精品一区二区在线不卡| 蜜桃国产av成人99| 国产成人精品在线电影| 亚洲一级一片aⅴ在线观看| 国产精品久久久久成人av| 国产色爽女视频免费观看| 久久人妻熟女aⅴ| 精品久久蜜臀av无| 老司机亚洲免费影院| 日本欧美视频一区| 国产精品 国内视频| 久久久精品94久久精品| 亚洲精品456在线播放app| 国产成人精品福利久久| 成人国语在线视频| 亚洲精品第二区| 午夜福利,免费看| 哪个播放器可以免费观看大片| 国产1区2区3区精品| 高清毛片免费看| 亚洲成色77777| 欧美国产精品va在线观看不卡| 巨乳人妻的诱惑在线观看| 永久网站在线| 伦理电影免费视频| 纯流量卡能插随身wifi吗| 久久久国产精品麻豆| 少妇人妻 视频| 9191精品国产免费久久| 日韩视频在线欧美| 日本av免费视频播放| 久久 成人 亚洲| 久久精品国产a三级三级三级| 国产熟女欧美一区二区| 久久久精品94久久精品| 自线自在国产av| 九九在线视频观看精品| 午夜久久久在线观看| 99热全是精品| 成年人免费黄色播放视频| 亚洲欧美成人综合另类久久久| 王馨瑶露胸无遮挡在线观看| 亚洲精品久久成人aⅴ小说| 视频在线观看一区二区三区| 黄色毛片三级朝国网站| 久久狼人影院| 亚洲熟女精品中文字幕| 国产成人a∨麻豆精品| 老女人水多毛片| 男的添女的下面高潮视频| 久久午夜综合久久蜜桃| 丝瓜视频免费看黄片| 在线天堂最新版资源| 日韩大片免费观看网站| 亚洲精品第二区| 久久精品国产亚洲av涩爱| 免费在线观看黄色视频的| 9191精品国产免费久久| 国产成人午夜福利电影在线观看| 精品国产一区二区久久| 欧美精品亚洲一区二区| 日韩电影二区| 日本av免费视频播放| 好男人视频免费观看在线| 在线观看一区二区三区激情| 大香蕉久久成人网| 日本色播在线视频| 中文字幕av电影在线播放| av在线app专区| 国产免费一级a男人的天堂| 精品一区在线观看国产| 亚洲精品一区蜜桃| 日产精品乱码卡一卡2卡三| 观看美女的网站| 亚洲图色成人| 亚洲精品日韩在线中文字幕| 美女内射精品一级片tv| 少妇的逼水好多| 亚洲天堂av无毛| 亚洲高清免费不卡视频| 亚洲精华国产精华液的使用体验| 日本wwww免费看| 99久国产av精品国产电影| 另类亚洲欧美激情| 极品人妻少妇av视频| 99久国产av精品国产电影| 宅男免费午夜| 我的女老师完整版在线观看| 建设人人有责人人尽责人人享有的| 成人免费观看视频高清| 九色成人免费人妻av| 黄网站色视频无遮挡免费观看| www.av在线官网国产| 国产欧美另类精品又又久久亚洲欧美| 国产成人欧美| 男女下面插进去视频免费观看 | 色94色欧美一区二区| 午夜激情久久久久久久| 男人舔女人的私密视频| 天天操日日干夜夜撸| 精品第一国产精品| videos熟女内射| 日韩av不卡免费在线播放| 日日爽夜夜爽网站| 久久久欧美国产精品| 婷婷色综合大香蕉| 人妻少妇偷人精品九色| 亚洲中文av在线| 777米奇影视久久| 三级国产精品片| 成人亚洲精品一区在线观看| 在线观看国产h片| 久久久久久久国产电影| 亚洲精品自拍成人| 国产1区2区3区精品| 久久狼人影院| 日本午夜av视频| 久久国内精品自在自线图片| 日韩,欧美,国产一区二区三区| 中国三级夫妇交换| 亚洲精品色激情综合| 国产精品一二三区在线看| 国产精品一区二区在线观看99| 男女边吃奶边做爰视频| 亚洲少妇的诱惑av| 婷婷色麻豆天堂久久| 大片免费播放器 马上看| 亚洲丝袜综合中文字幕| 99久久中文字幕三级久久日本| 三级国产精品片| 大陆偷拍与自拍| √禁漫天堂资源中文www| 欧美日韩亚洲高清精品| 亚洲精品乱码久久久久久按摩| 男男h啪啪无遮挡| 成年女人在线观看亚洲视频| 亚洲av.av天堂| 国产日韩欧美视频二区| 永久网站在线| 国精品久久久久久国模美| 久久久久久久亚洲中文字幕| 99香蕉大伊视频| 热99国产精品久久久久久7| 欧美人与善性xxx| 各种免费的搞黄视频| 超碰97精品在线观看| 中文字幕人妻丝袜制服| 国产成人免费无遮挡视频| 一区二区日韩欧美中文字幕 | 另类精品久久| 亚洲激情五月婷婷啪啪| 卡戴珊不雅视频在线播放| 国产淫语在线视频| 我的女老师完整版在线观看| 久久久久久人妻| 久久免费观看电影| 老司机影院成人| 国产精品.久久久| 激情五月婷婷亚洲| 久久久久久久亚洲中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品第二区| 国产有黄有色有爽视频| 日日爽夜夜爽网站| 亚洲成av片中文字幕在线观看 | 日本爱情动作片www.在线观看| 亚洲国产看品久久| 少妇人妻久久综合中文| 丝袜在线中文字幕| 国产极品天堂在线| 美女国产高潮福利片在线看| 美女脱内裤让男人舔精品视频| 9色porny在线观看| 午夜免费男女啪啪视频观看| 亚洲内射少妇av| 99久久人妻综合| 只有这里有精品99| 欧美精品亚洲一区二区| 成年美女黄网站色视频大全免费| 好男人视频免费观看在线| 午夜福利,免费看| 亚洲综合色网址| 久久精品国产亚洲av天美| 最新的欧美精品一区二区| 亚洲综合精品二区| 黄色一级大片看看| 欧美性感艳星| 国产又色又爽无遮挡免| 亚洲综合色网址| 韩国精品一区二区三区 | 涩涩av久久男人的天堂| 久久精品久久久久久噜噜老黄| 国产老妇伦熟女老妇高清| 成年动漫av网址| 黄片无遮挡物在线观看| 91在线精品国自产拍蜜月| 丝袜喷水一区| 中文天堂在线官网| 国产日韩一区二区三区精品不卡| 国产无遮挡羞羞视频在线观看| 免费看不卡的av| 久久99蜜桃精品久久| 日韩成人av中文字幕在线观看| 国产日韩欧美视频二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩在线高清观看一区二区三区| 男人操女人黄网站| 久久 成人 亚洲| 亚洲少妇的诱惑av| 大陆偷拍与自拍| 啦啦啦在线观看免费高清www| 国产成人aa在线观看| 亚洲成av片中文字幕在线观看 | 国产精品.久久久| 成人国产av品久久久| 黑人巨大精品欧美一区二区蜜桃 | 咕卡用的链子| 久久这里有精品视频免费| 亚洲精品日韩在线中文字幕| 一区二区三区四区激情视频| 国产在线一区二区三区精| 亚洲一码二码三码区别大吗| 久久久久人妻精品一区果冻| 免费看av在线观看网站| 女人久久www免费人成看片| 亚洲av男天堂| 97人妻天天添夜夜摸| 在线天堂中文资源库| 久久久久视频综合| 热re99久久精品国产66热6| 90打野战视频偷拍视频| av又黄又爽大尺度在线免费看| 熟女人妻精品中文字幕| 亚洲性久久影院| 国产精品国产三级国产av玫瑰| 欧美 亚洲 国产 日韩一| 久久精品熟女亚洲av麻豆精品| 交换朋友夫妻互换小说| 中文字幕最新亚洲高清| 在线亚洲精品国产二区图片欧美| 国产精品.久久久| 久久久国产一区二区| 久久99热6这里只有精品| 国产一区二区激情短视频 | 欧美精品一区二区大全| 国产视频首页在线观看| 黑人巨大精品欧美一区二区蜜桃 | 国产成人欧美| 免费观看a级毛片全部| 日韩一区二区三区影片| 国产精品偷伦视频观看了| 午夜激情av网站| 在线看a的网站| 日韩免费高清中文字幕av| 国产精品.久久久| 久久99热这里只频精品6学生| 国产午夜精品一二区理论片| 高清av免费在线| 久久久国产欧美日韩av| 菩萨蛮人人尽说江南好唐韦庄| 三上悠亚av全集在线观看| 成人手机av| 亚洲精品第二区| 日韩一本色道免费dvd| 国产精品久久久久久精品电影小说| 全区人妻精品视频| 免费日韩欧美在线观看| 免费女性裸体啪啪无遮挡网站| 18禁在线无遮挡免费观看视频| 伦理电影大哥的女人| 久久99热这里只频精品6学生| 国产成人一区二区在线| 黄色怎么调成土黄色| 宅男免费午夜| 在线观看美女被高潮喷水网站| 亚洲欧美成人精品一区二区| 天堂8中文在线网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 综合色丁香网| 在线天堂中文资源库| xxxhd国产人妻xxx| 免费大片黄手机在线观看| 亚洲 欧美一区二区三区| 99国产精品免费福利视频| 精品第一国产精品| 久久久久精品人妻al黑| 国产免费视频播放在线视频| 亚洲人成77777在线视频| 久久 成人 亚洲| 伦理电影大哥的女人| 日日摸夜夜添夜夜爱| 欧美激情极品国产一区二区三区 | 国产在线视频一区二区| 精品久久国产蜜桃| 男女午夜视频在线观看 | 一边摸一边做爽爽视频免费| 成人免费观看视频高清| 国产精品三级大全| 久久久久久久大尺度免费视频| 午夜福利在线观看免费完整高清在| 亚洲欧洲精品一区二区精品久久久 | 黄色怎么调成土黄色| 免费少妇av软件| 黄片无遮挡物在线观看| 中文字幕精品免费在线观看视频 | 美女xxoo啪啪120秒动态图| av在线app专区| 国产黄频视频在线观看| 国产免费一区二区三区四区乱码| 日韩成人伦理影院| xxx大片免费视频| 久久久久久人人人人人| 在线看a的网站| 美女福利国产在线| 亚洲精品一二三| 少妇的丰满在线观看| 亚洲美女搞黄在线观看| 桃花免费在线播放| 国产日韩欧美在线精品| 欧美另类一区| 在线精品无人区一区二区三| 高清不卡的av网站| 最近中文字幕2019免费版| 一级毛片我不卡| 国产熟女欧美一区二区| 下体分泌物呈黄色| 一区二区三区精品91| 丰满饥渴人妻一区二区三| 制服诱惑二区| 国产深夜福利视频在线观看| 我的女老师完整版在线观看| 青春草视频在线免费观看| 高清av免费在线| 赤兔流量卡办理| 久久热在线av| 岛国毛片在线播放| 丰满少妇做爰视频| 国产女主播在线喷水免费视频网站| 国产精品久久久久久精品电影小说| 91午夜精品亚洲一区二区三区| 麻豆乱淫一区二区| 少妇被粗大猛烈的视频| av在线app专区| 在线免费观看不下载黄p国产| 边亲边吃奶的免费视频| 黄网站色视频无遮挡免费观看| 亚洲熟女精品中文字幕| 国产乱人偷精品视频| 亚洲成国产人片在线观看| 日本欧美视频一区| 狂野欧美激情性xxxx在线观看| 伦精品一区二区三区| 中文字幕av电影在线播放| 久久国产精品大桥未久av| av不卡在线播放| 天天躁夜夜躁狠狠久久av| 青春草国产在线视频| 观看av在线不卡| 日韩制服丝袜自拍偷拍| 中文精品一卡2卡3卡4更新| 午夜视频国产福利| 最近中文字幕高清免费大全6| 国产免费现黄频在线看| 欧美国产精品va在线观看不卡| 天天躁夜夜躁狠狠久久av| 性色av一级| 美女主播在线视频| 亚洲少妇的诱惑av| 色哟哟·www| 尾随美女入室| 亚洲成人手机| 亚洲av日韩在线播放| 侵犯人妻中文字幕一二三四区| 日本av免费视频播放| 九九爱精品视频在线观看| 一本—道久久a久久精品蜜桃钙片| 精品一品国产午夜福利视频| 亚洲情色 制服丝袜| 久久久久国产网址| 精品久久久精品久久久| 日韩一本色道免费dvd| 欧美亚洲日本最大视频资源| 亚洲av.av天堂| 久久婷婷青草| 校园人妻丝袜中文字幕| 成人亚洲欧美一区二区av| av国产久精品久网站免费入址| 午夜福利在线观看免费完整高清在| 一二三四在线观看免费中文在 | 在现免费观看毛片| 大香蕉久久成人网| 久久精品国产鲁丝片午夜精品| 国产一区亚洲一区在线观看| 欧美日韩成人在线一区二区| 在线亚洲精品国产二区图片欧美| 亚洲精品色激情综合| 午夜免费男女啪啪视频观看| 一二三四中文在线观看免费高清| 免费观看av网站的网址| 侵犯人妻中文字幕一二三四区| 中文字幕人妻熟女乱码| 国产高清三级在线| 青春草亚洲视频在线观看| 看十八女毛片水多多多| 亚洲国产精品成人久久小说| 欧美精品一区二区免费开放| 日日啪夜夜爽| 国国产精品蜜臀av免费| 国产一区二区激情短视频 | 久久婷婷青草| 久久精品久久精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 97精品久久久久久久久久精品| 午夜av观看不卡| 乱码一卡2卡4卡精品| 一级毛片电影观看| 成人免费观看视频高清| 9热在线视频观看99| 男人操女人黄网站| 国产一区有黄有色的免费视频| av一本久久久久| 欧美激情极品国产一区二区三区 | 成人手机av| 精品人妻一区二区三区麻豆| 国产视频首页在线观看| 人人妻人人澡人人爽人人夜夜| 国产片特级美女逼逼视频| 91国产中文字幕| av黄色大香蕉| 国产高清国产精品国产三级| 久久久久久久久久久免费av| 国产精品99久久99久久久不卡 | 只有这里有精品99| av黄色大香蕉| 久久午夜综合久久蜜桃| 99精国产麻豆久久婷婷| 国产乱来视频区| 亚洲av成人精品一二三区| 亚洲丝袜综合中文字幕| 国产成人免费无遮挡视频| 久久99一区二区三区| 蜜桃国产av成人99| 亚洲av福利一区| 久久久久精品人妻al黑| 老司机影院成人| 亚洲熟女精品中文字幕| 国产色婷婷99| 亚洲,一卡二卡三卡| 成人毛片60女人毛片免费| 亚洲成人一二三区av| 国产高清三级在线| 视频中文字幕在线观看| 精品熟女少妇av免费看| 亚洲精品中文字幕在线视频| 黑人高潮一二区| 高清视频免费观看一区二区| 高清欧美精品videossex| 最近的中文字幕免费完整| 日韩中字成人| 秋霞伦理黄片| 大片免费播放器 马上看| 亚洲av中文av极速乱| 亚洲国产精品国产精品| 一级毛片电影观看| 黑丝袜美女国产一区| 麻豆乱淫一区二区| 日韩大片免费观看网站| 99re6热这里在线精品视频| 最近手机中文字幕大全| 亚洲熟女精品中文字幕| 美女中出高潮动态图| 黄色毛片三级朝国网站| 日韩一本色道免费dvd| av线在线观看网站| 成人影院久久| 99精国产麻豆久久婷婷| 激情视频va一区二区三区| 桃花免费在线播放| 亚洲,欧美,日韩| 一本大道久久a久久精品| 亚洲色图 男人天堂 中文字幕 | 国产精品秋霞免费鲁丝片| 久热这里只有精品99| 亚洲高清免费不卡视频| av在线观看视频网站免费| 亚洲国产毛片av蜜桃av| av在线播放精品| 22中文网久久字幕| 久久久久久人妻| 2018国产大陆天天弄谢| 久久精品人人爽人人爽视色| 麻豆乱淫一区二区| 久久久久视频综合| www.av在线官网国产| 最近2019中文字幕mv第一页| 色婷婷av一区二区三区视频| 18禁国产床啪视频网站| 国内精品宾馆在线| 免费在线观看黄色视频的| 国产午夜精品一二区理论片| 国产在视频线精品| 亚洲熟女精品中文字幕| 久久这里有精品视频免费| 精品国产国语对白av| 黄片无遮挡物在线观看| 亚洲三级黄色毛片| 国产伦理片在线播放av一区| av不卡在线播放| 精品国产乱码久久久久久小说| 考比视频在线观看| 性色avwww在线观看| 国产 一区精品| 男女无遮挡免费网站观看| 国产1区2区3区精品| 国产免费福利视频在线观看| 亚洲人与动物交配视频| 街头女战士在线观看网站| 国产成人aa在线观看| 超色免费av| 欧美亚洲日本最大视频资源| 亚洲综合色惰| 在线亚洲精品国产二区图片欧美| 亚洲综合色网址| 国产探花极品一区二区| 性色avwww在线观看| 最新的欧美精品一区二区| 亚洲精品一区蜜桃| 午夜久久久在线观看| 免费大片黄手机在线观看| 中文乱码字字幕精品一区二区三区| 大香蕉久久成人网| 乱码一卡2卡4卡精品| 成人18禁高潮啪啪吃奶动态图| 亚洲成人av在线免费| 亚洲精品成人av观看孕妇| 亚洲国产av影院在线观看| 精品一区二区三卡| 日韩三级伦理在线观看| 国产精品人妻久久久久久|