• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Pressure on Cesium Iodide Band Gap

    2018-03-29 03:12:19CEDILLOAndrés,CORTONAPietro
    物理化學(xué)學(xué)報(bào) 2018年2期

    1 Introduction

    Cesium iodide is an ionic solid with simple cubic crystal structure (B2 or CsCl-type) at room pressure and temperature;under these conditions, it is an insulator. This material attracted attention in the last decades when it was found that the isoelectronic solid xenon presents conducting features at high pressures1,2.

    Earlier experimental studies on cesium iodide showed that the B2 structure suffers a distortion under pressure and the band gap lowers3–14. The structural phase transition from the B2 structure to a non-cubic one does not have a significant change in the volume and the order of the phase transition was under controversy. The high-pressure phase was initially assumed to be a tetragonal body-centered cell. The first theoretical studies showed that a tetragonal distortion on the B2 structure became stable at high pressures15–18,12,19–21. A more precise X-ray diffraction study apparently finished with the controversy. Mao et al.22proposed a pressure-induced continuous transformation from the B2 structure to a hexagonal close pack one (hcp) by an orthorhombic Pmm2 cell. Later, the symmetry of the unit cell was corrected to Pmma by Winkler et al.23. By the use of evolutionary codes, it was shown that the Pmm2 structure is stable in a very small range of pressures (from 39 to 42 GPa)and it subsequently transforms into another orthorhombic cell with symmetry Pnma24. The second phase transition is first order, however the change in the volume is minimal.Additionally, electric resistivity measurements at high pressures were also performed and they showed that the resistivity decreases as pressure grows up, with a small discontinuity around 45 GPa25,26. The variation of the CsI electronic properties with the pressure influences the use of this material as a photoelectrode27,28.

    Density functional theory (DFT) accurately predicts structural and energetic properties of molecular species and periodic solids. However, when the calculations are performed by the local density approximation (LDA) or using functionals belonging to the generalized-gradient approximation (GGA)class, the band gap of solids is usually underestimated. The accuracy of DFT in the prediction of the fundamental and the band gap has been analyzed in the literature29–31. The electronic band gap is an important property of periodic solids since it determines the electric conductivity. Traditionally,materials are classified as conductors, semiconductors and insulators by the size of the band gap. Besides the accuracy of the DFT estimated band gap, this estimation provides an insight about the electric properties of a crystalline solid.

    In this work we use DFT-based electronic structure methods to analyze the phase stability of cesium iodide and the evolution of the band gap in the range of pressures from 0 to 60 GPa, at zero temperature. Static cell estimations are reported and the zero point energy is not included in this study. The corresponding results are compared with the evolution of the resistivity along the compression.

    2 Methodology

    All the electronic structure computations have been done with the ABINIT code32,33within the PAW formalism34,35and using an energy cutoff of 30 hartree. The Brillouin zones were sampled by Monkhorst-Pack grids, which were shifted using the default shift option in the ABINIT code for all the phase stability analysis. For the B1 structure, the four shifts suggested on the ABINIT website were used. A 6 × 6 × 6 grid was used for B1 and B2 structures, where the primitive cell contains one unit formula; for the Pmma cell we used the 4 × 6 × 4 grid with two formula units; the Pnma cell contains four formula units and the grid 4 × 4 × 4 was selected. The structure optimization was completed when the forces on all the atoms became smaller than 5 × 10?6hartree·bohr?1. For the evaluation of the band gap, once the convergence was achieved and the structures were optimized, one more calculation was performed. It was done using 12 × 12 × 12, 8 × 12 × 8, and 10 × 10 × 10 grids, for the B2, Pmma, and Pnma, respectively. These grids were not shifted, in order to include the Γ point in the sampling.

    The PBE exchange and correlation energy functional approximation was mainly used along this work36. Some comparisons also involve the LDA and PBEsol37functionals.PAW atomic datasets for all the functionals were generated by the ATOMPAW code using the input files provided on the ABINIT website.

    The Pmma and Pnma cells are shown in Figs.1 and 2,respectively, while the internal sites occupied by the ions are described in Table 1.

    As we discussed above, several theoretical computations on CsI have been reported in the literature. However, the evolution of the experimental measurements mainly guided the direction of the electronic structure simulations in the early years. In this work, we compute the relative stability of all the relevant crystal phases and the pressure-effect on the band gap using DFT-based electronic structure methods under similar quality criteria. The selected k-point sampling meshes and plane-wave kinetic-energy cutoffs lead to convergence in the total energy and lattice parameters.

    Table 1 Internal coordinates within the unit cell for the CsI orthorhombic structures.

    Fig.1 CsI in the orthorhombic Pmma structure.

    Fig.2 CsI in the orthorhombic Pnma structure.

    3 Results and discussion

    The phase stability is analyzed by free energy, G = E + PV ?TS = H ? TS, of the different cell types, namely, NaCl-type (B1),CsCl-type (B2), and the orthorhombic cells Pmma (space group 51) and Pnma (space group 62). At zero temperature, the free energy becomes equal to the enthalpy (H). Then, for each pressure and for each cell type, the cell parameters and the internal coordinates are optimized. At zero pressure, the PBE functional approximation predicts that the B1 structure is the most stable; the B1 cell is lower in energy than the B2 cell by 2.3 mHa·formula?1. Earlier reports also find a similar result38.Different exchange and correlation energy functional approximations can overestimate the stability of some cells, see for example refs.39,40. The PBEsol approximation correctly predicts that the B2 cell is the most stable at low pressures and,at zero pressure, the B2 cell energy is lower that the corresponding one for the B1 structure by 0.3 mHa·formula?1.This energy difference is within the thrust margin of predictability for an exchange and correlation energy functional approximation. As Mao et al. suggested22, the Pmma structure reduces to the B2 structure at low pressures. The two cell types become equivalent when a = c and a = 2b. Using PBE one finds that the orthorhombic cell Pmma reduces to the cubic B2 below 38 GPa and this result is consistent with previous reports41,23,24. Additionally, at low pressures, the orthorhombic Pnma cell becomes equal to the cubic B1 cell. PBE finds this symmetrization at 3 GPa.

    As pressure increases, the enthalpy of the different phases changes and the stability is altered, see Fig.3. The B2 phase becomes more stable than the B1 at 0.6 GPa (PBE result). The PBE optimized lattice parameters for the different CsI phases are reported on Table 2. Note that PBEsol provides better estimation of the lattice parameter at zero pressure. The B2 phase is stable up to 38 GPa and it is equivalent to the Pmma cell. The Pmma cell becomes orthorhombic and more stable at moderate pressures. PBE predicts this transition at 38 GPa,where the lattice parameter ratios suddenly mismatched the cubic conditions, see Fig.4. The phase transition seems to be first order, but the relative change in the volume is marginal,around 0.2%. The stability of the Pmma cell remains for a very limited range of pressures. The Pnma cell becomes the stable phase at higher pressures. Xu et al. predict the stability of this phase up to 300 GPa24. PBE estimates that the orthorhombic Pnma phase becomes stable at 42.8 GPa and the phase transition is first order with a very small relative change in the volume,1.4%. Even when two phase transitions are found between 38 and 43 GPa, the volume of the involved phases are so similar that the P?V curve seems to be almost continuous, Fig.5. The apparent continuous behavior of the isotherm is the main issue in the earlier controversy on the structural phase transition around 40 GPa. Some details on the crystal structures at the transition pressures are given in Table 3.

    Fig.3 Relative enthalpy for the different CsI phases,PBE results in hartree·formula?1.

    Table 2 PBE lattice parameters for the different CsI structures.

    Fig.4 Deviation from the cubic symmetry in the CsI Pmma structure.

    Fig.5 Volume per formula for the different CsI phases.

    In addition to the crystallographic and structural studies,electronic properties were also measured at high pressures. The pressure dependence of the optical gap3,4,10,12,14,42and the electric resistivity25,26were determined. Asaumi and Kondo3originally observed that the threshold energy in CsI lowers as the pressure increases. Many efforts focused on the insulator-conductor transition and the band gap was estimated in different pressure ranges. Most of the studies report a decrease in the band gap with the pressure. Fig.6 shows the evolution of the electronic band gap, computed from the PBE functional approximation, with the pressure. At low pressures, the PBE method underestimates the band gap as it has been documented in the literature; however, the trend is correctly reproduced. In particular, a maximum value of the band gap is found around 2 GPa, V/V0= 0.87. The position of the maximum is in very good agreement with the results from Asaumi4. Other exchange-correlation energy functionals do not display necessarily the same behavior: PBEsol predicts a maximum at a similar pressure, while a monotonic decrease is obtained with LDA15. The discontinuity in the plot, around 43 GPa, is a consequence of the Pmma-Pnma phase transition. The Pnma structure presents a larger band gap, about 40 percent. The subsequent increase in the pressure leads a decrease in the band gap. This discontinuity can be mapped into the electric resistivity. Babushkin25found a sharp increase in the CsI resistivity around 45 GPa. At higher pressures, the electric resistivity monotonically vanishes, at least up to 220 GPa26.These observations are consistent with our results for the estimated band gap. Our results also match previous theoretical reports15,17,23,24. In fact, Xu et al.24predict that the gap vanishesat 103 GPa from PBE computations, in excellent agreement with the experimental estimation of the band gap closure, around 100 GPa14.

    Table 3 PBE internal coordinates for the different CsI orthorhombic structures.

    Fig.6 Effect of the pressure in the CsI band gap.

    4 Conclusions

    DFT-based electronic structure methods provide a correct description of the structure, stability and pressure-induced phase transitions in CsI. The precision of these methods,especially at high pressures, is still under study for molecular and solid state systems. The PBE exchange and correlation energy functional approximation provides a good description of the relative stability of the different cell structures of CsI;however, it overestimates the stability of the B1 phase at zero pressure. The modified functional approximation for solids, PBEsol, corrects the phase stability problem, but it is not as accurate as PBE at high pressures. The authors previously observed this behavior in another crystalline system40. A more extensive study of the performance of the different kinds of exchange and correlation energy approximations over a wide range of pressures could provide a more general conclusion.

    The band gap prediction from DFT has also been under discussion for a long time. On a qualitative basis and assuming that the only relevant conduction mechanism comes from the band structure, it is interesting to notice that the band gap predictions from the PBE approximation favorably compare with the experimental measurements of the optical threshold energy and resistivity of CsI for the pressure range of this work. A quantitative estimation of the resistivity and the inclusion of thermal effects are beyond the scope of this study.

    Acknowledgement: This work is dedicated to the memory of Robert G. Parr, a great scientist, humanist, and friend.

    (1) Nelson, D. A., Jr.; Ruoff, A. L. Phys. Rev. Lett. 1979, 42, 383.doi: 10.1103/PhysRevLett.42.383

    (2) Besson, J. M.; Itie, J. P.; Weill, G.; Makarenko, I. J. Phys. Lett. 1982,43, 401. doi: 10.1051/jphyslet:019820043011040100

    (3) Asaumi, K.; Kondo, Y. Solid State Comm. 1981, 40, 715.doi: 10.1016/0038-1098(81)90813-9

    (5) Huang, T. L.; Ruoff, A. L. Phys. Rev. B 1984, 29, 1112.doi: 10.1103/PhysRevB.29.1112

    (6) Itie, J.; Polian, A.; Besson, J. J. Phys. Coll. 1984, 45, 47.doi: 10.1051/jphyscol:1984809

    (7) Knittle, E.; Jeanloz, R. Science 1984, 223, 53.doi: 10.1126/science.223.4631.53

    (8) Huang, T. L.; Brister, K. E.; Ruoff, A. L. Phys. Rev. B 1985, 30,2968. doi: 10.1103/PhysRevB.30.2968

    (9) Brister, K. E.; Vohra, Y. K.; Ruoff, A. L. Phys. Rev. B 1985, 31,4657. doi: 10.1103/PhysRevB.31.4657

    (10) Knittle, E.; Jeanloz, R. J. Phys. Chem. Solids 1985, 46, 1179.doi: 10.1016/0022-3697(85)90147-7

    (11) Knittle, E.; Rudy, A.; Jeanloz, R. Phys. Rev. B 1985, 31, 588.doi: 10.1103/PhysRevB.31.588

    (12) Reichlin, R.; Ross, M.; Martin, S.; Goettel, K. A. Phys. Rev.Lett. 1986, 56, 2858. doi: 10.1103/PhysRevLett.56.2858

    (13) Vohra, Y. K.; Brister, K. E.; Weir, S. T.; Duclos, S. J.; Ruoff,A. L. Science 1986, 231, 1136.doi: 10.1126/science.231.4742.1136

    (14) Williams, Q.; Jeanloz, R. Phys. Rev. Lett. 1986, 56, 163.doi: 10.1103/PhysRevLett.56.163

    (15) Aidun, J.; Bukowinski, M. S. T.; Ross, M. Phys. Rev. B 1984,29, 2611. doi: 10.1103/PhysRevB.29.2611

    (16) Christensen, N. E.; Satpathy, S. Phys. Rev. Lett. 1985, 55, 600.doi: 10.1103/PhysRevLett.55.600

    (17) Satpathy, S.; Christensen, N. E.; Jepsen, O. Phys. Rev. B 1985,32, 6793. doi: 10.1103/PhysRevB.32.6793

    (18) Vohra, Y. K.; Duclos, S. J.; Ruoff, A. L. Phys. Rev. Lett. 1985,54, 570. doi: 10.1103/PhysRevLett.54.570

    (19) Satpathy, S. Phys. Rev. B 1986, 33, 8706.doi: 10.1103/PhysRevB.33.8706

    (20) Baroni, S.; Giannozzi, P. Phys. Rev. B 1987, 35, 765.doi: 10.1103/PhysRevB.35.765

    (21) Cedillo, A.; Vela, A.; Gázquez, J. L. Structural Phase Transitions in Cesium Halides. In Density Functional Methods in Chemistry; Labanowski, J. K., Andzelm, J. W.Eds.; Springer: New York, NY, USA, 1991; pp. 293–306.doi: 10.1007/978-1-4612-3136-3_19

    (22) Mao, H. K.; Wu, Y.; Hemley, R. J.; Chen, L. C.; Shu, J. F.;Finger, L. W.; Cox D. E. Phys. Rev. Lett. 1990, 64, 1749.doi: 10.1103/PhysRevLett.64.1749

    (23) Winkler, B.; Milman, V. J. Phys. Condens. Matter 1997, 9,9811. doi: 10.1088/0953-8984/9/45/009

    (24) Xu, Y.; Tse, J. S.; Oganov. A.R.; Cui, T.; Wang, H.; Ma, Y.;Zou, G. Phys. Rev. B 2009, 79, 144110.doi: 10.1103/PhysRevB.79.144110

    (25) Babushkin, A. N. High Pressure Res. 1991, 6, 349.doi: 10.1080/08957959208201042

    (26) Eremets, M. I.; Shimizu, K.; Kobayashi, T. C.; Amaya, K.J. Phys. Condens. Matter 1998, 10, 11519.doi: 10.1088/0953-8984/10/49/037

    (27) Breskin, A. Nucl. Instrum. Meth. Phys. Res. A 1996, 371, 116.doi: 10.1016/0168-9002(95)01145-5

    (28) Va'vra, J.; Breskin, A.; Buzulutskov, A.; Chechik, R.; Shefer,E. Nucl. Instrum. Meth. Phys. Res. A 1997, 387, 154.doi: 10.1016/S0168-9002(96)00980-1

    (29) Sham, L. J.; Schlüter, M. Phys. Rev. Lett. 1983, 51, 1888.doi: 10.1103/PhysRevLett.51.1888

    (30) Perdew, J. P. Int. J. Quantum Chem. Symp. 1986, 19, 497.doi: 10.1002/qua.560280846

    (31) Perdew, J. P.; Yang, W.; Burke, K.; Yang, Z.; Gross, E. K. U.;Scheffler, M.; Scuseria, G. E.; Henderson, T. M.; Zhang, I. Y.;Ruzsinszky, A.; et al. Proc. Natl. Acad. Sci. 2017, 114, 2801.doi: 10.1073/pnas.1621352114

    (32) Gonze, X.; Amadon, B.; Anglade, P. M.; Beuken, J. M.;Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.;C?té, M.; et al. Comput. Phys. Comm. 2009, 180, 2582.doi: 10.1016/j.cpc.2009.07.007

    (33) Gonze, X.; RignaneseI, G. M.; Verstraete, M.; Beuken, J. M.;Pouillon, Y.; Caracas, R.; Jollet, F.; Torrent, M.; Zerah, G.;Mikami, M. et al. Z. Kristallogr. 2005, 220, 558.doi: 10.1524/zkri.220.5.558.65066

    (34) Bl?chl, P. E. Phys. Rev. B 1994, 50, 17953.doi: 10.1103/PhysRevB.50.17953

    (35) Torrent, M.; Jollet, F.; Bottin, F.; Zerah, G.; Gonze, X.Comput. Mater. Sci. 2008, 42, 337.doi: 10.1016/j.commatsci.2007.07.020

    (36) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,77, 3865. doi: 10.1103/PhysRevLett.77.3865

    (37) Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.;Scuseria, G. E.; Constantin, L.A.; Zhou, X.; Burke, K. Phys.Rev. Lett. 2008, 100, 136406.doi: 10.1103/PhysRevLett.100.136406

    (38) Cortona, P. Phys. Rev. B 1992, 46, 2008.doi: 10.1103/PhysRevB.46.2008

    (39) Demichelis, R.; Civalleri, B.; D'Arco, P.; Dovesi, R. Int. J.Quantum Chem. 2010, 110, 2260. doi: 10.1002/qua.22574

    (40) Cedillo, A.; Torrent, M.; Cortona, P. J. Phys. Condens. Matter 2016, 28, 185401. doi: 10.1088/0953- 8984/28/18/185401

    (41) Buongiorno, M.; Baroni, S.; Giannozzi, P. Phys. Rev. Lett.1992, 69, 1069. doi: 10.1103/PhysRevLett.69.1069

    (42) Lipp, M. J.; Yoo, C. H.; Strachan, D.; Daniels, W. B. Phys.Rev. B 2006, 73, 085121. doi: 10.1103/PhysRevB.73.085121

    午夜福利欧美成人| 一个人观看的视频www高清免费观看 | 久久性视频一级片| 欧美zozozo另类| 中文字幕av在线有码专区| 国产综合懂色| 国产精品永久免费网站| 两人在一起打扑克的视频| 久99久视频精品免费| 午夜成年电影在线免费观看| 国产精品乱码一区二三区的特点| 18禁黄网站禁片免费观看直播| 久久久久久大精品| 男人和女人高潮做爰伦理| 亚洲天堂国产精品一区在线| 精品福利观看| 国产精品av视频在线免费观看| 制服丝袜大香蕉在线| 黄色片一级片一级黄色片| 一本精品99久久精品77| 国产亚洲av高清不卡| 男女下面进入的视频免费午夜| 叶爱在线成人免费视频播放| 很黄的视频免费| 可以在线观看毛片的网站| 亚洲精品在线美女| 88av欧美| 国产欧美日韩一区二区精品| 国产精品一区二区免费欧美| 精品国产超薄肉色丝袜足j| 丰满的人妻完整版| 男人和女人高潮做爰伦理| 国产高清三级在线| ponron亚洲| 19禁男女啪啪无遮挡网站| 免费观看的影片在线观看| 中出人妻视频一区二区| 曰老女人黄片| 久久天堂一区二区三区四区| 成年人黄色毛片网站| 午夜久久久久精精品| 特级一级黄色大片| 国内揄拍国产精品人妻在线| 黄片大片在线免费观看| 天堂网av新在线| 老司机在亚洲福利影院| 91麻豆精品激情在线观看国产| 夜夜爽天天搞| 精品日产1卡2卡| 亚洲无线观看免费| 日本一本二区三区精品| 黑人欧美特级aaaaaa片| 好男人电影高清在线观看| 久久中文看片网| www.www免费av| 午夜成年电影在线免费观看| 在线观看免费视频日本深夜| 日韩免费av在线播放| 在线永久观看黄色视频| 亚洲欧美日韩无卡精品| 久久久色成人| 久久午夜综合久久蜜桃| 亚洲欧美精品综合一区二区三区| 国产真人三级小视频在线观看| 久久久久久国产a免费观看| 免费观看人在逋| 亚洲国产欧洲综合997久久,| 精品乱码久久久久久99久播| 岛国视频午夜一区免费看| 国产精品自产拍在线观看55亚洲| 成人午夜高清在线视频| 国产精品美女特级片免费视频播放器 | a级毛片在线看网站| 日韩av在线大香蕉| 在线观看美女被高潮喷水网站 | av黄色大香蕉| 国产1区2区3区精品| 欧美乱码精品一区二区三区| 中文资源天堂在线| 亚洲在线自拍视频| 色综合婷婷激情| 亚洲欧美日韩东京热| 亚洲精品在线美女| 国产男靠女视频免费网站| 丁香欧美五月| 十八禁网站免费在线| 十八禁网站免费在线| 欧美性猛交黑人性爽| 91av网站免费观看| 日韩av在线大香蕉| 日本一二三区视频观看| 好男人在线观看高清免费视频| 精品一区二区三区av网在线观看| 好男人电影高清在线观看| 舔av片在线| 欧美3d第一页| 一级黄色大片毛片| 90打野战视频偷拍视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲色图av天堂| 国产精品一及| 国产成人av教育| 99久久99久久久精品蜜桃| 欧美av亚洲av综合av国产av| 男插女下体视频免费在线播放| 日本一本二区三区精品| av天堂在线播放| 香蕉丝袜av| 欧美中文日本在线观看视频| 国产综合懂色| 国产综合懂色| 伊人久久大香线蕉亚洲五| 天天一区二区日本电影三级| 日日摸夜夜添夜夜添小说| 国产69精品久久久久777片 | www日本黄色视频网| 草草在线视频免费看| 99热只有精品国产| 国产亚洲欧美在线一区二区| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩高清专用| 首页视频小说图片口味搜索| 黄色丝袜av网址大全| 又黄又粗又硬又大视频| 成人永久免费在线观看视频| 草草在线视频免费看| 亚洲成av人片免费观看| 免费一级毛片在线播放高清视频| 中文字幕人成人乱码亚洲影| 欧美色视频一区免费| 小蜜桃在线观看免费完整版高清| avwww免费| 久久久久国内视频| 精品国产乱子伦一区二区三区| 日本免费一区二区三区高清不卡| 91久久精品国产一区二区成人 | 亚洲精品中文字幕一二三四区| 小说图片视频综合网站| 欧美高清成人免费视频www| 成人特级黄色片久久久久久久| 男女做爰动态图高潮gif福利片| 日本精品一区二区三区蜜桃| 免费看美女性在线毛片视频| 母亲3免费完整高清在线观看| 久久午夜亚洲精品久久| 两人在一起打扑克的视频| 精品久久蜜臀av无| 一本精品99久久精品77| 欧美乱色亚洲激情| 欧美日韩瑟瑟在线播放| 国产激情偷乱视频一区二区| 国产精品一区二区精品视频观看| 12—13女人毛片做爰片一| 亚洲午夜精品一区,二区,三区| 久久国产精品影院| 国产精品99久久久久久久久| 日韩国内少妇激情av| 五月伊人婷婷丁香| 亚洲国产色片| 黄色日韩在线| 国产精品免费一区二区三区在线| 日本黄色片子视频| 亚洲精品在线美女| 亚洲欧美日韩卡通动漫| 亚洲 欧美一区二区三区| 久久久国产欧美日韩av| 精品久久久久久久末码| 国产亚洲精品综合一区在线观看| 亚洲国产精品999在线| 18美女黄网站色大片免费观看| 午夜精品一区二区三区免费看| 女人高潮潮喷娇喘18禁视频| 久久午夜亚洲精品久久| 成人国产综合亚洲| 亚洲中文av在线| 久久精品国产99精品国产亚洲性色| 99久久99久久久精品蜜桃| 精品国产三级普通话版| 午夜激情欧美在线| 小说图片视频综合网站| 久久中文字幕人妻熟女| 国产又黄又爽又无遮挡在线| 欧美又色又爽又黄视频| 99riav亚洲国产免费| 真人做人爱边吃奶动态| 丁香欧美五月| 三级毛片av免费| 国产精品国产高清国产av| 97超视频在线观看视频| 精品久久蜜臀av无| 91字幕亚洲| 成人午夜高清在线视频| 一级毛片女人18水好多| 99久久精品热视频| 亚洲成a人片在线一区二区| 一级黄色大片毛片| 亚洲av第一区精品v没综合| 制服人妻中文乱码| 亚洲国产看品久久| 午夜激情福利司机影院| 国产一区二区三区视频了| 日本免费a在线| 久久久久精品国产欧美久久久| 成人av一区二区三区在线看| 亚洲精华国产精华精| 国产欧美日韩精品一区二区| 婷婷六月久久综合丁香| 免费看日本二区| 精品不卡国产一区二区三区| 精品国产三级普通话版| а√天堂www在线а√下载| 免费人成视频x8x8入口观看| 亚洲国产精品久久男人天堂| 一级黄色大片毛片| 成人国产一区最新在线观看| 亚洲av美国av| 一边摸一边抽搐一进一小说| 成年免费大片在线观看| 国产精品乱码一区二三区的特点| 午夜影院日韩av| 一个人免费在线观看的高清视频| 十八禁人妻一区二区| 国产aⅴ精品一区二区三区波| 国产视频一区二区在线看| 在线永久观看黄色视频| 亚洲黑人精品在线| 成年免费大片在线观看| 亚洲欧美日韩东京热| 国语自产精品视频在线第100页| 99国产极品粉嫩在线观看| 淫秽高清视频在线观看| 首页视频小说图片口味搜索| 国产乱人伦免费视频| 99re在线观看精品视频| 九色成人免费人妻av| 中文字幕精品亚洲无线码一区| 天天一区二区日本电影三级| 精品久久久久久,| 一夜夜www| 久久草成人影院| 国产1区2区3区精品| 亚洲人成网站在线播放欧美日韩| www.自偷自拍.com| 男女床上黄色一级片免费看| 丝袜人妻中文字幕| 亚洲国产中文字幕在线视频| 欧美色欧美亚洲另类二区| 亚洲在线观看片| 亚洲中文字幕日韩| 久久婷婷人人爽人人干人人爱| 成人午夜高清在线视频| 中文字幕久久专区| 热99在线观看视频| 欧美成人免费av一区二区三区| ponron亚洲| 久久久久国内视频| 国语自产精品视频在线第100页| 亚洲狠狠婷婷综合久久图片| 天堂av国产一区二区熟女人妻| 一进一出好大好爽视频| 精品久久蜜臀av无| 久久久国产欧美日韩av| 99精品久久久久人妻精品| 网址你懂的国产日韩在线| 久久久精品欧美日韩精品| 国产高清videossex| 日本与韩国留学比较| 成年人黄色毛片网站| 白带黄色成豆腐渣| 欧美性猛交╳xxx乱大交人| 国产又黄又爽又无遮挡在线| 国产免费av片在线观看野外av| 欧美黄色淫秽网站| 亚洲精品一区av在线观看| 又大又爽又粗| 国内精品久久久久精免费| 少妇熟女aⅴ在线视频| 久久久久久人人人人人| 国产午夜精品久久久久久| 99久久成人亚洲精品观看| 人人妻,人人澡人人爽秒播| tocl精华| 国产一级毛片七仙女欲春2| 国产成人精品无人区| 91在线观看av| 中文字幕熟女人妻在线| 国产精品野战在线观看| 久久久水蜜桃国产精品网| 中文字幕最新亚洲高清| 国产主播在线观看一区二区| 国产97色在线日韩免费| 久久欧美精品欧美久久欧美| 操出白浆在线播放| 麻豆久久精品国产亚洲av| 欧美成人一区二区免费高清观看 | 露出奶头的视频| 夜夜躁狠狠躁天天躁| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人成伊人成综合网2020| 18禁观看日本| 精品熟女少妇八av免费久了| 一进一出抽搐gif免费好疼| 欧美成人一区二区免费高清观看 | 两性夫妻黄色片| 国产精品一区二区精品视频观看| 99久久无色码亚洲精品果冻| 757午夜福利合集在线观看| 综合色av麻豆| 国产伦精品一区二区三区四那| 1024香蕉在线观看| 在线播放国产精品三级| 国产精品av视频在线免费观看| www国产在线视频色| 久久精品人妻少妇| 美女 人体艺术 gogo| 1000部很黄的大片| 成人av在线播放网站| 亚洲人成网站在线播放欧美日韩| www.www免费av| 国产乱人伦免费视频| 亚洲精品中文字幕一二三四区| 亚洲成av人片在线播放无| 久久精品影院6| 观看免费一级毛片| 宅男免费午夜| 国产精品一区二区免费欧美| 亚洲av免费在线观看| 国产成人啪精品午夜网站| 精华霜和精华液先用哪个| 精品无人区乱码1区二区| 午夜福利高清视频| 女警被强在线播放| 日韩欧美国产一区二区入口| 国产成人av教育| 一区二区三区高清视频在线| 99在线视频只有这里精品首页| 女同久久另类99精品国产91| 嫩草影院入口| 国产精品99久久99久久久不卡| 岛国在线免费视频观看| 好看av亚洲va欧美ⅴa在| 亚洲av电影在线进入| 99热精品在线国产| 国产高清视频在线观看网站| 夜夜躁狠狠躁天天躁| 岛国视频午夜一区免费看| 制服人妻中文乱码| 美女午夜性视频免费| 欧美成人性av电影在线观看| 在线永久观看黄色视频| 免费搜索国产男女视频| 99热这里只有是精品50| 此物有八面人人有两片| 成人午夜高清在线视频| 淫妇啪啪啪对白视频| 男女下面进入的视频免费午夜| 久久午夜亚洲精品久久| 一个人看视频在线观看www免费 | 精品一区二区三区视频在线观看免费| 免费大片18禁| 国产探花在线观看一区二区| 少妇丰满av| 99在线视频只有这里精品首页| 日韩精品中文字幕看吧| 亚洲av成人av| 国产亚洲欧美98| 999久久久精品免费观看国产| 久久中文字幕一级| 久久国产精品人妻蜜桃| 久久欧美精品欧美久久欧美| 麻豆av在线久日| netflix在线观看网站| 97超视频在线观看视频| 又爽又黄无遮挡网站| 动漫黄色视频在线观看| 99国产精品一区二区蜜桃av| 91老司机精品| 国产不卡一卡二| 99久久国产精品久久久| 老熟妇乱子伦视频在线观看| 欧美性猛交╳xxx乱大交人| 99久久成人亚洲精品观看| 麻豆成人av在线观看| 久久香蕉国产精品| 欧美成人免费av一区二区三区| 成人特级黄色片久久久久久久| 女生性感内裤真人,穿戴方法视频| 欧美另类亚洲清纯唯美| 好男人电影高清在线观看| 中亚洲国语对白在线视频| 中文字幕高清在线视频| 色吧在线观看| 日本黄色片子视频| 麻豆久久精品国产亚洲av| 母亲3免费完整高清在线观看| 日韩欧美在线乱码| 久久精品国产清高在天天线| 又爽又黄无遮挡网站| ponron亚洲| 成人无遮挡网站| 欧美日韩国产亚洲二区| 亚洲精品美女久久久久99蜜臀| 99久久综合精品五月天人人| 国产高潮美女av| 可以在线观看的亚洲视频| 此物有八面人人有两片| 成年女人毛片免费观看观看9| 亚洲国产精品sss在线观看| 老司机福利观看| 男女做爰动态图高潮gif福利片| 国产高清videossex| 亚洲av美国av| 99国产精品99久久久久| 日韩欧美免费精品| 欧美日韩国产亚洲二区| 香蕉丝袜av| 亚洲欧美日韩东京热| 亚洲黑人精品在线| 成人特级黄色片久久久久久久| 成年人黄色毛片网站| 悠悠久久av| 狂野欧美白嫩少妇大欣赏| 亚洲 国产 在线| 欧美色欧美亚洲另类二区| 在线视频色国产色| 欧美中文综合在线视频| 久久精品国产清高在天天线| 免费在线观看日本一区| 九九热线精品视视频播放| 久久精品国产综合久久久| av在线天堂中文字幕| 免费看光身美女| 亚洲黑人精品在线| 亚洲电影在线观看av| 国产淫片久久久久久久久 | 免费观看精品视频网站| 久久香蕉国产精品| 欧美乱色亚洲激情| 久久精品91无色码中文字幕| 亚洲成人久久性| 国产成人av教育| 欧美av亚洲av综合av国产av| 高清在线国产一区| 19禁男女啪啪无遮挡网站| 久久精品国产综合久久久| 狠狠狠狠99中文字幕| 网址你懂的国产日韩在线| 亚洲五月婷婷丁香| 18禁观看日本| 婷婷丁香在线五月| 亚洲国产精品sss在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品久久男人天堂| 国产成人精品久久二区二区免费| 亚洲美女视频黄频| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站在线播放欧美日韩| 国产精品永久免费网站| 黑人操中国人逼视频| 久久久久久国产a免费观看| 久久久久免费精品人妻一区二区| 两个人视频免费观看高清| 婷婷亚洲欧美| 后天国语完整版免费观看| 午夜视频精品福利| 精品欧美国产一区二区三| 成人特级黄色片久久久久久久| 国产美女午夜福利| 午夜视频精品福利| 国产欧美日韩一区二区精品| 搡老熟女国产l中国老女人| 黑人巨大精品欧美一区二区mp4| 嫩草影院精品99| 丁香六月欧美| 国产不卡一卡二| 亚洲一区高清亚洲精品| 久久精品人妻少妇| 男人和女人高潮做爰伦理| 欧美三级亚洲精品| 一边摸一边抽搐一进一小说| 网址你懂的国产日韩在线| 国产成人精品无人区| 日本熟妇午夜| 久久中文字幕人妻熟女| 在线国产一区二区在线| АⅤ资源中文在线天堂| 午夜精品一区二区三区免费看| 精品乱码久久久久久99久播| 欧美日韩亚洲国产一区二区在线观看| 美女免费视频网站| 美女高潮的动态| 亚洲成人精品中文字幕电影| 99热6这里只有精品| 日本黄大片高清| 国产精华一区二区三区| 在线观看免费视频日本深夜| 亚洲精品久久国产高清桃花| 麻豆成人av在线观看| 又大又爽又粗| 三级国产精品欧美在线观看 | 国产午夜福利久久久久久| 免费在线观看亚洲国产| 色综合亚洲欧美另类图片| 国产伦精品一区二区三区四那| 日日干狠狠操夜夜爽| 亚洲人成网站在线播放欧美日韩| 免费在线观看成人毛片| 一进一出好大好爽视频| 亚洲成av人片在线播放无| 亚洲五月天丁香| 18禁观看日本| 亚洲国产精品久久男人天堂| 成人特级av手机在线观看| 国产乱人伦免费视频| 在线观看免费午夜福利视频| avwww免费| 国产精品电影一区二区三区| 国产成人精品无人区| 亚洲成人久久性| 人妻久久中文字幕网| 日本精品一区二区三区蜜桃| 99国产精品一区二区三区| 午夜精品在线福利| 精华霜和精华液先用哪个| 日韩大尺度精品在线看网址| 两个人视频免费观看高清| 一区二区三区高清视频在线| 国产91av在线免费观看| 国产精品日韩av在线免费观看| 免费无遮挡裸体视频| av女优亚洲男人天堂| 国产不卡一卡二| 日韩一区二区视频免费看| 91久久精品国产一区二区成人| ponron亚洲| 欧美成人午夜免费资源| 综合色av麻豆| 国产熟女欧美一区二区| 啦啦啦啦在线视频资源| 国产精品一区二区三区四区久久| 内射极品少妇av片p| 老司机影院成人| eeuss影院久久| 秋霞伦理黄片| 精品久久久久久久末码| 国产亚洲5aaaaa淫片| 在线播放国产精品三级| 欧美性感艳星| 日本黄大片高清| 成人亚洲精品av一区二区| 欧美精品国产亚洲| 白带黄色成豆腐渣| 少妇熟女欧美另类| 免费不卡的大黄色大毛片视频在线观看 | 中文资源天堂在线| 2021少妇久久久久久久久久久| 91av网一区二区| 久久精品熟女亚洲av麻豆精品 | 成人av在线播放网站| 精品国产三级普通话版| 亚洲精华国产精华液的使用体验| 春色校园在线视频观看| 婷婷色综合大香蕉| 国产一区有黄有色的免费视频 | 一本一本综合久久| 久久精品久久久久久噜噜老黄 | 毛片一级片免费看久久久久| 日日啪夜夜撸| 乱码一卡2卡4卡精品| 日本免费a在线| 欧美精品一区二区大全| 亚洲精品一区蜜桃| 少妇裸体淫交视频免费看高清| 亚洲第一区二区三区不卡| 国产精品蜜桃在线观看| 色综合站精品国产| 你懂的网址亚洲精品在线观看 | 美女黄网站色视频| 天天一区二区日本电影三级| 国产美女午夜福利| 色吧在线观看| 亚洲国产精品合色在线| 亚洲欧美一区二区三区国产| 高清日韩中文字幕在线| 亚洲欧美日韩东京热| 最近的中文字幕免费完整| 国产精品,欧美在线| 一个人看视频在线观看www免费| 成人性生交大片免费视频hd| 亚洲怡红院男人天堂| 欧美人与善性xxx| 国产人妻一区二区三区在| 草草在线视频免费看| 国产伦在线观看视频一区| 国产精品熟女久久久久浪| 搡女人真爽免费视频火全软件| 久久亚洲国产成人精品v| 国产老妇伦熟女老妇高清| 在线观看一区二区三区| 波多野结衣巨乳人妻| 国产精华一区二区三区| 午夜a级毛片| 97超碰精品成人国产| 老司机影院成人| 精品一区二区免费观看| 特级一级黄色大片| 51国产日韩欧美| 国产精品,欧美在线| 国产精品国产高清国产av| 麻豆精品久久久久久蜜桃| 亚洲国产欧洲综合997久久,| .国产精品久久| 蜜桃亚洲精品一区二区三区| 九九热线精品视视频播放| 国产成人精品久久久久久|