• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bonding and Reactivity in RB-AsR Systems (R = H, F, OH, CH3, CMe3,CF3, SiF3, BO): Substituent Effects

    2018-03-29 03:12:17GHARAManasCHATTARAJPratim
    物理化學(xué)學(xué)報(bào) 2018年2期

    GHARA Manas, CHATTARAJ Pratim K.*

    Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302, India.

    1 Introduction

    The incessant quest towards the synthesis of molecules containing multiple bonds involving main group elements has been an active field of research1. In this context, the triply bonded RE-ER (E = Group 14 element) systems are well synthesized and experimentally characterized by many research groups2–13. Since, the replacement of Group 14 elements by one Group 13 element and one Group 15 element is possible in RE-ER provided the substituents {R} are judiciously chosen. In this way triply bonded RB-NR systems were reported by Paetzold14. On the other hand, in 1990 Power and coworkers15have synthesized borylarsinide anion [PhAs-BMes2]?, which contains an As―B bond with the distance of 1.936 ? (1 ? =0.1 nm) suggesting an As=B double bond. A few years later, in 2006 the same group has prepared P=B and As=B double bonded compounds by making use of the donor stabilization strategy16. In 1993, Jones and coworkers17synthesized monomeric arsinoboranes, where the B―As bond order was estimated to be 1.6. However, in 1989 Nguyen and coworkers18and in 1996 Watts and coworkers19have done computational studies on HPBH system, where they have shown that the most stable isomer of the system has a bent geometry with a B―P―H bond angle of 94.5° and the B―P bond length of 1.756 ? having a B=P double bond character. Recently, the group of Su has shown the substituent effects on the stability of RB-SbR20, RB-BiR21and RIn-AsR22systems and they have also predicted the presence of triple bond between those Gr-13 and a Gr-15 element although it is very weak. In the present work we study the substituent effects on the stability and the nature of bonding in RB-AsR systems. In addition, the effect of substituents23on the chemical reactivity and selectivity of these systems are also characterized using global and local reactivity descriptors obtained from the conceptual density functional theory24,25.

    2 Theoretical background

    Conceptual density functional theory24,25based reactivity descriptors and the associated popular qualitative electronic structure principles provide qualitative trends in different systems and processes by unifying experimental/ calculated data even though they are empirical in nature. The electrophilicity (ω), a global reactivity index which measures the propensity of a species to accept electrons, as proposed by Parr et al.26is defined as27

    Applying a finite difference approximation, the above expressions can be written as

    where I and A are the first vertical ionization potential and first vertical electron affinity respectively and these are determined by ΔSCF finite difference approach (FDA), where I and A for an N-electron system are expressed as

    where E(N), E(N ? 1) and E(N + 1) are electronic energies of N,(N ? 1) and (N + 1) electronic systems respectively. A related qualitative electronic structure principle is electrophilicity equalization principle a formal analytical proof31of which was provided assuming the simultaneous validity of two hitherto well accepted principles, viz., electronegativity and hardness equalization principles32–34. Even the term ‘principle’35is used in standard text books for cases like the Le Chatelier principle even when there are known exceptions36.

    On the other hand, the local reactivity descriptors such as the Fukui function as proposed by Parr and Yang37, can be written as

    The discontinuous nature of ρ(r) vs N plot gives three types of Fukui functions,

    where ρN(r), ρN?1(r) and ρN+1(r) are electron densities of N, (N ?1) and (N + 1) electronic systems respectively.

    Yang and Mortier38proposed ‘condensed’ Fukui functions on each atomic site k in a molecule as

    where qkis the electronic population of k-th site in a molecule.

    Chattaraj et al.39,40proposed another global reactivity descriptor called philicity which includes almost all global and local information of a molecule as well as the electrophilic and nucleophilic power of an atomic site in a molecule, which is defined as

    where, α = +, ? and 0 are for nucleophilic, electrophilic and radical attacks respectively.

    In 2005 Toro-Labbe and co-workers41,42introduced a dual descriptor (Δf(r)), which is expressed as

    In 2007 Chattaraj and co-workers43recommended another reactivity descriptor, called multiphilicity which identifies both the electrophilic and nucleophilic characteristics of an atom in a molecule. This is defined as

    when Δωk> 0, the k-th site is favorable for nucleophilic attack and if Δωk< 0, the k-th site is favorable for electrophilic attack.Note that the Fukui function and the dual descriptor are intramolecular in nature whereas the multiphilicity is an intermolecular reactivity descriptor. A related global descriptor is net electrophilicity44.

    3 Computational details

    Optimization of geometries of all the studied molecules has been carried out at the DFT level of theory using the exchange-correlation energy functional M06-2X45. A triple-ζ quality basis set augmented by a single polarization function,def2-TZVP has been employed as atomic orbital basis function for these calculations. Harmonic vibrational frequency analysis has been performed in order to characterize the nature of stationary points on the potential energy surface and to determine zero point energy correction. All these calculations have been done using Gaussian 09 programme46suit. Natural bond orbital (NBO)47analysis is performed in order to get natural electronic population48on each atomic site which gives atomic charge and Wiberg bond index (WBI)49values for a chemical bond. This calculation is carried out using NBO 5.0 software package as embedded in Gaussian 09 software.Electron density analysis (EDA)50is also performed to understand the nature of bonding using Multiwfn softwere.51

    Fig.1 Bonding scheme for the RB-AsR systems.

    4 Results and discussion

    Optimization reveals that the RB-AsR system has a bent geometry as shown in Fig.1. There are two possible bonding models in order to interpret the bonding situation in these species, which are pictorially depicted in Fig.1. Here, we have taken the R group as H, F, OH, CH3, CMe3, CF3, SiF3and BO.One may consider that the formation of RB-AsR takes place through the combination of two fragments RB and AsR. Our calculation shows that the ground states (G.S.) of RB and AsR are singlet and triplet respectively. We also calculate the energy of the triplet excited state (E.S.) of RB and that of the singlet E.S. of AsR. Thus, we get the singlet-triplet splitting energies(ΔEST) of RB and AsR fragments which are given in Table 1.Now, if the magnitude of ΔESTof RB is greater than that of AsR fragment then Scheme-I one is favorable and if the reverse is true then Scheme-II is favorable. The difference between Schemes-I and II is that there is a possibility of one B → As σ and two B ← As π bond in Scheme-I whereas Scheme-II comprises two σ and π bonds and one B ← As π bond.

    The important geometrical parameters of RB-AsR systems are listed in Table 1 and the optimized geometries are given in Fig.2. The ∠B―As―R(°) bond angles demonstrate that all the systems exhibit a bent geometry as shown in Fig.1. Whereas,the ∠R―B―As(°) bond angles are nearly 180°. The experimental data available for B―As bond length is 1.936 ? in borylarsinide anion15[PhAs-BMeS2]?and 1.914 ? in boranylidenearsane Ar*As-B(DMAP)Tmp16. Thus, our calculated values of B―As bond length show that there should be double bond between these two atoms and even with slightly triple bond character in some cases as highlighted by the corresponding Wiberg bond index values as shown in the next section. The ΔEST values of RB and AsR fragments show that Scheme-I is favorable for FB-AsF, HOB-AsOH, H3CB-AsCH3and Me3CB-AsCMe3systems and Scheme-II is favorable for HB-AsH, F3CB-AsCF3, F3SiB-AsSiF3and OBB-AsBO systems. We have also calculated the values of HOMO-LUMO energy gap (H-L Gap) in these systems (see Table 1). We see that the H-L Gap is greater in those systems which follow Scheme-II and thus showing greater stability in comparison to those systems which follow Scheme-I. This was expected because there are two classical σ and π bonds and one B ← As π bond in Scheme-II where as in Scheme-I all the bonds are coordinate covalent type. Since the lone pairs in AsR consist of the valence s- and one of the valence p- orbitals of As effective overlap will not take place with an orbital of B atom having different size.

    Table 1 The geometrical parameters, singlet-triplet splitting energy of R-B (ΔEST(R-B)) and R-As (ΔEST(R-As)) and HOMO-LUMO gap (eV) at M06-2X/def2-TZVP lavel.

    Fig.2 The optimized geometries of RB-AsR systems (R = H, F, OH, BO, CH, , CF, SiF and CMe) at the M06-2X/def2-TZVP level.

    We have examined the stability of RB-AsR systems by comparing the two isomers R2B-As and B-AsR2 on the singlet potential energy surface which are given in Fig.3. The study reveals that RB-AsR systems belong to the global minima on the respective potential energy surfaces for F3SiB-AsSiF3,Me3CB-AsCMe3and HB-AsH systems. Note that the relative energy of the H2B-As is slightly greater (0.0044 kcal·mol?1, 1 cal = 4.1868 J) than that of the HB-AsH isomer. On the other hand R2B-As are the global minima in case of R = CH3, CF3,OH and F. Moreover, in case of RB-SbR systems (R = H, F,OH, CH3and SiH3) as reported by the group of M. D. Su20, all the R2B-Sb isomers are more stable in comparison to RB-SbR.Whereas, in case of HBPH system as reported by Nguyen18,H2B-P isomer is less stable in comparison to HB-PH one.However, for OBB-AsBO system we did not obtain the minimum energy structure on the potential energy surface which corresponds to R2B-As at M06-2Xdef2-TZVP level.But, we could get that at HF/3-21G level, which indicates that the barrier between (OB)2B-As and OBB-AsBO is very small at the higher level. A similar situation was also observed before for HB-PH system.18

    Fig.3 Relative energy values for RB-AsR (R = F, OH, CF3, CH3, H, CMe3 BO and SiF3) in kcal·mol?1 calculated at the M06-2X/def2-TZVP level.

    Table 2 The NPA charges on B and As centres (Q, a.u.) and Wiberg bond index (WBI) values of B-As bonds in RB-AsR (R=H,F, OH, CH3, CMe3, CF3, SiF3 and BO) at M06-2X/def2-TZVP level.

    4.1 Bonding analysis

    In order to understand the nature of bonding between B and As centers in these systems we have calculated NPA charges on B and As centers and WBI values in between them, which are given in Table 2. The NPA charges on B and As centers show that the bonding between B and As centers is not purely covalent and some ionic character is also there. The WBI values in case of FB-AsF (1.798) and HOB-AsOH (1.811) are less than two, whereas in all other cases it is greater than two.For comparison we calculated WBI of ethylene (2.049) and acetylene (2.999) in the same level of theory. Comparing these values we may conclude that some triple bond character is present between B and As centers in HB-AsH, Me3CB-AsCMe3and F3SiB-AsSiF3systems. Since WBI values are 2.209, 2.073 and 2.254 in HB-AsH, Me3CB-AsCMe3and F3SiB-AsSiF3respectively although these are weak in comparison to that of acetylene. Presumably the reason for the formation of this weak triple bond is due to “inert s-pair effect” and “orbital non-hybridization effect”52,53.

    4.2 Electron density analysis

    We have analyzed the nature of bonding between B and As centers in these systems using electron density analysis technique. Bader’s atoms-in-a-molecule50method is used to analyze various parameters at the bond critical point (BCP) in between B and As atoms to characterize the nature of the B―As bond. The values of the topological parameters obtained at the BCP of B―As bonds are provided in Table 3. Generally higher value of electron density (ρ(rc)) and negative value of Laplacian of electron density (▽2ρ(rc)) at the BCP satisfy the nature of a typical covalent bond. But this is not always true,e.g. in F2molecule the value of (▽2ρ(rc)) is positive although the F―F bond in F2is typically covalent. So, other parameters like local kinetic energy density (G(rc)), local potential energy density (V(rc)), local electron energy density (H(rc)) and the ratio ?G(rc)/V(rc) are also calculated at the BCP of the B―As bond. From the table we see that the values of both (▽2ρ(rc))and (H(rc)) are negative at the BCP for all B―As bonds indicating the covalent character. Thus, analyzing the electron density descriptors we may conclude that the interaction between B and As atoms in these systems are of purely covalent type. We have also obtained another BCP in between B center and the H atom bent towards the B center in HB-AsH(see Fig.2).This bond is also of covalent type as confirmed by the electron density analysis. However, we did not get any BCP in between As and H centers.

    The plots of (▽2ρ(r)) are provided in Fig.4. The color code is red: (▽2ρ(r)) < 0 and green: (▽2ρ(r)) > 0. The accumulation of electron density is depicted by the region with negative(▽2ρ(r)) values. It highlights the associated bond paths.

    Table 3 Electron density descriptors (in a.u.) at the bond critical points (BCP) in between B and As atoms in RB-AsR (R = H, F, OH, CH3, CMe3, CF3, SiF3 and BO) at M06-2X/def2-TZVP level.

    Fig.4 Plots of Laplacian of electron density (▽2ρ(r)) of RB-AsR (R = H, F, OH, CH3, CMe3, CF3, SiF3 and BO) systems at M06-2X/def2-TZVP level.

    4.3 Reactivity analysis

    In order to get insights into the reactivity on different sites of these systems and to examine the utility of the multiphilic descriptor Δωkwe have calculated local reactivity as well as selectivity descriptors using natural population analyis scheme.The results are given in Table 4. Here, we have taken RB-AsR,R'B-AsR and RB-AsR' systems, where the R and R' groups include H, electron donating CH3, CMe3, OH and electron withdrawing F, CF3, SiF3, BO. Although, the Fukui function descriptor is very useful in determining the preferable site for nucleophilic as well as electrophilic attacks in these systems,but it is unable to predict this when different systems are compared. Among these studied systems in HB-AsH,OHB-AsOH, OBB-AsBO and H3CB-AsBO, the f+as well as f?on As centre is greater than that in B centre. Also, the values of f+on B are slightly greater than As centres in most cases and thus making it difficult to get a clear decision on electrophilic behavior of these sites. To overcome this problem another reactivity descriptor Δω, called multiphilic descriptor is proposed. The advantage of Δω in comparison to Δf is that it contains all the global information along with local properties.Since, Δω is positive on B centre and negative on As centre in almost all of the systems studied showing that former is preferable for nucleophilic attack and the latter for electrophilic attack and this is expected because of the electron deficiency at the B centre in all the systems. Although, in OBB-AsBO system both centres contain negative Δω, the magnitude on As centre is much greater than that on B centre making the As centre more prone to nucleophilic attack. On an average an electron withdrawing group on the B centre improves the capability of nucleophilic attack whereas the propensity of the electrophilic attack improves on the As centre in case it is attached to an electron donating group. The trend, however, is not universal due to the known inadequacy of the population analysis scheme used.

    Table 4 Calculated local reactivity properties of some selected molecules calculated at the M06-2X/def2-TZVP level.

    5 Conclusions

    The most significant result obtained in this study reveals that all the RB-AsR systems adopt a bent geometry with∠B―As―R ≈ 90° or less and ∠R―B―As ≈ 180°. The reason behind these bent geometries as schematically presented in Fig.1 is analyzed. It is also shown that Scheme-II is favorable for a strong B―As bond formation, which is reflected in the values of the corresponding HOMO-LUMO gap. The computed WBI values show that B=As double bond is present in most of the cases. However, in some cases a weak triple bond is present, as suggested by the WBI value of say, B―As bond to be 2.25 in F3SiB-AsSiF3 system. The electron density analysis highlights the nature of the bonds present in these systems. We also calculated the multiphilic descriptors on B and As sites in RB-AsR systems, which give positive values on B centers and negative values on As centers in almost all of the systems highlighting the fact that the former is preferable for nucleophilic attack and latter is apt for electrophilic attack.

    This article is dedicated to the memory of the late Professor Robert G. Parr, a great scientist and an excellent human being.PKC would like to thank Professor Shubin Liu for kindly inviting him to contribute an article for this special issue.

    (2) Bino, A.; Ardon, M.; Shirman, E. Science 2005, 308, 234.doi: 10.1126/science.1109965

    (3) Seidu, I.; Seth, M.; Ziegler, T. Inorg. Chem. 2013, 52, 8378.doi: 10.1021/ic401149h

    (4) Danovich, D.; Bino, A.; Shaik, S. J. Phys. Chem. Lett. 2013, 4, 58.doi: 10.1021/jz3016765

    (5) Lein, M.; Krapp, A.; Frenking, G.; J. Am. Chem. Soc. 2005, 127,6290. doi: 10.1021/ja042295c

    (6) Sekiguchi, A.; Kinjo, R.; Ichinohe, M. Science 2004, 305, 1755.doi: 10.1126/science.1102209

    (7) Sasamori, T.; Hironaka, K.; Sugiyama, T.; Takagi, N.; Nagase, S.;Hosoi, Y.; Furukawa, Y.; Tokitoh, N. J. Am. Chem. Soc. 2008, 130,13856. doi: 10.1021/ja8061002

    (8) Stender, M.; Phillips, A. D.; Wright, R. J.; Power, P. P. Angew.Chem., Int. Ed. 2002, 41, 1785. doi: 10.1002/1521-3773(20020517)41:10<1785::AID-ANIE1785>3.0.CO;2-6

    (9) Sugiyama, Y.; Sasamori, T.; Hosoi, Y.; Furukawa, Y.; Takagi, N.;Nagase, S.; Tokitoh, N. J. Am. Chem. Soc. 2006, 128, 1023.doi: 10.1021/ja057205y

    (10) Phillips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P. J.Am. Chem. Soc. 2002, 124, 5930. doi: 10.1021/ja0257164

    (11) Pu, L.; Twamley, B.; Power, P. P. J. Am. Chem. Soc. 2000,122, 3524. doi: 10.1021/ja993346m

    (12) Wu, P. C.; Su, M. D. Dalton Trans. 2011, 40, 4253.doi: 10.1039/C0DT00800A

    (13) Wu, P. C.; Su, M. D. Inorg. Chem. 2011, 50, 6814.doi: 10.1021/ic200930v

    (14) Paetzold, P. Adv. Inorg. Chem. 1987, 31, 123.doi: 10.1016/S0898-8838(08)60223-8

    (15) Petrie, M. A.; Shoner, S. C.; Dias, H. V. R.; Power, P. P.Angew. Chem., Int. Ed. Engl. 1990, 29, 1033.doi: 10.1002/anie.199010331

    (16) Rivard, E.; Merrill, W. A.; Fettinger, J. C.; Power, P. P. Chem.Commun. 2006, 3800. doi: 10.1039/b609748k

    (17) Mardones, M. A.; Cowley, A. H.; Contreras, L.; Jones, R. A.J. Organomet. Chem. 1993, 455.doi: 10.1016/0022-328X(93)80411-4

    (18) Kerins, M. C.; Fitzpatrick N. J.; Nguyen, M. T. Polyhedron 1989, 8, 969. doi: 10.1016/S0277-5387(00)86453-0

    (19) Watts, J. D.; Zant, L. C. V. Chem. Phys. Lett. 1996, 251, 119.(20) Lu, J. S.; Yanga, M. C.; Su, M. D. PhysChemChemPhys 2017,19, 8026. doi: 10.1039/c7cp00421d

    (21) Lu, J. S.; Su, S. H.; Yanga, M. C.; Wen, X. T.; Xie, J. Z.; Su,M. D. Organometallics 2016, 35, 3924.doi: 10.1021/acs.organomet.6b00659

    (22) Lu, J. S.; Yanga, M. C.; Su, M. D. ACS Omega 2017, 2, 1172.doi: 10.1021/acsomega.7b00113

    (23) Chattaraj, P. K.; Rivas, N. G.; Matus, M. H.; Galvan, M. J.Phys. Chem. A 2005, 109, 25. doi: 10.1021/jp045319a

    (24) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989.(25) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003,103, 1793. doi: 10.1021/cr990029p

    (26) Parr, R. G.; Von Szentpaly, L.; Liu, S. J. Am. Chem. Soc.1999, 121, 1922. doi: 10.1021/ja983494x

    (27) Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106,2065. doi: 10.1021/cr078014b

    (28) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem.Phys.1978, 68, 3801. doi: 10.1063/1.436185

    (29) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105,7512. doi: 10.1021/ja00364a005

    (30) Chattaraj, P. K.; Parr, R. G. Density Functional Theory of Chemical Hardness in Chemical Hardness (Structure and Bonding) Vol. 80; Sen, K. D., Mingos, D. M. P. Eds.;Springer: Berlin, Germany, 1993.

    (31) Chattaraj, P. K.; Giri, S.; Duley, S. J. Phys. Chem. Lett. 2010,1, 1064. doi: 10.1021/jz1001117

    (32) Sanderson, R. T. Science 1951, 114, 670.doi: 10.1126/science.114.2973.670

    (33) Datta, D. J. Phys. Chem. 1986, 90, 4216.doi: 10.1021/j100408a076

    (34) Szentpály, L. V. J. Phys. Chem. A 2015, 119, 1715.doi: 10.1021/jp5084345

    (35) Szentpály, L. V. J. Mol. Model. 2017, 23, 217.doi: 10.1007/s00894-017-3383-z

    (36) Posthumus, K. Rec. Trav. Chim. 1933, 52, 25; 1933, 53, 308.(37) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049.doi: 10.1021/ja00326a036

    (38) Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.doi: 10.1021/ja00279a008

    (39) Chattaraj, P. K.; Maiti, B.; Sarkar, U. J. Phys. Chem. A 2003,107, 4973. doi: 10.1021/jp034707u

    (40) Roy, D. R.; Parthasarathi, R.; Padmanabhan, J.; Sarkar, U.;Subramanian, V.; Chattaraj, P. K. J. Phys. Chem. A 2006, 110,1084. doi: 10.1021/jp053641v

    (41) Morell, C.; Grand, A.; Toro-Labbe′, A. J. Phys. Chem. A 2005, 109, 205. doi: 10.1021/jp046577a

    (42) Morell, C.; Grand, A.; Toro-Labbe, A. Chem. Phys. Lett.2006, 425, 342. doi: 10.1016/j.cplett.2006.05.003

    (43) Padmanabhan, J.; Parthasarathi, R.; Elango, M.;Subramanian, V.; Krishnamoorthy, B. S.; Gutierrez-Oliva, S.;Toro-Labbé, A.; Roy, D. R.; Chattaraj, P. K. J. Phys. Chem. A 2007, 111, 37. doi: 10.1021/jp0718909

    (44) Chattaraj, P. K.; Chakraborty, A.; Giri, S. J. Phys. Chem. A.2009, 113, 10068. doi: 10.1021/jp904674x

    (45) Zhao, Y.; Truhlar, D. G. Theor. Chem. Account. 2006, 120,215. doi: 10.1007/s00214-007-0310-x

    (46) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford CT, 2010.

    (47) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988,88, 899. doi: 10.1021/cr00088a005

    (48) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys.1985, 83, 735. doi: 10.1063/1.449486

    (49) Wiberg, K. B. Tetrahedron 1968, 24, 1083.doi: 10.1016/0040-4020(68)88057-3

    (50) Bader, R. F. W. Atoms in Molecules: A Quantum Theory;Clarendon Press: Oxford, UK, 1990.

    (51) Lu, T.; Chen, F. W. J. Comput. Chem. 2012, 33, 580.doi: 10.1002/jcc.22885

    (52) Pyykko, P.; Desclaux, J. P. Acc. Chem. Res. 1979, 12, 276.doi: 10.1021/ar50140a002

    (53) Pyykko, P. Chem. Rev. 1988, 88, 563.doi: 10.1021/cr00085a006

    丁香六月天网| 亚洲精品国产av蜜桃| 好男人视频免费观看在线| 水蜜桃什么品种好| 精品久久久噜噜| 精品酒店卫生间| av在线观看视频网站免费| av又黄又爽大尺度在线免费看| 黄色毛片三级朝国网站| 韩国高清视频一区二区三区| 亚洲无线观看免费| 亚洲一区二区三区欧美精品| 激情五月婷婷亚洲| 最近的中文字幕免费完整| 又黄又爽又刺激的免费视频.| 国产精品一区二区三区四区免费观看| 3wmmmm亚洲av在线观看| 在线观看美女被高潮喷水网站| 简卡轻食公司| 80岁老熟妇乱子伦牲交| 欧美精品一区二区大全| 精品久久蜜臀av无| 亚洲精品日本国产第一区| 中文字幕免费在线视频6| 日韩成人伦理影院| 日本与韩国留学比较| 精品久久国产蜜桃| 欧美xxxx性猛交bbbb| 亚洲第一av免费看| 欧美精品一区二区大全| 亚洲欧洲精品一区二区精品久久久 | 精品一区二区三区视频在线| 丁香六月天网| 一级毛片黄色毛片免费观看视频| xxx大片免费视频| 丰满少妇做爰视频| 日本欧美视频一区| 日韩av不卡免费在线播放| 亚洲综合色网址| 日韩免费高清中文字幕av| 黑人巨大精品欧美一区二区蜜桃 | 国产精品一区二区三区四区免费观看| 高清毛片免费看| 下体分泌物呈黄色| 亚洲av成人精品一区久久| 日韩在线高清观看一区二区三区| 精品国产一区二区三区久久久樱花| av免费观看日本| 成人影院久久| 日本欧美国产在线视频| 乱人伦中国视频| 麻豆精品久久久久久蜜桃| 久久久久人妻精品一区果冻| 一级毛片我不卡| 日本黄色片子视频| 国产一区有黄有色的免费视频| 80岁老熟妇乱子伦牲交| 免费高清在线观看日韩| 成人手机av| 欧美精品国产亚洲| 在线观看免费高清a一片| 狂野欧美白嫩少妇大欣赏| av在线app专区| 久久亚洲国产成人精品v| 99国产综合亚洲精品| 91aial.com中文字幕在线观看| 日韩不卡一区二区三区视频在线| 亚洲色图 男人天堂 中文字幕 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩精品有码人妻一区| 99久久中文字幕三级久久日本| 777米奇影视久久| 国产亚洲最大av| 一二三四中文在线观看免费高清| 亚洲精品日本国产第一区| 久热久热在线精品观看| 日韩,欧美,国产一区二区三区| 亚洲精品日韩av片在线观看| 王馨瑶露胸无遮挡在线观看| 日韩视频在线欧美| 一区二区三区精品91| 美女xxoo啪啪120秒动态图| 三级国产精品片| 尾随美女入室| 亚洲欧美成人综合另类久久久| 少妇猛男粗大的猛烈进出视频| 老熟女久久久| 纵有疾风起免费观看全集完整版| 久久久久人妻精品一区果冻| 丝瓜视频免费看黄片| 最近中文字幕2019免费版| 18禁裸乳无遮挡动漫免费视频| 我要看黄色一级片免费的| 亚洲欧美色中文字幕在线| 日本-黄色视频高清免费观看| 777米奇影视久久| 人妻少妇偷人精品九色| 18+在线观看网站| 只有这里有精品99| 黄色怎么调成土黄色| 999精品在线视频| 黄色一级大片看看| 亚洲伊人久久精品综合| 一本一本综合久久| 亚洲精品一二三| 91国产中文字幕| 天美传媒精品一区二区| 伊人久久国产一区二区| 久久久久久久久久久久大奶| 午夜免费鲁丝| 丁香六月天网| 亚洲精品,欧美精品| 视频中文字幕在线观看| av黄色大香蕉| a级毛片在线看网站| 97在线视频观看| 青春草国产在线视频| 亚洲国产日韩一区二区| 久久精品久久久久久噜噜老黄| 好男人视频免费观看在线| 午夜福利视频在线观看免费| 亚洲精品视频女| 久久人人爽av亚洲精品天堂| 精品人妻一区二区三区麻豆| 婷婷色麻豆天堂久久| 国产成人av激情在线播放 | 日产精品乱码卡一卡2卡三| 国产成人av激情在线播放 | 久久99蜜桃精品久久| 亚洲欧美日韩卡通动漫| 精品久久久噜噜| 亚洲一区二区三区欧美精品| 精品少妇内射三级| av专区在线播放| 欧美亚洲 丝袜 人妻 在线| 亚洲色图综合在线观看| 美女中出高潮动态图| 男女啪啪激烈高潮av片| 亚洲精品av麻豆狂野| 十八禁高潮呻吟视频| 国产免费一级a男人的天堂| 亚洲欧洲精品一区二区精品久久久 | 国产色爽女视频免费观看| 熟女电影av网| 各种免费的搞黄视频| 国模一区二区三区四区视频| 国产精品久久久久久精品电影小说| 韩国高清视频一区二区三区| 亚洲av成人精品一区久久| 日韩在线高清观看一区二区三区| 精品国产一区二区三区久久久樱花| 欧美日韩成人在线一区二区| 亚洲国产av新网站| 国产片内射在线| 久久午夜福利片| 国产精品一二三区在线看| 久久久久久久久久久丰满| 青春草视频在线免费观看| 欧美日韩综合久久久久久| 国产精品国产三级国产av玫瑰| 国内精品宾馆在线| 精品少妇黑人巨大在线播放| 黑人高潮一二区| 麻豆乱淫一区二区| 国产精品一区二区三区四区免费观看| 各种免费的搞黄视频| 亚洲五月色婷婷综合| 欧美激情国产日韩精品一区| 黑人高潮一二区| 麻豆乱淫一区二区| 久久人妻熟女aⅴ| 中文字幕最新亚洲高清| 亚洲少妇的诱惑av| 91aial.com中文字幕在线观看| 久久午夜福利片| 精品一品国产午夜福利视频| 哪个播放器可以免费观看大片| 大片免费播放器 马上看| 国产色婷婷99| 久久精品久久久久久噜噜老黄| 国产亚洲精品久久久com| 考比视频在线观看| 制服诱惑二区| 美女福利国产在线| 久久精品熟女亚洲av麻豆精品| 人成视频在线观看免费观看| 久久99热这里只频精品6学生| 新久久久久国产一级毛片| 91午夜精品亚洲一区二区三区| 狂野欧美激情性xxxx在线观看| 国产欧美日韩一区二区三区在线 | 亚洲五月色婷婷综合| 看十八女毛片水多多多| 免费av中文字幕在线| 女的被弄到高潮叫床怎么办| 91午夜精品亚洲一区二区三区| 久久 成人 亚洲| 国产精品麻豆人妻色哟哟久久| 婷婷色麻豆天堂久久| 亚洲高清免费不卡视频| 久久亚洲国产成人精品v| 日本vs欧美在线观看视频| 国产成人aa在线观看| 大香蕉久久网| 久久ye,这里只有精品| 久久久久久人妻| 国产免费一级a男人的天堂| 色视频在线一区二区三区| 少妇精品久久久久久久| 亚洲美女黄色视频免费看| 亚洲综合精品二区| 国产精品人妻久久久久久| 一区二区av电影网| 麻豆乱淫一区二区| 亚洲欧美精品自产自拍| 亚洲,一卡二卡三卡| 天天影视国产精品| 亚洲怡红院男人天堂| 午夜激情av网站| 黄色配什么色好看| 91久久精品国产一区二区三区| 丝瓜视频免费看黄片| 男的添女的下面高潮视频| 久久青草综合色| 国产精品麻豆人妻色哟哟久久| 汤姆久久久久久久影院中文字幕| av在线播放精品| 美女中出高潮动态图| 久久精品国产自在天天线| 日韩亚洲欧美综合| .国产精品久久| 欧美国产精品一级二级三级| 又黄又爽又刺激的免费视频.| 久久99蜜桃精品久久| 2021少妇久久久久久久久久久| 精品一区二区三卡| 看非洲黑人一级黄片| 国产黄色视频一区二区在线观看| 国产精品久久久久久久电影| 中文字幕av电影在线播放| 久久精品熟女亚洲av麻豆精品| 日韩精品有码人妻一区| 国产69精品久久久久777片| 天堂中文最新版在线下载| 久久99热这里只频精品6学生| 日韩电影二区| 日本vs欧美在线观看视频| 丰满饥渴人妻一区二区三| 欧美三级亚洲精品| 精品卡一卡二卡四卡免费| 97超碰精品成人国产| 一级毛片 在线播放| 韩国高清视频一区二区三区| 久久免费观看电影| 国产老妇伦熟女老妇高清| 伦理电影大哥的女人| 国国产精品蜜臀av免费| 精品亚洲乱码少妇综合久久| 亚洲天堂av无毛| 欧美精品亚洲一区二区| 国产在线免费精品| 久久久久久久精品精品| 亚洲国产精品999| 大码成人一级视频| 亚洲国产精品国产精品| 久久久久精品久久久久真实原创| 一级黄片播放器| av.在线天堂| 啦啦啦视频在线资源免费观看| 久久久精品免费免费高清| 看非洲黑人一级黄片| 下体分泌物呈黄色| 国产成人精品福利久久| 男女国产视频网站| 亚洲精品久久成人aⅴ小说 | 韩国高清视频一区二区三区| 国产成人精品无人区| 美女内射精品一级片tv| 免费大片黄手机在线观看| 欧美国产精品一级二级三级| 在线观看一区二区三区激情| 久久久久久久久大av| 久热久热在线精品观看| 亚洲精品乱码久久久久久按摩| 丰满少妇做爰视频| 国产精品.久久久| 久久人人爽av亚洲精品天堂| 欧美老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久 | 午夜老司机福利剧场| av黄色大香蕉| 91久久精品电影网| 国产免费一区二区三区四区乱码| av有码第一页| 久久精品久久精品一区二区三区| 午夜福利,免费看| 国产亚洲午夜精品一区二区久久| 丁香六月天网| 国产成人免费观看mmmm| 亚洲av在线观看美女高潮| 亚洲美女黄色视频免费看| 狂野欧美白嫩少妇大欣赏| 精品熟女少妇av免费看| 精品久久久精品久久久| 黄色一级大片看看| 久久青草综合色| 80岁老熟妇乱子伦牲交| 夫妻午夜视频| 午夜视频国产福利| 夫妻午夜视频| 少妇的逼水好多| 久久久久久久久大av| 三上悠亚av全集在线观看| 91国产中文字幕| 97精品久久久久久久久久精品| av.在线天堂| 国精品久久久久久国模美| 国产伦理片在线播放av一区| 丰满迷人的少妇在线观看| 秋霞伦理黄片| 久久久精品94久久精品| 久热这里只有精品99| 各种免费的搞黄视频| 久久精品国产鲁丝片午夜精品| 亚洲熟女精品中文字幕| 另类精品久久| 制服诱惑二区| 国产乱来视频区| 久久久亚洲精品成人影院| 99久国产av精品国产电影| 国产高清不卡午夜福利| 精品久久久精品久久久| 你懂的网址亚洲精品在线观看| 少妇猛男粗大的猛烈进出视频| 伊人久久精品亚洲午夜| av在线播放精品| 一个人看视频在线观看www免费| 亚洲av电影在线观看一区二区三区| 高清在线视频一区二区三区| 久久久午夜欧美精品| 男女国产视频网站| 亚洲av成人精品一二三区| 国产精品嫩草影院av在线观看| 欧美成人午夜免费资源| 在线天堂最新版资源| 亚洲精品日韩在线中文字幕| 91久久精品国产一区二区成人| 国产一区有黄有色的免费视频| 国产午夜精品久久久久久一区二区三区| 亚洲,一卡二卡三卡| 91成人精品电影| 在线观看免费日韩欧美大片 | 少妇高潮的动态图| av一本久久久久| 黑人巨大精品欧美一区二区蜜桃 | 成年美女黄网站色视频大全免费 | 欧美人与善性xxx| 五月玫瑰六月丁香| 欧美日韩国产mv在线观看视频| 亚洲精品乱码久久久v下载方式| 久久99蜜桃精品久久| 简卡轻食公司| 免费高清在线观看日韩| 欧美少妇被猛烈插入视频| 午夜福利视频在线观看免费| 国产黄频视频在线观看| 男人爽女人下面视频在线观看| 免费av不卡在线播放| 午夜免费鲁丝| 午夜免费男女啪啪视频观看| 亚洲av男天堂| 亚洲精品第二区| 五月开心婷婷网| 久久精品久久精品一区二区三区| 欧美一级a爱片免费观看看| 国产一区二区在线观看日韩| 亚洲欧美日韩另类电影网站| 色94色欧美一区二区| 欧美少妇被猛烈插入视频| 国产乱来视频区| 夜夜看夜夜爽夜夜摸| 美女内射精品一级片tv| 少妇的逼水好多| 成人国语在线视频| 国产深夜福利视频在线观看| 欧美日韩视频精品一区| 亚洲精品国产av成人精品| 大又大粗又爽又黄少妇毛片口| 亚洲精品,欧美精品| 精品久久久精品久久久| 久久久精品免费免费高清| 观看av在线不卡| a级毛片黄视频| 久久女婷五月综合色啪小说| a级毛片免费高清观看在线播放| 久久精品国产a三级三级三级| 国产精品偷伦视频观看了| 春色校园在线视频观看| 国产一区二区三区综合在线观看 | av一本久久久久| 一二三四中文在线观看免费高清| 人妻 亚洲 视频| 99热网站在线观看| 99热这里只有是精品在线观看| 成年美女黄网站色视频大全免费 | 人妻制服诱惑在线中文字幕| 国产男女内射视频| 丝瓜视频免费看黄片| 亚洲精品,欧美精品| 亚洲欧美中文字幕日韩二区| 国产免费现黄频在线看| 国产综合精华液| 国产av一区二区精品久久| 人人妻人人澡人人看| 最近2019中文字幕mv第一页| 国产男女超爽视频在线观看| 国产精品女同一区二区软件| 日韩视频在线欧美| 草草在线视频免费看| 日韩一区二区三区影片| 精品熟女少妇av免费看| 91精品伊人久久大香线蕉| 亚洲无线观看免费| 欧美国产精品一级二级三级| 亚洲第一av免费看| 国产黄频视频在线观看| 热99国产精品久久久久久7| 最近中文字幕2019免费版| 亚洲欧洲日产国产| 亚洲国产精品国产精品| 26uuu在线亚洲综合色| 亚洲五月色婷婷综合| 亚洲第一区二区三区不卡| 大片免费播放器 马上看| 国产毛片在线视频| 国产亚洲午夜精品一区二区久久| 国产无遮挡羞羞视频在线观看| 两个人的视频大全免费| 91久久精品国产一区二区成人| 欧美老熟妇乱子伦牲交| 啦啦啦在线观看免费高清www| 国产爽快片一区二区三区| 久久99蜜桃精品久久| 九色亚洲精品在线播放| 国产成人精品久久久久久| 18禁在线无遮挡免费观看视频| av视频免费观看在线观看| 一级片'在线观看视频| 国产成人午夜福利电影在线观看| 国产高清有码在线观看视频| 女人久久www免费人成看片| 午夜福利影视在线免费观看| 男女边摸边吃奶| 蜜桃国产av成人99| 亚洲国产精品专区欧美| 在线观看免费视频网站a站| 欧美性感艳星| 老司机影院毛片| 国内精品宾馆在线| 超色免费av| 纯流量卡能插随身wifi吗| 十分钟在线观看高清视频www| av专区在线播放| 国产综合精华液| 色94色欧美一区二区| 国内精品宾馆在线| 大话2 男鬼变身卡| 欧美 亚洲 国产 日韩一| 日本免费在线观看一区| 午夜老司机福利剧场| 欧美最新免费一区二区三区| a级毛片免费高清观看在线播放| 欧美一级a爱片免费观看看| 亚洲av.av天堂| 亚洲国产欧美日韩在线播放| 午夜日本视频在线| 亚洲高清免费不卡视频| 日本黄色日本黄色录像| 一级片'在线观看视频| 亚洲欧美色中文字幕在线| 国产成人免费观看mmmm| 高清毛片免费看| 欧美人与性动交α欧美精品济南到 | 自线自在国产av| 69精品国产乱码久久久| 日本黄色片子视频| 国产精品 国内视频| 好男人视频免费观看在线| 不卡视频在线观看欧美| 亚洲av电影在线观看一区二区三区| 五月天丁香电影| 女人久久www免费人成看片| 亚洲精品av麻豆狂野| 欧美人与善性xxx| 中国国产av一级| 久久这里有精品视频免费| 国产亚洲欧美精品永久| 又黄又爽又刺激的免费视频.| 免费不卡的大黄色大毛片视频在线观看| 99热这里只有精品一区| 亚洲精品日韩av片在线观看| 韩国高清视频一区二区三区| 亚洲精品亚洲一区二区| 亚洲精品第二区| 亚洲av中文av极速乱| 最近2019中文字幕mv第一页| 91午夜精品亚洲一区二区三区| 国产乱来视频区| 久久久a久久爽久久v久久| 少妇的逼水好多| 国产亚洲最大av| 午夜免费观看性视频| 男女国产视频网站| 欧美激情国产日韩精品一区| 久久97久久精品| 久久精品人人爽人人爽视色| 能在线免费看毛片的网站| 国产精品久久久久久久电影| 我要看黄色一级片免费的| 交换朋友夫妻互换小说| 国产精品国产三级国产专区5o| 中文欧美无线码| 99热这里只有精品一区| 国产精品国产三级国产av玫瑰| 亚洲欧美色中文字幕在线| 午夜久久久在线观看| 亚洲人成网站在线观看播放| 青青草视频在线视频观看| 亚洲欧美成人精品一区二区| 国产精品女同一区二区软件| 一个人看视频在线观看www免费| 国产成人免费无遮挡视频| 秋霞伦理黄片| 色婷婷av一区二区三区视频| 丁香六月天网| 中文精品一卡2卡3卡4更新| 久久久精品免费免费高清| 一本色道久久久久久精品综合| av在线app专区| 一边亲一边摸免费视频| 国产不卡av网站在线观看| 在线观看美女被高潮喷水网站| 免费看不卡的av| 久久青草综合色| 国产高清不卡午夜福利| 老司机影院成人| 日韩av在线免费看完整版不卡| 99热6这里只有精品| 国产黄色免费在线视频| 亚洲五月色婷婷综合| 亚洲av中文av极速乱| 丝袜在线中文字幕| 亚洲国产av新网站| 天天影视国产精品| 一级毛片电影观看| 色5月婷婷丁香| 91在线精品国自产拍蜜月| 看免费成人av毛片| 卡戴珊不雅视频在线播放| 国产精品一区二区在线观看99| 国语对白做爰xxxⅹ性视频网站| 久久人妻熟女aⅴ| 午夜激情av网站| av在线观看视频网站免费| 欧美亚洲日本最大视频资源| 日韩伦理黄色片| 乱码一卡2卡4卡精品| 女人精品久久久久毛片| 日本欧美视频一区| 丰满乱子伦码专区| 伦精品一区二区三区| 亚洲精品av麻豆狂野| 精品国产一区二区三区久久久樱花| 欧美 亚洲 国产 日韩一| 国产精品 国内视频| 天堂俺去俺来也www色官网| 少妇丰满av| 亚洲国产毛片av蜜桃av| 欧美另类一区| 久久鲁丝午夜福利片| 美女内射精品一级片tv| 肉色欧美久久久久久久蜜桃| 丝袜脚勾引网站| 亚洲精品,欧美精品| 久久久久久久国产电影| 少妇人妻久久综合中文| 美女中出高潮动态图| 亚洲国产精品一区三区| 少妇高潮的动态图| 最后的刺客免费高清国语| 欧美精品一区二区大全| 天堂俺去俺来也www色官网| 免费播放大片免费观看视频在线观看| 乱码一卡2卡4卡精品| 国产精品三级大全| 99国产精品免费福利视频| 91精品伊人久久大香线蕉| 日本黄大片高清| 青春草国产在线视频| 人人妻人人澡人人看| 国产成人精品一,二区| 激情五月婷婷亚洲| 成年人免费黄色播放视频| 能在线免费看毛片的网站| 亚洲av欧美aⅴ国产| 久久精品久久久久久久性| 日本wwww免费看| 欧美97在线视频| 亚洲情色 制服丝袜| 久久国产精品大桥未久av| 精品人妻熟女av久视频| 免费观看a级毛片全部| 涩涩av久久男人的天堂| 国产片内射在线| 看十八女毛片水多多多|