何遠法 郭 勇* 遲淑艷** 譚北平,2 董曉慧,2 楊奇慧 劉泓宇 章 雙
(1.廣東海洋大學(xué)水產(chǎn)學(xué)院,湛江 524088;2.南海生物資源開發(fā)與利用協(xié)同創(chuàng)新中心,廣州 510275)
魚粉具有蛋白質(zhì)含量高,必需氨基酸、長鏈ω-3脂肪酸、維生素和礦物質(zhì)含量豐富等特點,一直以來都是水生動物的優(yōu)質(zhì)蛋白質(zhì)源之一[1]。近幾年來,有限的魚粉資源和日益高漲的價格使得水生動物飼料中的魚粉用量不得不減少[2-3]。替代魚粉的常用植物蛋白質(zhì)源,如豆粕、花生粕和棉籽粕等,往往因為必需氨基酸缺乏或含量很低,易引起飼料中氨基酸不平衡,導(dǎo)致養(yǎng)殖的水生動物不能高效利用其飼料蛋白質(zhì)或氨基酸,進而影響機體相關(guān)代謝[4-5]。在魚粉被常用的植物蛋白質(zhì)源替代后,蛋氨酸成為影響魚類正常生長的第一限制性氨基酸[6-7]。在動物體內(nèi),蛋氨酸以S-腺苷甲硫氨酸的形式將活性甲基傳遞給核酸和磷脂等,增強膜流動性和Na+-K+-ATP酶活性,減少膽汁酸在肝臟內(nèi)聚積,加強其解毒作用[8]。蛋氨酸缺乏會導(dǎo)致魚體生長和蛋白質(zhì)效率降低[9-10],引起動物食欲減退、生長減緩或停滯、腎臟腫大或肝臟鐵堆積,甚至造成肝壞死或纖維化[11],影響動物肌肉品質(zhì)和其抗氧化能力[12]。虹鱒(Oncorhynchusmykiss)、大西洋鮭(Atlanticsalmon)、河鱒(Salvelinusnamaycush)等鮭科魚類在飼喂蛋氨酸缺乏的飼料后還會罹患白內(nèi)障[13]。適宜的飼料蛋氨酸水平能夠提高斜帶石斑魚(Epinepheluscoioides)[14]、軍曹魚(Rachycentroncanadum)[7,15]、建鯉(Cyprinuscarpiovar. Jian)[8]、大鱗鲆(Psettamaxima)[16]、虹鱒[17]等水產(chǎn)動物的增重率、飼料利用率和免疫應(yīng)答能力。
軍曹魚是一種近海網(wǎng)箱養(yǎng)殖系統(tǒng)最具潛力的海水經(jīng)濟魚類,主產(chǎn)地為中國、巴拿馬和越南[18-19],2016年的總產(chǎn)量約為4.4萬 t[20]。目前,軍曹魚的養(yǎng)殖在一定程度上仍然依賴冰鮮魚,限制了其大規(guī)模養(yǎng)殖。本試驗通過在低魚粉飼料中補充不同水平的蛋氨酸,探究其對軍曹魚生長性能、體成分及肌肉氨基酸組成的影響,為軍曹魚高效配合飼料的配制提供理論依據(jù)。
以紅魚粉、去皮豆粕、玉米蛋白粉、小麥谷朊粉和晶體氨基酸[必需氨基酸(EAA)和非必需氨基酸(NEAA)]為主要蛋白質(zhì)源,豆油、魚油和大豆磷脂為脂肪源,配制魚粉含量為20%的低魚粉飼料。在低魚粉飼料中分別添加0、0.20%、0.40%、0.80%、1.00%和1.20%的DL-蛋氨酸,通過調(diào)整飼料中甘氨酸的含量,配制7種等氮等脂飼料(表1)。飼料原料經(jīng)粉碎后按配方稱重,逐級混合均勻后制粒成Φ2.5 mm×5.0 mm和Φ4.0 mm×5.0 mm的2種浮性膨化飼料,晾干后于-20 ℃冰箱中儲存?zhèn)溆谩T囼烇暳系陌被峤M成見表2。
表1 試驗飼料組成及營養(yǎng)水平(干物質(zhì)基礎(chǔ))
續(xù)表1項目Items蛋氨酸水平Methioninelevel/%0.720.901.001.241.411.631.86粗脂肪Etherextract11.4111.1811.3411.0611.2511.2211.48粗灰分Ash7.337.517.557.517.527.527.50
1)必需氨基酸為每千克飼料提供 Essential amino acids provided the following per kg of diets:L-賴氨酸L-lysine 3.20 g,L-組氨酸L-histidine 3.81 g,亮氨酸 leucine 10.41 g,L-異亮氨酸L-isoleucine 3.03 g,L-苯丙氨酸L-phenylalanine 8.54 g,L-纈氨酸L-valine 8.57 g。
2)非必需氨基酸中L-天冬氨酸∶甘氨酸=1∶1L-aspartic acid∶glycine=1∶1 in nonessential amino acids。
3)維生素預(yù)混料為每千克飼料提供 The vitamin premix provided the following per kg of diets:VB125 mg,VB245 mg,VB360 mg,VB5200 mg,VB620 mg,VB71.20 mg,VB120.1 mg,肌醇 inositol 800 mg,葉酸 folic acid 20 mg,VA 32 mg,VE 120 mg,VD35 mg,VK310 mg。
4)礦物質(zhì)預(yù)混料為每千克飼料提供 The mineral premix provided the following per kg of diets:NaF 2 mg,KI 0.8 mg,CoCl250 mg,CuSO410 mg, FeSO480 mg,ZnSO450 mg,MnSO460 mg,MgSO41 200 mg,NaCl 100 mg,沸石粉 zeolite powder 1 447.2 mg。
表2 試驗飼料中氨基酸組成(干物質(zhì)基礎(chǔ))
色氨酸沒有檢測Try was not analyzed。
養(yǎng)殖試驗在湛江市南三島附近海域的漁排上進行。試驗用軍曹魚苗購自海南省文昌市育苗廠。正式試驗開始前將試驗魚置于網(wǎng)箱(6 m×3 m×2 m)中暫養(yǎng)1周,然后挑選體格健壯、規(guī)格均一的初始體重為(9.79±0.04) g的軍曹魚幼魚,隨機分成7組,每組隨機分配3個浮式海水網(wǎng)箱(1.0 m×1.0 m×2.0 m),每個網(wǎng)箱放魚40尾。每天人工投喂2次(06:00和18:00),循環(huán)投喂至表觀飽食狀態(tài)(以大部分魚不再游到水層表面攝食為準)。養(yǎng)殖周期為16周,水溫28~33 ℃,鹽度27‰~30‰,溶氧濃度>6 mg/L。
在養(yǎng)殖試驗結(jié)束后,饑餓24 h,用丁香酚(1∶10 000)麻醉后計數(shù)、稱重。每個網(wǎng)箱隨機抽取3尾魚,-20 ℃冰箱保存,備測全魚常規(guī)養(yǎng)分含量;每個網(wǎng)箱再隨機抽取4尾魚,解剖分離得到內(nèi)臟和肝臟,并稱量其濕重,用于計算形體指標;取背肌于凍存管并迅速放入液氮保存,后置于-80 ℃冷凍保存,用于肌肉氨基酸組成測定。
飼料原料、試驗飼料以及魚體常規(guī)養(yǎng)分含量測定參照AOAC(1995)[21]的方法。將飼料原料、試驗飼料及魚體樣品均在105 ℃烘至恒重,獲得水分含量;凱氏定氮法測定粗蛋白質(zhì)含量;索氏抽提法測定粗脂肪含量;低溫碳化,550 ℃灼燒5 h后測定粗灰分含量。
試驗樣品氨基酸組成使用全自動氨基酸分析儀(A300,membraPure,德國)檢測。飼料和魚體肌肉樣品經(jīng)冷凍干燥后稱取50~200 mg(準確至0.1 mg)于10 mL頂空進樣瓶中,加入10 mL 6 mol/L的鹽酸,真空干燥10 min,再于氮吹儀下充氮氣用鋁箔加蓋密封。將頂空進樣瓶放在105 ℃恒溫干燥箱中水解24 h,超純水定容至50 mL,吸取定容后的樣品1 mL于10 mL燒杯中,置真空干燥箱中脫酸(60 ℃)。加入1 mL乙酸鈉緩沖液,混勻,經(jīng)0.22 μm濾膜過濾至上樣瓶中,上機檢測。
增重率(weight gain rate,WGR,%)=100×(末均重-初均重)/初均重;特定生長率(specific growth rate,SGR,%/d)=100×(ln末均重-ln初均重)/飼養(yǎng)天數(shù);蛋白質(zhì)效率(protein efficiency ratio,PER)=100×(終末體重-初始體重)/(飼料攝食量×飼料粗蛋白質(zhì)含量);飼料系數(shù)(feed conversion ratio,F(xiàn)CR)=攝食飼料干重/(終末體重-初始體重);成活率(survival rate,SR,%)=100×試驗結(jié)束時魚尾數(shù)/試驗開始時魚尾數(shù);肥滿度(condition factor,CF,%)=100×體重(g)/體長(cm)3;肝體指數(shù)(hepatosomatic index,HSI,%)=100×肝臟重/體重;臟體指數(shù)(viscerosomatic index,VSI,%)=100×內(nèi)臟重/體重。
試驗數(shù)據(jù)采用SPSS 17.0統(tǒng)計軟件對數(shù)據(jù)進行單因素方差分析(one-way ANOVA),如有顯著性差異(P<0.05),則進行Duncan氏法多重比較。試驗數(shù)據(jù)用“平均值±標準誤”表示。
由表3可知,各組軍曹魚的SR介于77.15%~92.86%,且0.90%和1.00%組的SR顯著高于0.72%組(P<0.05)。隨著飼料中蛋氨酸水平的升高,軍曹魚的WGR、SGR、PER均呈先升高后降低的變化趨勢,在1.00%組達到最大值,顯著高于其余各組(P<0.05)。1.00%組軍曹魚的FCR最低,與0.90%和1.24%組差異不顯著(P>0.05),顯著低于其余各組(P<0.05)。
表3 飼料蛋氨酸水平對軍曹魚生長性能的影響
續(xù)表3項目Items蛋氨酸水平Methioninelevel/%0.720.901.001.241.411.631.86特定生長率SGR/(%/d)4.07±0.02b4.56±0.07e4.67±0.01e4.38±0.02f4.18±0.01c4.16±0.03bc3.85±0.01a蛋白質(zhì)效率PER1.48±0.02b2.00±0.08d2.14±0.01e1.76±0.03c1.57±0.01b1.55±0.02b1.29±0.01a飼料系數(shù)FCR1.46±0.02cd1.09±0.04ab1.02±0.00a1.22±0.02b1.37±0.01c1.38±0.02c1.56±0.11d成活率SR/%79.05±0.95a92.86±1.43c87.62±1.15bc81.43±1.43ab82.86±1.65ab82.86±1.65ab77.15±2.86a
同行數(shù)據(jù)肩標不同字母表示差異顯著(P<0.05),相同字母或無字母表示差異不顯著(P>0.05)。下表同。
Values in the same row with different letter superscripts were significantly different (P<0.05), while with the same or no letter superscripts were not significantly different (P>0.05). The same as below.
將各組軍曹魚的WGR(y)與飼料蛋氨酸水平(x)進行回歸分析,發(fā)現(xiàn)二者存在二次回歸關(guān)系(圖1),回歸方程為y=-734.1x2+1 644.2x+200.89(R2=0.627)。當飼料蛋氨酸水平為1.12%時,軍曹魚的WGR最大,由7組飼料蛋氨酸水平估計軍曹魚飼料蛋氨酸水平的95%置信區(qū)間為0.87%~1.63%。
圖1 飼料蛋氨酸水平與軍曹魚增重率的關(guān)系
由表4可知,1.41%組軍曹魚的CF顯著低于0.72%組(P<0.05),與其余各組差異不顯著(P>0.05)。飼料蛋氨酸水平對軍曹魚的VSI、HSI均無顯著影響(P>0.05)。
由表5可知,各組全魚水分含量無顯著差異(P>0.05);0.72%組全魚粗蛋白質(zhì)含量顯著低于其余各組(P<0.05);0.90%組全魚粗脂肪含量最高,達到30.81%,除與0.72%和1.00%組差異不顯著(P>0.05)外,顯著高于其余各組(P<0.05);1.24%組全魚粗灰分含量顯著高于0.72%和0.90%組(P<0.05)。
隨飼料蛋氨酸水平的升高,軍曹魚肌肉中苯丙氨酸、賴氨酸、亮氨酸、丙氨酸、蛋氨酸以及EAA和總氨基酸(TAA)含量均無顯著變化(P>0.05);1.00%組軍曹魚肌肉中蘇氨酸、纈氨酸、異亮氨酸、組氨酸含量顯著高于1.63%組(P<0.05)。
表4 飼料蛋氨酸水平對軍曹魚形體指標的影響
據(jù)報道,全魚粗蛋白質(zhì)含量隨飼料蛋氨酸水平的升高呈先升高后降低的變化趨勢[6,40,45]。本試驗中,飼喂蛋氨酸缺乏飼料的軍曹魚全魚粗蛋白質(zhì)含量較飼喂其他飼料的軍曹魚顯著降低。造成這種差異的原因可能是,在蛋氨酸缺乏的情況下,飼料中氨基酸模式失衡,限制了軍曹魚對其他氨基酸的利用,加重了多余氨基酸的脫氨基作用,最終導(dǎo)致了體蛋白質(zhì)合成受限,而補充蛋氨酸,增強了軍曹魚對其他氨基酸的利用,促進了體蛋白質(zhì)的合成[46]。Luo等[14]結(jié)果表明,隨著飼料蛋氨酸升高到適宜水平,點帶石斑魚全魚粗蛋白質(zhì)含量增加,然后基本保持穩(wěn)定。另外,該試驗中飼喂低蛋氨酸水平飼料的軍曹魚具有較高的全魚粗脂肪含量。這與在團頭魴[24]、印度鯰魚[40]、羅非魚[47]上所得結(jié)果一致,表明攝食蛋氨酸水平低的飼料魚體可能利用蛋白質(zhì)而不是脂肪作為能源來降低長鏈脂酰輔酶A從胞漿轉(zhuǎn)運到線粒體內(nèi)進行脂肪酸的β-氧化[24,48]。然而,另有研究表明,隨著飼料蛋氨酸水平的升高,全魚粗脂肪含量增加[14,23,25],與上述結(jié)果存在差異,其原因有待進一步研究。
表5 飼料蛋氨酸水平對軍曹魚全魚體成分的影響(干物質(zhì)基礎(chǔ))
表6 飼料蛋氨酸水平對軍曹魚肌肉氨基酸組成的影響(干物質(zhì)基礎(chǔ))
水產(chǎn)動物對蛋白質(zhì)的積累是通過飼料氨基酸的合成來實現(xiàn)的,不同飼料氨基酸模式將影響魚類的生長、體蛋白質(zhì)結(jié)合態(tài)氨基酸的組成以及蛋白質(zhì)的合成[27,49]。據(jù)報道,黃顙魚肌肉EAA含量不隨飼料蛋氨酸水平的升高而變化[10];牛蛙[Rana(Lithobates)catesbeiana]肌肉EAA、NEAA和TAA含量隨飼料蛋氨酸水平的升高不發(fā)生任何改變[50];博氏巨鯰(Pangasiusbocourti)全魚EAA和TAA含量不受飼料蛋氨酸水平的顯著影響[51]。本試驗中,飼料蛋氨酸水平對軍曹魚肌肉中EAA和TAA含量均無顯著影響,這與上述研究結(jié)果一致,但與黑鯛[22]、大黃魚[27]、胭脂魚(Myxocyprinusasiaticus)[52]的研究結(jié)果存在差異,表現(xiàn)為飼料蛋氨酸缺乏或不足降低了其肌肉中EAA含量,并且抑制其蛋白質(zhì)的合成。有意思的是,飼料蛋氨酸水平對軍曹魚肌肉中蘇氨酸、纈氨酸、異亮氨酸、組氨酸和精氨酸的含量有顯著影響,這與早期的研究結(jié)果[14,52]類似,表明一種氨基酸的攝入能夠影響其他氨基酸含量的改變[53],飼料中某一種EAA的限制可能會通過增加其他EAA和NEAA的氧化來達到飼料中氨基酸的平衡[22]。
① 低魚粉飼料中補充蛋氨酸可提高軍曹魚的生長性能和體蛋白質(zhì)含量。
② 以WGR作為評價指標,經(jīng)二次回歸分析可知,軍曹魚對飼料中蛋氨酸需要量為1.12%(占飼料蛋白質(zhì)的2.43%)。
[1] OLSEN R L,HASAN M R.A limited supply of fishmeal:impact on future increases in global aquaculture production[J].Trends in Food Science & Technology,2012,27(2):120-128.
[2] LU F,HAGA Y,SATOH S.Effects of replacing fish meal with rendered animal protein and plant protein sources on growth response,biological indices,and amino acid availability for rainbow troutOncorhynchusmykiss[J].Fisheries Science,2015,81(1):95-105.
[3] SHAN L L,LI X Q,ZHENG X M,et al.Effects of feed processing and forms of dietary methionine on growth andIGF-1 expression in Jian carp[J].Aquaculture Research,2015,48(1):56-67.
[4] KEREMAH R I,ALFREDOCKIYA J F.Effects of dietary protein level on growth and body composition of mudfish,Heterobranchuslongifilisfingerlings[J].African Journal of Business Management,2013,12(9):971-975.
[5] VAN DER INGH T S G A M,OLLI J J,KROGDAHL ?.Alcohol-soluble components in soybeans cause morphological changes in the distal intestine of Atlantic salmon,SalmonsalarL[J].Journal of Fish Diseases,2010,19(1):47-53.
[6] AHMED I,KHAN M A,JAFRI A K.Dietary methionine requirement of fingerling Indian major carp,Cirrhinusmrigala(Hamilton)[J].Aquaculture International,2003,11(5):449-462.
[7] ZHOU Q C,WU Z H,TAN B P,et al.Optimal dietary methionine requirement for juvenile cobia (Rachycentroncanadum)[J].Aquaculture,2006,258(1/2/3/4):551-557.
[8] TANG L,WANG G X,JIANG J,et al.Effect of methionine on intestinal enzymes activities,microflora and humoral immune of juvenile Jian carp (Cyprinuscarpiovar.Jian)[J].Aquaculture Nutrition,2009,15(5):477-483.
[9] WANG Y Y,CHE J F,TANG B B,et al.Dietary methionine requirement of juvenilePseudobagrusussuriensis[J].Aquaculture Nutrition,2016,22(6):1293-1300.
[10] ELMADA C Z,HUANG W,JIN M,et al.The effect of dietary methionine on growth,antioxidant capacity,innate immune response and disease resistance of juvenile yellow catfish (Pelteobagrusfulvidraco)[J].Aquaculture Nutrition,2016,22(6):1163-1173.
[11] 王蕾蕾,邵慶均.飼料中添加蛋氨酸對魚類生長的影響[J].水生態(tài)學(xué)雜志,2007,27(1):108-110.
[12] PéREZ-JIMéNEZ A,PERES H,CRUZ R V,et al.The effect of dietary methionine and white tea on oxidative status of gilthead sea bream (Sparusaurata)[J].British Journal of Nutrition,2012,108(7):1202-1209.
[13] POSTON H A,RIIS R C,RUMSEY G L,et al.The effect of supplemental dietary amino acids,minerals and vitamins on salmonids fed cataractogenic diets[J].Cornell Veterinarian,1977,67(4):472-509.
[14] LUO Z,LIU Y J,MAI K S,et al.DietaryL-methionine requirement of juvenile grouperEpinepheluscoioidesat a constant dietary cystine level[J].Aquaculture,2005,249(1/2/3/4):409-418.
[15] WANG Z,MAI K S,XU W,et al.Dietary methionine level influences growth and lipid metabolism via GCN2 pathway in cobia (Rachycentroncanadum)[J].Aquaculture,2016,454:148-156.
[16] MA R,HOU H P,MAI K S,et al.Comparative study on the effects ofL-methionine or 2-hydroxy-4-(methylthio) butanoic acid as dietary methionine source on growth performance and anti-oxidative responses of turbot (Psettamaxima)[J].Aquaculture,2013,412/413:136-143.
[17] ROLLAND M,DALSGAARD J,HOLM J,et al.Dietary methionine level affects growth performance and hepatic gene expression of GH-IGF system and protein turnover regulators in rainbow trout (Oncorhynchusmykiss) fed plant protein-based diets[J].Comparative Biochemistry & Physiology Part B:Biochemistry & Molecular Biology,2015,181:33-41.
[18] CHOU R L,SU M S,CHEN H Y.Optimal dietary protein and lipid levels for juvenile cobia (Rachycentroncanadum)[J].Aquaculture,2003,193(1/2):81-89.
[19] ZHOU Q C,TAN B P,MAI K S,et al.Apparent digestibility of selected feed ingredients for juvenile cobiaRachycentroncanadum[J].Aquaculture,2004,241(1/2/3/4):441-451.
[20] 農(nóng)業(yè)部漁業(yè)局.中國漁業(yè)統(tǒng)計年鑒2016[M].北京:中國農(nóng)業(yè)出版社,2016.
[21] AOAC.Official methods of analysis[S].Arlington,VA:Association of Official Analytical Chemists,1995.
[22] ZHOU F,XIAO J X,HUA Y,et al.DietaryL-methionine requirement of juvenile black sea bream (Sparusmacrocephalus) at a constant dietary cystine level[J].Aquaculture Nutrition,2011,17(5):469-481.
[23] AHMED I.Dietary amino acidL-methionine requirement of fingerling Indian catfish,Heteropneustesfossilis(Bloch-1974) estimated by growth and haemato-biochemical parameters[J].Fish Physiology and Biochemistry,2012,38(4):1195-1209.
[24] LIAO Y J,REN M C,LIU B,et al.Dietary methionine requirement of juvenile blunt snout bream (Megalobramaamblycephala) at a constant dietary cystine level[J].Aquaculture Nutrition,2014,20(6):741-752.
[25] RUCHIMAT T,MASUMOTO T,HOSOKAWA H,et al.Quantitative methionine requirement of yellowtail (Seriolaquinqueradiata)[J].Aquaculture,1997,150(1/2):113-122.
[26] HIDALGO F,ALLIOT E,THEBAULT H.Methionine-and cystine-supplemented diets for juvenile sea bass (Dicentrarchuslabrax)[J].Aquaculture,1987,64(3):209-217.
[27] MAI K S,WAN J L,AI Q H,et al.Dietary methionine requirement of large yellow croaker,PseudosciaenacroceaR[J].Aquaculture,2006,253(1/2/3/4):564-572.
[28] TWIBELL R G,WILSON K A,BROWN P B.Dietary sulfur amino acid requirement of juvenile yellow perch fed the maximum cystine replacement value for methionine[J].The Journal of Nutrition,2000,130(3):612-616.
[29] KIM K,KAYES T B,AMUNDSON C H.Requirement of sulfur amino acids and utilization ofD-methionine by rainbow trout (Oncorhynchusmykiss)[J].Aquaculture,1992,101(1/2):95-103.
[30] 賈鵬,薛敏,朱選,等.飼料蛋氨酸水平對異育銀鯽幼魚生長性能影響的研究[J].水生生物學(xué)報,2013,37(2):217-226.
[31] LI P,BURR G S,WEN Q,et al.Dietary sufficiency of sulfur amino acid compounds influences plasma ascorbic acid concentrations and liver peroxidation of juvenile hybrid striped bass (Moronechrysops×M.saxatilis)[J].Aquaculture,2009,287(3/4):414-418.
[32] WILSON R P.Amino acids and proteins[M]//HALVER J E,HARDY R W.Fish nutrition.3rd ed.San Diego,CA:Academic Press,2002:143-179.
[34] MURTHY H S,VARGHESE T J.Total sulphur amino acid requirement of the Indian major carp,Labeorohita(Hamilton)[J].Aquaculture Nutrition,1998,4(1):61-65.
[35] SHUSAKU T,SHIMENO S,HOSOKAWA H,et al.Effect of lysine and methionine supplementation to a soy protein concentrate diet for red sea breamPagrusmajor[J].Fisheries Science,2001,67(6):1088-1096.
[36] SVEIER H,NORD?S H,BER G E,et al.Dietary inclusion of crystallineD-andL-methionine:effects on growth,feed and protein utilization,and digestibility in small and large Atlantic salmon (SalmonsalarL.)[J].Aquaculture Nutrition,2001,7(3):169-181.
[37] NGUYEN T N,DAVIS D A.Re-evaluation of total sulphur amino acid requirement and determination of replacement value of cystine for methionine in semi-purified diets of juvenile Nile tilapia,Oreochromisniloticus[J].Aquaculture Nutrition,2009,15(3):247-253.
[38] HARDING D E,ALLEN A O,Jr,WILSON R P.Sulfur amino acid requirement of channel catfish:L-methionine andL-cystine[J].Journal of Nutrition,1977,107(11):2031-2035.
[39] GOFF J B,DMIII G.Evaluation of different sulfur amino acid compounds in the diet for red drum,Sciaenopsocellatus,and sparing value of cystine for methionine[J].Aquaculture,2004,241(1/2/3/4):465-477.
[40] FHRHAT,KHAN M A.Total sulfur amino acid requirement and cystine replacement value for fingerling stinging catfish,Heteropneustesfossilis(Bloch)[J].Aquaculture,2014,426-427:270-281.
[41] RODEHUTSCORD M,JACOBS S M,PACK M,et al.Response of rainbow trout (Oncorhynchusmykiss) growing from 50 to 150 g to supplements ofDL-methionine in a semipurified diet containing low or high levels of cystine[J].Journal of Nutrition,1995,125(4):964-969.
[42] NRC.Nutrient requirements of fish and shrimp[S].Washington,D.C.:National Academic Press,2011.
[43] WALTON M J,COWEY C B,ADRON J W.Methionine metabolism in rainbow trout fed diets of differing methionine and cystine content[J].The Journal of Nutrition,1982,112(8):1525-1535.
[44] ESPE M,HEVR?Y E M,LIASET B,et al.Methionine intake affect hepatic sulphur metabolism in Atlantic salmon,Salmosalar[J].Aquaculture,2008,274(1):132-141.
[45] YAN Q,XIE S,ZHU X,et al.Dietary methionine requirement for juvenile rockfish,Sebastesschlegeli[J].Aquaculture Nutrition,2007,13(3):163-169.
[46] 朱杰,蔣廣震,徐維娜,等.日本沼蝦的蛋氨酸需求量[J].經(jīng)濟動物學(xué)報,2014,18(3):151-158.
[47] EL-WAHAB A A,AZIZA A,MAHGOUB H,et al.Effects of dietary methionine levels and sources on performance,blood lipid profile and histopathology in Nile tilapia (Oreochromisniloticus)[J].International Journal of Fisheries and Aquatic Studies,2016,4(4):89-98.
[48] WALTON M J,COWEY C B,ADRON J W.The effect of dietary lysine levels on growth and metabolism of rainbow trout (Salmogairdneri)[J].British Journal of Nutrition,1984,52(1):115-122.
[49] ALAM M S,TESHIMA S,ISHIKAWA M,et al.Methionine requirement of juvenile Japanese flounderParalichthysolivaceusestimated by the oxidation of radioactive methionine[J].Aquaculture Nutrition,2001,7(3):201-209.
[50] ZHANG C X,FENG W,WANG L,et al.Optimal dietary methionine requirement of bullfrog Rana (Lithobates) catesbeiana[J].Aquaculture,2016,464:576-581.
[51] YUANGSOI B,WONGMANEEPRATEEP S,SANGSUE D.The optimal dietaryDL-methionine on growth performance,body composition and amino acids profile of Pangasius catfish (Pangasiusbocourti)[J].Aquaculture,Aquarium,Conservation & Legislation-Internationa,2016,9(2):369-378.
[52] CHU Z J,GONG Y,LIN Y C,et al.Optimal dietary methionine requirement of juvenile Chinese sucker,Myxocyprinusasiaticus[J].Aquaculture Nutrition,2014,20(3):253-264.
[53] COLOSO R M,MURILLO-GURREA D P,BORLONGAN I G,et al.Sulphur amino acid requirement of juvenile Asian sea bassLatescalcarifer[J].Journal of Applied Ichthyology,2010,15(2):54-58.