• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Twentieth-century Pacific Decadal Oscillation simulated by CMIP5 coupled models

    2018-01-31 03:32:14WANGTondMIAOJiPengNnsenZhuInterntionlReserhCenterInstituteofAtmospheriPhysisChineseAdemyofSienesBeijingChinCollortiveInnovtionCenteronForestndEvlutionofMeteorologilDisstersNnjingUniversityofInformtionSienendTehnologyNn

    WANG To nd MIAO Ji-PengNnsen-Zhu Interntionl Reserh Center, Institute of Atmospheri Physis, Chinese Ademy of Sienes, Beijing, Chin; Collortive Innovtion Center on Forest nd Evlution of Meteorologil Dissters, Nnjing University of Informtion Siene nd Tehnology, Nnjing,Chin; College of Erth Sienes, University of Chinese Ademy of Sienes, Beijing, Chin

    1. Introduction

    The Pacific Decadal Oscillation (PDO) is one of the most important modes of decadal climate variability (Mantua et al. 1997; Mantua and Hare 2002), whose index is defined as the leading principal component of SST anomalies in the Pacific basin, poleward of 20°N. Based on the last 100 years of observations, the spatial pattern of the PDO shows a characteristic ‘horseshoe’ shape in the North Pacific. During a positive PDO phase, anomalously cool SSTs are observed in the Kuroshio–Oyashio extension and central North Pacific, surrounded by anomalously warm SSTs along the west coast of the Americas that extend towards the tropics (Figure 1, observation). The spatial pattern is reversed during a negative PDO phase.

    Previous studies indicate that the PDO has significant influences on regional, or even global climate. Fox example,its regime shifts have been associated with long-term fluctuations of the East Asian summer monsoon (e.g. Yu et al.2015; Dong and Xue 2016), dry/wet conditions in North China (e.g. Wang et al. 2013; Qian and Zhou 2014; Zhu et al. 2015), Australian rainfall (Arblaster, Meehl, and Moore 2002; Cai and van Rensch 2012), and climate changes over the North Pacific and its coasts (Mantua and Hare 2002;Deser, Phillips, and Hurrell 2004). Additionally, the recent global-warming hiatus has also been partly attributed to the negative PDO-like SSTs in the early years of the twenty-first century (Kosaka and Xie 2013).

    Figure 1. Observed and simulated regression distributions of SST on the PDO index (units: °C).

    Despite its importance, the root cause of the PDO is still unclear. Local air–sea interactions in the North Pacific are suggested as a crucial process for the PDO. An anomalous Aleutian low and anomalous advection in the Kuroshio–Oyashio extension and the subtropical-gyre have also been invoked to explain the PDO (Latif and Barnett 1994;Schneider and Cornuelle 2005; Sun and Wang 2006).However, Deser, Phillips, and Hurrell (2004) suggested that the tropics should play a key role in North Pacific interdecadal climate variability. At the same time, the remote influence from the Atlantic Multidecadal Oscillation cannot be excluded (Zhang and Delworth 2007). Therefore, this issue is so complicated that the mechanisms responsible for the PDO are open disputed.

    In the twentieth century, the PDO experienced four regime shifts, in roughly 1925, 1946, 1977, and 1999(http://research.jisao.washington.edu/pdo/). Although,as an internal variability, the PDO and its regime shifts are most likely influenced by external forcings (e.g. solar irradiance, volcanoes, anthropogenic greenhouse gases, and aerosols) (Wang et al. 2012; Dong, Zhou, and Chen 2014).Therefore, all relevant external forcings are needed for a model to obtain the correct timing of the simulated PDO in the twentieth century. There is a large amount of historical simulations within CMIP5. Both the natural and anthropogenic forcings covering the period 1850–2005 have been added into the models in these simulations. A more recent study indicated that most coupled models in CMIP5 have good capacity to simulate the climate mean state of the Asian-Pacific climate (Zhou 2016). Nevertheless, the skill of these coupled models in modelling the PDO remains unclear. In the present study, therefore, we use CMIP5 historical simulations to examine the performance of multiple models for the simulation of the spatial pattern and evolution of the PDO during the entire twentieth century.

    The rest of this paper is organized as follows: Section 2 describes the models, experimental design, and the method employed. In Section 3, the simulated PDO in the CMIP5 coupled models is compared with observations.Finally, conclusions and a discussion are given in Section 4.

    2. Model experiments, data, and method

    A total of 109 historical simulations from 25 coupled models in CMIP5 (Taylor, Stouffer, and Meehl 2012) are analyzed in this study. The coupled models in the historical simulations (also called all-forcing simulations) are forced by both natural (total solar irradiance and volcanoes) and anthropogenic (well-mixed greenhouse gases and anthropogenic aerosols) forcings, which cover the period from 1850 to 2005. The details of the CMIP5 coupled models,including the model acronyms and affiliations, are listed in Table 1. The observed SST used in this study is from the Hadley Center’s monthly SST data-set (Rayner et al. 2003).In this study, we calculated the PDO index as the leading principal component of SST anomalies in the NorthPacific (poleward of 20°N). Before the EOF analysis, the global warming signal is removed from the data by subtracting the mean global SST anomaly. For the entire twentieth century, we focus on the spatiotemporal characteristics of the PDO in the Northern Hemisphere winter (i.e. November–March), because the PDO behavior is substantially intensified in winter (Mantua et al.1997; Deser and Phillips 2006). We use the regular-grid surface temperature (i.e. the CMIP5 output variable ‘ts’)over the ocean instead of the irregular-grid SST fields in the analysis of modeled data. In addition, we set the surface temperature in regions covered by sea ice to?1.8 °C according to the observed SST data-set (Rayner et al. 2003).

    Table 1. Details of the 25 CMIP5 coupled models in this study.

    To evaluate the effectiveness of the models for the simulation of the PDO, the spatial correlation coefficient (SCC)of the PDO teleconnection patterns and the correlation coefficient of the PDO indices between the observations and CMIP5 coupled models are computed in this study.The multi-model ensemble simulation is calculated as the arithmetic mean of the ensemble simulation for the multi-member 22 coupled models with multi-member simulations (i.e. greater than one member). The Pearson’s linear correlation coefficient is used to describe the significance of the correlation coefficients. To highlight the decadal signals, the 9-yr running mean is used on all of the PDO indices before calculating the correlation coefficients of the time series. The formula of Quenouille (1952) is used to estimate the effective degrees of freedom (Ne) of the 9-yr running mean indices:

    whereNis the number of data points, andaiandbiare theith order autocorrelations for time seriesaandb,respectively.

    3. Results

    As shown in the regression map (Figure 1), the observed SSTs are anomalously cool in the western-central region of the North Pacific during the positive PDO phase, and are surrounded by anomalously warm SSTs along the west coast of the Americas. At the same time, El Ni?o–like SST anomalies are evident in the central-eastern tropical Pacific, but negative SST anomalies are observed in the subtropical South Pacific. The explained variance for the PDO pattern is 33.2% in the observations. Compared with the observations, most coupled models in CMIP5 reproduce the PDO pattern well, particularly in the North Pacific, which is also the case for the CMIP5 last millennium simulations (Fleming and Anchukaitis 2016). BNU-ESM,CanESM2, CCSM4, CESM1-CAM5, CSIRO Mk3.6.0, GFDL CM3, GFDL-ESM2M, HadCM3, HadGEM2-ES, MIROC5, and NorESM1-M reproduce the observed teleconnections of the PDO to SSTs in the tropical and Southern Pacific well.These simulated teleconnections in other models are relatively weak, particularly for the r1i1p1 simulations of BCC_CSM1.1, CNRM-CM5, GISS-E2-H, and MRI-CGCM3. Based on the statistical results, BNU-ESM, CanESM2, CCSM4,CESM1-FASTCHEM, FGOALS-g2, GFDL CM3, MIROC5, and NorESM1-M better depict the PDO pattern (Table 2). The SCCs of the PDO regression maps between the observations and these models are greater than 0.8. Additionally,the CanESM2, CCSM4, CESM1-FASTCHEM, FGOALS-g2,MIROC5, and NorESM1-M simulate a higher explained variance for the PDO pattern (~30%), which is comparable to the observations. In the r1i1p1 simulations of GISS-E2-R,MPI-ESM-LR, and MRI CGCM3, the explained variance for the PDO pattern is small, at less than 20%.

    The ensemble results for the 22 coupled models(i.e. multi-model ensemble) are shown in Figure 2.MIROC5 reproduces the PDO pattern most similar to the observations. Its SCC is 0.88, which is greater than most single-model ensemble simulations. TheSCC of the CCSM4 ensemble simulation is 0.89, and is the highest SCC. However, the intensity of its PDO pattern is weaker than in the observations, as is the case for the other single-model ensemble simulations.This suggests that the internal variability of the PDO is weakened to some extent by the ensemble average,particularly for simulations by the larger members(e.g. CNRM-CM5 and CSIRO Mk3.6.0; Figure 2). In the multi-model ensemble simulation, the simulated PDO pattern explains 38.1% of the total variance of the SST anomalies. The SCC between the PDO pattern and the observations is as high as 0.81 (Figure 3). However, the teleconnections to the SST anomalies are very weak, as also seen in Figure 3.

    Table 2. Spatial correlation coefficients (SCCs) of the PDO regression maps between the observation and simulations.

    Figure 2. Observed and simulated regression distributions of SST on the PDO index (units: °C).

    Figure 3. Simulated regression distribution of SST on the PDO index (units: °C) in the multi-model ensemble simulation.

    Many climate shifts are closely tied to the phase transition of the PDO (e.g. Hartmann and Wendler 2005; Zhu et al. 2011; Lyon, Barnston, and DeWitt 2014). Therefore,more attention has been paid to the evolution of the PDO and its phase shifts. In the twentieth century, the observed PDO enters a positive phase in the early 1920s, and then a negative phase in the early 1940s (Figure 4). Finally, it returns to a positive phase again in the late 1970s. The simulated PDO evolutions in the twentieth century are very different from one another. Different external forcings(e.g. volcanic forcing and anthropogenic aerosols) used in these models can contribute to the differences in simulated PDO evolutions. Even for individual models and forced by the same external forcings, the simulated PDO evolutions are also different among members. This means that the initial states probably play an important role in shaping subsequent PDO evolution. Compared to the observations, therefore, most simulations do not reproduce the observed temporal phases of the PDO (Table 3).However, eight simulations produce a similar PDO evolution as observed (Figure 4). These are the r5i1p1 simulation of CanESM2, the r3i1p1 and r8i1p1 simulations of CNRM-CM5, the r6i1p1 simulation of CSIRO Mk3.6.0, the r3i1p1 simulation of GISS-E2-R, the r8i1p1 simulation of HadCM3, the r4i1p1 simulation of IPSL-CM5A-LR, and the r1i1p1 simulation of MPI-ESM-LR. The simulated PDO time series in five simulations are significantly associated with the observed PDO index. Their correlation coefficients are greater than 0.36 (p< 0.05; Table 3), which suggests that some of the coupled models, forced by all relevant external forcings, could by chance reproduce the observed PDO evolution to some extent. Additionally, the r6i1p1 simulation of CSIRO Mk3.6.0 reproduces the PDO evolution in the second half of the twentieth century well (Figure 4).

    Figure 4. Observed and simulated PDO indices.

    Table 3. Correlation coefficients between the observed and simulated PDO indices, and between the observation and ensemble simulation for each model.

    No ensemble simulations reproduce the observed PDO evolution (Table 3). In CanESM2, GFDL CM3, GISS-E2-H,GISS-E2-R, HadGEM2-ES, IPSL-CM5A-MR, and MIROC-ESM ensemble simulations, and the multi-model ensemble, the simulated PDO indices show a significant long-term tendency to the positive phase in the twentieth century. One reason for large discrepancies between the observed and simulated PDO indices may be that the internal variability of the PDO has been averaged out in the ensemble simulations, as noted by Dong, Zhou, and Chen (2014). Particularly for the multi-model ensemble, the positive trend of simulated PDO index probably reflects the response of the PDO to increasing levels of the greenhouse gases in the twentieth century (Dong, Zhou, and Chen 2014), which are the same for all the coupled models in this study.

    4. Summary and discussion

    We examine the spatial and temporal characteristics of the PDO in the 109 historical simulations from 25 coupled models in CMIP5. Most of the simulations successfully reproduce the ‘horseshoe’ shape SST anomalies in the North Pacific and observed PDO teleconnections to SSTs in the tropical and South Pacific. Additionally, BNU-ESM,CanESM2, CCSM4, CESM1-FASTCHEM, FGOALS-g2, GFDL CM3, MIROC5, and NorESM1-M better simulate the PDO-associated SST pattern in the Pacific. The SCCs between the observed and simulated PDO regression maps are greater than 0.8.

    Compared with the observed PDO evolution in the twentieth century, only five simulations of a total of 109 historical members simulate similar temporal phases of the PDO. The correlation coefficients between the simulated and observed PDO indices are greater than 0.36 for the r3i1p1 and r8i1p1 simulations of CNRM-CM5, the r6i1p1 simulation of CSIRO Mk3.6.0, the r8i1p1 simulation of HadCM3, and the r4i1p1 simulation of IPSL-CM5A-LR.Their similarity is significant at the 0.05 significance level.It suggests that coupled models, forced by all the relevant external forcings, can by chance reproduce the observed PDO evolution. In other words, the current coupled models barely simulate the temporal evolution of the observed PDO in the twentieth century. Perhaps realistic initial states of the oceanic field are necessary for the models to capture the temporal characteristics of the PDO.

    We also analyze the simulated PDO in the ensemble simulation for each coupled model and in the multi-model ensemble. After the ensemble average, different internal variabilities from multi-member simulations interfere with one another. Particularly for the multi-model ensemble,some external forcings (e.g. volcanic forcing and anthropogenic aerosol forcing) used in these coupled models are different. Therefore, it is not appropriate to investigate the impacts of the internal modes (e.g. the PDO and the Atlantic Multidecadal Oscillation) on the regional and global climate using ensemble simulations, because the internal variabilities from different members are not consistent and interfere with one another.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was supported by the National Key R&D Program of China [grant number 2017YFA0603802]; the National Natural Science Foundation of China [grant numbers 41661144005,41320104007, and 41575086]; and the CAS–PKU (Chinese Academy of Sciences–Peking University) Joint Research Program.

    Arblaster, J. M., G. A. Meehl, and A. M. Moore. 2002. “Interdecadal Modulation of Australian Rainfall.”Climate Dynamics18 (6):519–531.

    Cai, W. J., and P. van Rensch. 2012. “The 2011 Southeast Queensland Extreme Summer Rainfall: A Confirmation of a Negative Pacific Decadal Oscillation Phase?”Geophysical Research Letters39: L08702.

    Deser, C., and A. S. Phillips. 2006. “Simulation of the 1976/77 Climate Transition Over the North Pacific: Sensitivity to Tropical Forcing.”Journal of Climate19 (23): 6170–6180.

    Deser, C., A. S. Phillips, and J. W. Hurrell. 2004. “Pacific Interdecadal Climate Variability: Linkages between the Tropics and the North Pacific during Boreal Winter Since 1900.”Journal of Climate17 (16): 3109–3124.

    Dong, X., and F. Xue. 2016. “Phase Transition of the Pacific Decadal Oscillation and Decadal Variation of the East Asian Summer Monsoon in the 20th Century.”Advances in Atmospheric Sciences33 (3): 330–338.

    Dong, L., T. J. Zhou, and X. L. Chen. 2014. “Changes of Pacific Decadal Variability in the Twentieth Century Driven by Internal Variability, Greenhouse Gases, and Aerosols.”Geophysical Research Letters41 (23): 8570–8577.

    Fleming, L. E., and K. J. Anchukaitis. 2016. “North Pacific Decadal Variability in the CMIP5 Last Millennium Simulations.”Climate Dynamics47: 3783–3801.

    Hartmann, B., and G. Wendler. 2005. “The Significance of the 1976 Pacific Climate Shift in the Climatology of Alaska.”Journal of Climate18 (22): 4824–4839.

    Kosaka, Y., and S. P. Xie. 2013. “Recent Global-warming Hiatus Tied to Equatorial Pacific Surface Cooling.”Nature501 (7467):403–407.

    Latif, M., and T. P. Barnett. 1994. “Causes of Decadal Climate Variability Over the North Pacific and North-America.”Science266 (5185): 634–637.

    Lyon, B., A. G. Barnston, and D. G. DeWitt. 2014. “Tropical Pacific Forcing of a 1998-1999 Climate Shift: Observational Analysis and Climate Model Results for the Boreal Spring Season.”Climate Dynamics43 (3–4): 893–909.

    Mantua, N. J., and S. R. Hare. 2002. “The Pacific Decadal Oscillation.”Journal of Oceanography58 (1): 35–44.

    Mantua, N. J., S. R. Hare, Y. Zhang, et al. 1997. “A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production.”Bulletin of the American Meteorological Society78(6): 1069–1079.

    Qian, C., and T. J. Zhou. 2014. “Multidecadal Variability of North China Aridity and Its Relationship to PDO during 1900–2010.”Journal of Climate27 (3): 1210–1222.

    Quenouille, M. H. 1952.Associated Measurements, 242. New York: Butterworths Scientific Publications, London and Academic Press.

    Rayner, N. A., D. E. Parker, E. B. Horton, et al. 2003. “Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature Since the Late Nineteenth Century.”Journal of Geophysical Research-Atmospheres108 (D14): 4407.

    Schneider, N., and B. D. Cornuelle. 2005. “The Forcing of the Pacific Decadal Oscillation.”Journal of Climate18 (21): 4355–4373.

    Sun, J. Q., and H. J. Wang. 2006. “Relationship between Arctic Oscillation and Pacific Decadal Oscillation on Decadal Timescale.”Chinese Science Bulletin51 (1): 75–79.

    Taylor, K. E., R. J. Stouffer, and G. A. Meehl. 2012. “An Overview of CMIP5 and the Experiment Design.”Bulletin of the American Meteorological Society93 (4): 485–498.

    Wang, T., O. H. Ottera, Y. Q. Gao, et al. 2012. “The Response of the North Pacific Decadal Variability to Strong Tropical Volcanic Eruptions.”Climate Dynamics39 (12): 2917–2936.

    Wang, T., H. J. Wang, O. H. Ottera, et al. 2013. “Anthropogenic Agent Implicated as a Prime Driver of Shift in Precipitation in Eastern China in the Late 1970s.”Atmospheric Chemistry and Physics13 (24): 12433–12450.

    Yu, L., T. Furevik, O. H. Ottera, et al. 2015. “Modulation of the Pacific Decadal Oscillation on the Summer Precipitation Over East China: a Comparison of Observations to 600-years Control Run of Bergen Climate Model.”Climate Dynamics44(1–2): 475–494.

    Zhang, R., and T. L. Delworth. 2007. “Impact of the Atlantic Multidecadal Oscillation on North Pacific Climate Variability.”Geophysical Research Letters34: L23708.

    Zhou, B. T. 2016. “The Asian-Pacific Oscillation Pattern in CMIP5 Simulations of Historical and Future Climate.”International Journal of Climatology36: 4778–4789.

    Zhu, Y. L., H. J. Wang, W. Zhou, et al. 2011. “Recent Changes in the Summer Precipitation Pattern in East China and the Background Circulation.”Climate Dynamics36 (7–8): 1463–1473.

    Zhu, Y. L., H. J. Wang, J. H. Ma, et al. 2015. “Contribution of the Phase Transition of Pacific Decadal Oscillation to the Late 1990s’ Shift in East China summer rainfall.”Journal of Geophysical Research-Atmospheres120 (17): 8817–8827.

    欧美黄色片欧美黄色片| 欧美人与性动交α欧美精品济南到| 丝袜喷水一区| 亚洲国产最新在线播放| 99香蕉大伊视频| 国产又色又爽无遮挡免| 在线亚洲精品国产二区图片欧美| av片东京热男人的天堂| 欧美日韩亚洲高清精品| 九草在线视频观看| 久久 成人 亚洲| 日本a在线网址| 国产主播在线观看一区二区 | 91字幕亚洲| 在线观看免费高清a一片| 国产一区二区三区av在线| 18禁国产床啪视频网站| 一边摸一边做爽爽视频免费| 国产激情久久老熟女| 亚洲一码二码三码区别大吗| 少妇粗大呻吟视频| 久久久久久久久免费视频了| 国产免费福利视频在线观看| 亚洲伊人色综图| 一级毛片我不卡| 丰满迷人的少妇在线观看| 最新的欧美精品一区二区| kizo精华| 欧美日韩黄片免| 久久国产亚洲av麻豆专区| 成人国产av品久久久| 国产成人精品无人区| 亚洲av在线观看美女高潮| 国产一区二区 视频在线| av有码第一页| 午夜福利乱码中文字幕| 欧美成人精品欧美一级黄| 少妇 在线观看| 一级毛片 在线播放| h视频一区二区三区| 一级毛片我不卡| 亚洲伊人久久精品综合| 亚洲国产日韩一区二区| 中文字幕亚洲精品专区| 黄色怎么调成土黄色| 午夜福利免费观看在线| 啦啦啦啦在线视频资源| 成人影院久久| 操美女的视频在线观看| 天堂中文最新版在线下载| 亚洲人成网站在线观看播放| 一本色道久久久久久精品综合| 女人被躁到高潮嗷嗷叫费观| 啦啦啦中文免费视频观看日本| 中文欧美无线码| 十八禁网站网址无遮挡| 黄色 视频免费看| 日韩免费高清中文字幕av| 国产精品三级大全| 性色av乱码一区二区三区2| 无遮挡黄片免费观看| 曰老女人黄片| 久久热在线av| 亚洲欧美精品自产自拍| 国产精品国产av在线观看| 国产无遮挡羞羞视频在线观看| 91精品伊人久久大香线蕉| 黄色片一级片一级黄色片| 交换朋友夫妻互换小说| 欧美 日韩 精品 国产| 大片免费播放器 马上看| 成年女人毛片免费观看观看9 | 黄片播放在线免费| 在线av久久热| 99香蕉大伊视频| 亚洲色图 男人天堂 中文字幕| 国产日韩欧美在线精品| 亚洲欧美一区二区三区国产| 人人妻人人添人人爽欧美一区卜| 成人手机av| 黑丝袜美女国产一区| 91精品三级在线观看| 国产亚洲av片在线观看秒播厂| 精品亚洲乱码少妇综合久久| 一二三四在线观看免费中文在| 人人妻人人添人人爽欧美一区卜| 欧美另类一区| 两性夫妻黄色片| 女人被躁到高潮嗷嗷叫费观| 91老司机精品| 国产亚洲欧美精品永久| 久久天躁狠狠躁夜夜2o2o | 精品福利永久在线观看| 国产成人一区二区在线| 巨乳人妻的诱惑在线观看| 妹子高潮喷水视频| 99国产精品一区二区三区| 精品一区二区三区av网在线观看 | 欧美黄色淫秽网站| 丝袜人妻中文字幕| 狠狠婷婷综合久久久久久88av| 色94色欧美一区二区| 日韩,欧美,国产一区二区三区| 天天影视国产精品| 搡老岳熟女国产| 99久久99久久久精品蜜桃| 欧美黄色淫秽网站| 日韩制服骚丝袜av| 亚洲av成人精品一二三区| 丝袜人妻中文字幕| 成年人黄色毛片网站| 久久鲁丝午夜福利片| 亚洲av成人不卡在线观看播放网 | 久久久久久久精品精品| 国产成人欧美在线观看 | 亚洲第一av免费看| 在线亚洲精品国产二区图片欧美| 热99国产精品久久久久久7| 天天躁日日躁夜夜躁夜夜| 免费久久久久久久精品成人欧美视频| 日本色播在线视频| 黑丝袜美女国产一区| 国产在线视频一区二区| 精品少妇黑人巨大在线播放| 精品人妻熟女毛片av久久网站| 国产日韩欧美视频二区| 校园人妻丝袜中文字幕| 午夜激情久久久久久久| 亚洲国产欧美在线一区| 天天躁夜夜躁狠狠久久av| 19禁男女啪啪无遮挡网站| 熟女av电影| 免费黄频网站在线观看国产| 新久久久久国产一级毛片| 中文字幕制服av| 丰满饥渴人妻一区二区三| 午夜日韩欧美国产| 国产欧美日韩综合在线一区二区| 最新的欧美精品一区二区| 国产有黄有色有爽视频| 老司机影院毛片| 看十八女毛片水多多多| 欧美激情 高清一区二区三区| 纯流量卡能插随身wifi吗| 精品福利观看| 午夜日韩欧美国产| 国产人伦9x9x在线观看| 久久久久久亚洲精品国产蜜桃av| 日本av免费视频播放| 久久天躁狠狠躁夜夜2o2o | 可以免费在线观看a视频的电影网站| 国产麻豆69| 大码成人一级视频| 欧美国产精品一级二级三级| 麻豆国产av国片精品| 青草久久国产| 成人黄色视频免费在线看| 十分钟在线观看高清视频www| 极品人妻少妇av视频| av又黄又爽大尺度在线免费看| 日韩大片免费观看网站| 国产精品亚洲av一区麻豆| 美女扒开内裤让男人捅视频| 亚洲国产av新网站| 日本wwww免费看| 亚洲av成人精品一二三区| 国产成人91sexporn| 精品熟女少妇八av免费久了| 久久久亚洲精品成人影院| 国产高清不卡午夜福利| 19禁男女啪啪无遮挡网站| 少妇裸体淫交视频免费看高清 | 一级片免费观看大全| 久久亚洲精品不卡| 蜜桃国产av成人99| 亚洲专区国产一区二区| 五月天丁香电影| 精品卡一卡二卡四卡免费| 欧美大码av| 各种免费的搞黄视频| av片东京热男人的天堂| 伊人亚洲综合成人网| 亚洲九九香蕉| 在线精品无人区一区二区三| h视频一区二区三区| 亚洲伊人色综图| 另类精品久久| 丝袜脚勾引网站| 99久久综合免费| 日日夜夜操网爽| 国产日韩一区二区三区精品不卡| 午夜久久久在线观看| 两个人看的免费小视频| 国产一区二区 视频在线| 男女国产视频网站| 啦啦啦在线免费观看视频4| 午夜91福利影院| 一本大道久久a久久精品| 侵犯人妻中文字幕一二三四区| 晚上一个人看的免费电影| 久久久久久久大尺度免费视频| 亚洲国产看品久久| 国产精品国产av在线观看| 岛国毛片在线播放| 免费女性裸体啪啪无遮挡网站| 日韩人妻精品一区2区三区| 久久精品成人免费网站| 亚洲伊人久久精品综合| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美人与性动交α欧美精品济南到| 男人操女人黄网站| 日本vs欧美在线观看视频| 成年人黄色毛片网站| 亚洲精品久久久久久婷婷小说| 日本一区二区免费在线视频| 成人国语在线视频| 久久影院123| 美女国产高潮福利片在线看| 韩国精品一区二区三区| 久久久久久人人人人人| 老司机在亚洲福利影院| 黄色视频在线播放观看不卡| 黄网站色视频无遮挡免费观看| 久久久久国产精品人妻一区二区| 国产高清视频在线播放一区 | 国产精品熟女久久久久浪| 老司机影院成人| 午夜福利影视在线免费观看| 日韩 亚洲 欧美在线| 每晚都被弄得嗷嗷叫到高潮| 国产一区有黄有色的免费视频| 亚洲国产日韩一区二区| 久久精品人人爽人人爽视色| 国产免费现黄频在线看| 捣出白浆h1v1| 亚洲人成网站在线观看播放| 视频区欧美日本亚洲| 欧美老熟妇乱子伦牲交| 久久天堂一区二区三区四区| 捣出白浆h1v1| 精品国产一区二区三区久久久樱花| 成人亚洲欧美一区二区av| av网站免费在线观看视频| 久9热在线精品视频| 首页视频小说图片口味搜索 | 青春草视频在线免费观看| 亚洲精品美女久久av网站| 天天操日日干夜夜撸| av福利片在线| 婷婷丁香在线五月| 精品少妇久久久久久888优播| 国语对白做爰xxxⅹ性视频网站| 亚洲五月色婷婷综合| 久久人人97超碰香蕉20202| 男女无遮挡免费网站观看| 黄色一级大片看看| 精品福利永久在线观看| 亚洲人成电影免费在线| 美女扒开内裤让男人捅视频| 日日爽夜夜爽网站| 国产老妇伦熟女老妇高清| 国产深夜福利视频在线观看| 国产精品久久久人人做人人爽| 19禁男女啪啪无遮挡网站| 一级,二级,三级黄色视频| 日本vs欧美在线观看视频| 国产成人啪精品午夜网站| 亚洲色图综合在线观看| 老司机在亚洲福利影院| 丝瓜视频免费看黄片| 久久毛片免费看一区二区三区| 看十八女毛片水多多多| 性色av乱码一区二区三区2| 大香蕉久久成人网| 爱豆传媒免费全集在线观看| 亚洲 欧美一区二区三区| 五月天丁香电影| 国产xxxxx性猛交| 亚洲激情五月婷婷啪啪| 99精品久久久久人妻精品| 国产免费视频播放在线视频| 午夜免费成人在线视频| 中文字幕人妻丝袜制服| 一级毛片电影观看| 欧美精品啪啪一区二区三区 | 极品人妻少妇av视频| 免费在线观看日本一区| 亚洲欧美一区二区三区国产| 999久久久国产精品视频| 午夜精品国产一区二区电影| 日韩 欧美 亚洲 中文字幕| 国产高清不卡午夜福利| 99热国产这里只有精品6| 亚洲情色 制服丝袜| 免费日韩欧美在线观看| 精品亚洲成国产av| 免费高清在线观看日韩| 欧美人与性动交α欧美精品济南到| 午夜免费鲁丝| 天天躁夜夜躁狠狠躁躁| 夫妻性生交免费视频一级片| 久久九九热精品免费| 自拍欧美九色日韩亚洲蝌蚪91| 99久久99久久久精品蜜桃| 999久久久国产精品视频| 看免费成人av毛片| 只有这里有精品99| 9色porny在线观看| 999精品在线视频| 老汉色av国产亚洲站长工具| 两性夫妻黄色片| 国产精品一区二区免费欧美 | 我要看黄色一级片免费的| 好男人电影高清在线观看| 中文字幕人妻丝袜一区二区| 久久久亚洲精品成人影院| 国产亚洲欧美精品永久| 日本欧美国产在线视频| 国产又爽黄色视频| 男女之事视频高清在线观看 | 黄片播放在线免费| 一边摸一边做爽爽视频免费| kizo精华| 亚洲五月婷婷丁香| 国产精品欧美亚洲77777| 亚洲一区中文字幕在线| 国产亚洲精品第一综合不卡| 成人免费观看视频高清| 欧美成狂野欧美在线观看| 日韩av免费高清视频| 女性被躁到高潮视频| av在线app专区| 一区二区日韩欧美中文字幕| 久久99一区二区三区| 日韩大片免费观看网站| netflix在线观看网站| 亚洲av成人不卡在线观看播放网 | 日本欧美视频一区| 国产一区二区激情短视频 | 交换朋友夫妻互换小说| 在线av久久热| 91精品伊人久久大香线蕉| 麻豆乱淫一区二区| 日韩中文字幕欧美一区二区 | 各种免费的搞黄视频| 成人18禁高潮啪啪吃奶动态图| 秋霞在线观看毛片| 午夜免费观看性视频| 欧美精品一区二区大全| 18禁裸乳无遮挡动漫免费视频| av电影中文网址| 亚洲国产毛片av蜜桃av| 美女脱内裤让男人舔精品视频| 日韩一卡2卡3卡4卡2021年| 好男人视频免费观看在线| 国产亚洲精品第一综合不卡| 最近最新中文字幕大全免费视频 | 91成人精品电影| 大型av网站在线播放| 国产精品免费大片| 亚洲欧美精品综合一区二区三区| 国产淫语在线视频| 久久中文字幕一级| 久久精品久久久久久噜噜老黄| 亚洲 欧美一区二区三区| 飞空精品影院首页| 最近中文字幕2019免费版| 欧美黄色淫秽网站| 欧美日韩精品网址| 看免费成人av毛片| 午夜老司机福利片| 欧美乱码精品一区二区三区| 日本五十路高清| 狠狠婷婷综合久久久久久88av| 国产成人欧美在线观看 | 美女福利国产在线| 老熟女久久久| 夫妻性生交免费视频一级片| 爱豆传媒免费全集在线观看| 老司机影院成人| 久久毛片免费看一区二区三区| 色精品久久人妻99蜜桃| 精品欧美一区二区三区在线| 国产片特级美女逼逼视频| 男人添女人高潮全过程视频| a级毛片在线看网站| 中国国产av一级| 欧美日韩亚洲高清精品| 人人妻人人澡人人爽人人夜夜| 亚洲av男天堂| 曰老女人黄片| 久久av网站| 国产国语露脸激情在线看| 不卡av一区二区三区| 赤兔流量卡办理| 亚洲色图 男人天堂 中文字幕| 啦啦啦视频在线资源免费观看| 十八禁高潮呻吟视频| 黄频高清免费视频| 中文精品一卡2卡3卡4更新| 97人妻天天添夜夜摸| 国产成人一区二区在线| 国产国语露脸激情在线看| 美女国产高潮福利片在线看| 黄片小视频在线播放| 18禁黄网站禁片午夜丰满| 亚洲欧美清纯卡通| 久久久精品免费免费高清| 99精品久久久久人妻精品| 亚洲国产最新在线播放| 在线观看免费视频网站a站| 制服诱惑二区| 无限看片的www在线观看| 国产精品国产av在线观看| 国产极品粉嫩免费观看在线| 国产老妇伦熟女老妇高清| 亚洲国产精品999| 国产成人91sexporn| 97人妻天天添夜夜摸| 国产在线免费精品| 中文字幕色久视频| 亚洲欧美日韩另类电影网站| 国产在线视频一区二区| 久久久国产一区二区| 三上悠亚av全集在线观看| 亚洲一码二码三码区别大吗| 久久99热这里只频精品6学生| 成年动漫av网址| 欧美日韩福利视频一区二区| 曰老女人黄片| 五月开心婷婷网| 亚洲欧洲日产国产| 欧美+亚洲+日韩+国产| 久久天躁狠狠躁夜夜2o2o | 亚洲男人天堂网一区| 18禁裸乳无遮挡动漫免费视频| 日韩中文字幕欧美一区二区 | 啦啦啦中文免费视频观看日本| 亚洲激情五月婷婷啪啪| 国产精品一区二区免费欧美 | 自线自在国产av| 伊人亚洲综合成人网| 日日摸夜夜添夜夜爱| 欧美97在线视频| 一区在线观看完整版| 五月天丁香电影| 欧美日本中文国产一区发布| 国产男人的电影天堂91| 精品国产一区二区久久| 一本久久精品| 91麻豆精品激情在线观看国产 | 亚洲精品在线美女| 国产精品av久久久久免费| 国产高清国产精品国产三级| 在线亚洲精品国产二区图片欧美| 男女免费视频国产| 人人妻人人添人人爽欧美一区卜| 无遮挡黄片免费观看| 大香蕉久久成人网| 一本久久精品| 熟女av电影| 十分钟在线观看高清视频www| 精品少妇一区二区三区视频日本电影| 国产亚洲欧美在线一区二区| 国产男人的电影天堂91| 飞空精品影院首页| 国产福利在线免费观看视频| 久久99热这里只频精品6学生| 欧美在线黄色| 别揉我奶头~嗯~啊~动态视频 | 久久 成人 亚洲| 国产主播在线观看一区二区 | 午夜两性在线视频| 丝袜美腿诱惑在线| 国产日韩一区二区三区精品不卡| 精品人妻1区二区| 久久性视频一级片| 一本大道久久a久久精品| 人人妻人人爽人人添夜夜欢视频| 在线av久久热| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久久久人妻精品电影 | 国产精品人妻久久久影院| 精品少妇一区二区三区视频日本电影| 久久国产精品大桥未久av| 黄色a级毛片大全视频| 男女无遮挡免费网站观看| 在线观看免费午夜福利视频| 亚洲五月色婷婷综合| 香蕉丝袜av| 人人妻人人添人人爽欧美一区卜| h视频一区二区三区| 久久这里只有精品19| 久久久久久免费高清国产稀缺| 天天操日日干夜夜撸| 亚洲av片天天在线观看| 亚洲,欧美,日韩| 午夜久久久在线观看| 精品亚洲成a人片在线观看| 99香蕉大伊视频| 精品少妇一区二区三区视频日本电影| 99精国产麻豆久久婷婷| 高潮久久久久久久久久久不卡| av欧美777| 首页视频小说图片口味搜索 | 亚洲精品日韩在线中文字幕| 2021少妇久久久久久久久久久| 亚洲成色77777| 日本av手机在线免费观看| 欧美变态另类bdsm刘玥| 亚洲精品乱久久久久久| 18禁观看日本| 国产精品偷伦视频观看了| 9热在线视频观看99| 国产精品av久久久久免费| 中文字幕av电影在线播放| 久久av网站| av一本久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 又大又黄又爽视频免费| 建设人人有责人人尽责人人享有的| 欧美在线一区亚洲| 夜夜骑夜夜射夜夜干| 久久国产精品大桥未久av| 制服人妻中文乱码| 亚洲精品久久成人aⅴ小说| 两人在一起打扑克的视频| 丝袜在线中文字幕| 久久99精品国语久久久| 曰老女人黄片| 一级毛片黄色毛片免费观看视频| 亚洲 欧美一区二区三区| 18禁国产床啪视频网站| 色综合欧美亚洲国产小说| 在线观看人妻少妇| 又大又黄又爽视频免费| 999精品在线视频| 亚洲av国产av综合av卡| www日本在线高清视频| 人体艺术视频欧美日本| 高清不卡的av网站| 人人妻人人爽人人添夜夜欢视频| 成人影院久久| 欧美黑人精品巨大| 国产成人欧美在线观看 | 国产精品国产三级国产专区5o| 满18在线观看网站| 2021少妇久久久久久久久久久| 国产av精品麻豆| 精品少妇内射三级| 九草在线视频观看| 一级毛片女人18水好多 | 18禁裸乳无遮挡动漫免费视频| 老熟女久久久| 国产欧美日韩综合在线一区二区| 黄网站色视频无遮挡免费观看| 欧美在线一区亚洲| 国产精品熟女久久久久浪| 国产精品av久久久久免费| 亚洲,一卡二卡三卡| 在线精品无人区一区二区三| 中文字幕最新亚洲高清| av视频免费观看在线观看| 日韩av免费高清视频| 亚洲欧美色中文字幕在线| 99热网站在线观看| 黑人巨大精品欧美一区二区蜜桃| 欧美人与性动交α欧美精品济南到| 一边摸一边做爽爽视频免费| 色精品久久人妻99蜜桃| 丝袜脚勾引网站| 国产成人精品无人区| 亚洲精品日本国产第一区| 成年美女黄网站色视频大全免费| 一本综合久久免费| 精品国产一区二区三区久久久樱花| 99久久综合免费| 岛国毛片在线播放| 啦啦啦中文免费视频观看日本| 精品人妻熟女毛片av久久网站| 亚洲情色 制服丝袜| 深夜精品福利| 黄色怎么调成土黄色| www.999成人在线观看| 国产精品一区二区免费欧美 | 午夜影院在线不卡| 久久久久视频综合| 国产成人系列免费观看| 可以免费在线观看a视频的电影网站| 男女午夜视频在线观看| 最新在线观看一区二区三区 | 高清视频免费观看一区二区| 国产精品一区二区在线不卡| 免费看不卡的av| 青春草亚洲视频在线观看| 亚洲成人国产一区在线观看 | 国产真人三级小视频在线观看| 国产男人的电影天堂91| 国产xxxxx性猛交| 亚洲精品国产一区二区精华液| 国产淫语在线视频| 亚洲国产中文字幕在线视频| 国产淫语在线视频| 男女边吃奶边做爰视频| 考比视频在线观看| 波多野结衣av一区二区av| 国产一区亚洲一区在线观看| 日本欧美视频一区| 夫妻午夜视频| 尾随美女入室| 校园人妻丝袜中文字幕| videosex国产| 亚洲国产最新在线播放| 精品国产乱码久久久久久男人| 超碰成人久久|