• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interdecadal variability of the large-scale extreme hot event frequency over the middle and lower reaches of the Yangtze River basin and its related atmospheric patterns

    2018-01-31 03:32:09LIRongXiaandSUNJianQi

    LI Rong-Xia and SUN Jian-Qi

    aNansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; bJoint Laboratory for Climate and Environmental Change at Chengdu University of Information Technology, Chengdu, China; cCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China

    1. Introduction

    According to IPCC AR5 (IPCC 2013), temperatures have increased globally since the early twentieth century.Climate extremes have changed significantly because of global warming. In addition, a number of studies have shown that climate extremes have a larger response to climate change than mean climate (Alexander et al. 2012;Easterling et al. 2000; Karl and Easterling 1999; Karl and Knight 1985; Katz and Brown 1992; Plummer et al. 1999).Therefore, an increasing amount of attention has been paid to extreme climate variability and its possible mechanisms.

    An extreme hot event (EHE) is a type of climate extreme in China that has a serious impact on human society and the natural environment. Thus, EHEs have been emphasized in previous studies (Ren, Feng, and Yan 2010; Yin, Yin, and Zhang 2013; Zhai and Pan 2003). It has been found that EHEs in China show distinct regional characteristics. According to the long-term trend, EHEs have increased in recent decades in northern parts of China and some areas in western China (Ding, Qian, and Yan 2009; Zhai and Pan 2003), but decreased in central China (Zhai and Pan 2003). There is no significant trend of EHE frequency in the Yangtze River basin region over the period 1960–2002 (Su, Jiang, and Jin 2006). According to the decadal variability, more EHEs are observed within southern China in the 1960s and 1980s,and within central China in the 1960s and 1990s; in addition, EHEs show a significant increase over northern China mainly after the late 1990s (Sun, Wang, and Yuan 2011).

    The occurrence of EHEs is closely related to various factors. For example, the anomalous geopotential height at the middle and upper levels is an important atmospheric factor that influences the occurrence of EHEs in China (Li et al. 2015; Sun, Wang, and Yuan 2011). For central and southern China, besides the geopotential height anomaly, the temperature advection at the lower level is also an important atmospheric factor influencing EHEs (Sun,Wang, and Yuan 2011). Sun (2014) pointed out that the upper-level westerly is an important atmospheric factor influencing the occurrence of EHEs in the Jianghuai region.Li, Wang, and Yan (2012) indicated that the synergistic variation of extreme high temperature and extreme precipitation in eastern China has a close relationship with the East Asian summer monsoon circulation. In addition, Sun et al.(2014) showed that the increase in EHEs in eastern China from 1955 to 2013 is also attributable to the anthropogenic emissions of greenhouse gases.

    In China, the MLYR is a special region with a developed economy and high population and production. In addition, the MLYR is also a core region for EHEs in China, with higher frequency and greater variability (Sun, Wang, and Yuan 2011). Variations of EHEs have a profound impact on the MLYR region. Therefore, studying EHEs in the MLYR has important scientific significance and also provides input for disaster prevention and mitigation.

    Previous studies have focused mainly on the interannual variation and case studies of EHEs over the MLYR,as well as the possible underlying mechanism (Li et al.2015; Peng et al. 2005; Sun et al. 2014; Wang, Zhou, and Chen 2013; Wang et al. 2013; Yang and Li 2005). The western Pacific subtropical high (WPSH) is considered an important atmospheric circulation pattern for EHEs over southern China. When the WPSH enhances, anticyclonic anomalies over the Yellow Sea and the Korean Peninsula will result in more EHEs in eastern China (Ding, Qian, and Yan 2009; You et al. 2011). In a case study, Yang and Li(2005) suggested that the anomalous high temperature in South China during the summer of 2003 was mainly due to the extreme intensity and westward extension of the WPSH. Besides the WPSH, Sun (2014) has indicated that the upper-level westerly is another important factor influencing the occurrence of EHEs in the Jianghuai region.Compared to the interannual variability, the interdecadal variation and its possible mechanism for large-scale EHEs in the MLYR in recent decades is not clear. Thus, in this study, the decadal variability of large-scale EHE frequency over the MLYR is investigated, and the atmospheric pattern associated with the decadal variability of EHE frequency is then explored. The results of this study will deepen our understanding of the decadal variability of EHE frequency over the MLYR and its possible underlying mechanism.

    2. Data and method

    In order to investigate the variability of EHEs, we use a homogenized temperature data-set for China (Li et al.2016), which includes homogenized daily maximum temperature series from 753 stations in China spanning from 1960 to 2013. Here, the MLYR is defined as the region covering (25°–35°N, 105°–125°E), and there are 266 stations in this region.

    In order to diagnose the atmospheric circulation associated with EHE frequency variability, the monthly reanalysis data from the Japan Meteorological Agency (JRA-55) are used. The data are available with a horizontal resolution of 1.25° × 1.25°. Additionally, to explore the temperature and atmospheric circulation over a long time period,the National Oceanic and Atmospheric Administration–Cooperative Institute for Research in Environmental Sciences (NOAA–CIRES) twentieth Century Reanalysis V2c data (Compo et al. 2011) and NASA Goddard Institute for Space Studies (GISS) analysis of global surface air temperature data (GISTEMP Team 2016; Hansen et al. 2010) are also used. The NOAA–CIRES twentieth Century Reanalysis V2c data are available at a resolution of 2°. The GISS global surface air temperature data are available at a resolution of 2°.

    According to the definition from the National Meteorological Center, an EHE is defined as a day when the daily maximum temperature is equal to or greater than 35 °C. Different from previous studies mentioned in the introduction to this paper, and in order to remove the impact from a single station or few stations, here, the largescale EHE frequency is studied with the goal of obtaining the general variability features of EHEs over the MLYR. A large-scale EHE is defined as a day with maximum temperature equal to or greater than 35 °C over more than one third of stations in the MLYR. Figure 1(a) shows the monthly frequencies of large-scale EHEs over the MLYR. The figure suggests that MLYR large-scale EHEs mainly occur in July and August. In this study, summer is therefore defined as the mean of July and August.

    3. Results

    3.1. Interdecadal variability of large-scale EHE frequency over the MLYR

    Figure 1(b) shows the detrended anomalous large-scale EHE frequency over the MLYR during the period 1960–2013, which depicts a more–less–more variational shape during the past half century. To investigate the interdecadal change of the large-scale EHE frequency, Figure 1(c)shows the ten-year movingt-test result for the detrended large-scale EHE frequency over the MLYR during 1960–2013. The figure suggests that the EHE frequency over the MLYR experiences two significant decadal changes.Over the periods before the early 1970s and after the early 2000s, the EHE frequencies are above normal, and over the period between the early 1970s and the early 2000s,the EHE frequency is below normal. Mexican wavelet analysis shows a consistent result with the ten-year movingt-test (figure not shown), further confirming the two interdecadal changes of large-scale EHE over the MLYR.Therefore, based on Figure 1(c), the period of 1960–2013 is divided into three sub-periods: Period-1 (1960–72),Period-2 (1973–2000), and Period-3 (2001–13). The averaged EHE frequency over the three sub-periods are 19,12, and 22 days, respectively. The differences in the EHE frequencies between Period-2 and Period-1 and between Period-2 and Period-3 are both within the 99% confidence level, based on thet-test. Therefore, large-scale EHEs in the MLYR have experienced a more–less–more interdecadal variation over the past half century.

    Figure 1(d) shows the spatial distribution of the EHE frequency interdecadal differences between the highfrequency periods (Period-1 and Period-3) and the lowfrequency period (Period-2). The figure suggests that almost all stations over the MLYR experience more EHEs over Period-1 and Period-3 compared to Period-2. In addition, most of the stations show a significant increase of EHEs. These results indicate that such interdecadal change is a general feature of large-scale EHEs over the MLYR.

    3.2. Atmospheric circulations associated with the interdecadal variability of the large-scale EHE frequency over the MLYR

    Figure 2. (a, b) Interdecadal differences in the summer (a) 500 hPa geopotential height (units: gpm) and (b) 200 hPa geopotential height (units: gpm) between the high-frequency periods and low-frequency period. (c, d) Linear regression patterns of the summer anomalous 200 hPa geopotential height (units: gpm) and wind (units: m s?1) against the normalized (c) teleconnection pattern index and (d) PC2 (principal component time series of the second EOF mode) on the year-to-year timescale over the period 1960–2013. Dark(light) shading indicates statistical significance at the 99% (95%) confidence level, based on the t-test.

    Figure 3. (a) Correlation coefficients between summer 500 hPa geopotential height and the MLYR’s (middle and lower reaches of the Yangtze River basin’s) large-scale EHE (extreme hot event) frequency on the year-to-year timescale over the period 1960–2013. Dark(light) shading indicates statistical significance at the 99% (95%) confidence level. (b) Normalized 15-year running mean of the summer WPSH (western Pacific subtropical high) index (red line), large-scale EHE frequency (green line), and PC2 (principal component time series of the second EOF mode) (blue line) over the period 1960–2013.

    The WPSH is generally considered an important atmospheric circulation pattern for the EHE interannual variability over eastern China (Shi, Ding, and Cui 2009; Wang,Zhou, and Chen 2013). We investigate whether the WPSH is the main circulation factor for the interdecadal variability of large-scale EHEs over the MLYR. The interdecadal difference in summer mean 500 hPa geopotential height between the high EHE frequency periods and the low EHE frequency period is calculated. Figure 2(a) suggests that there is nearly no significant signal over the WPSH region,except for a small area over the North Pacific east of 150°E.These results indicate that the variations of the WPSH and EHE frequency over the MLYR are inconsistent on an interdecadal timescale. Therefore, the WPSH cloud not be the main atmospheric circulation factor for the interdecadal variation of large-scale EHE frequency over the MLYR.

    Some previous studies have indicated that the anomalies of geopotential height at the upper level play an important role in the variability of temperatures and EHEs(Li et al. 2015; Sun, Wang, and Yuan 2008, 2011). Therefore,in order to diagnose the atmospheric factor for the EHE frequency variation over the MLYR, the interdecadal difference in summer mean 200 hPa geopotential height between the high EHE frequency periods and the low EHE frequency period is displayed in Figure 2(b). In contrast to the weak signal at the middle level, there is a significant signal at the upper level. The interdecadal difference in the upper-level geopotential height shows a zonal wave train–like pattern over the Eurasian continent. This wave train–like pattern is closely related to the circumglobal teleconnection (CGT) revealed in previous studies (Ding and Wang 2005; Lu, Oh, and Kim 2002). A significant correlation between EHEs over southeastern China and the CGT has been noted on the interannual timescale (Wang et al. 2013). Here, we find that this teleconnection pattern is highly related to the variation of large-scale EHEs over the MLYR on the interdecadal timescale.

    According to Figure 2(b), a teleconnection pattern index is defined as the normalized 200 hPa geopotential height averaged over East Asia (30°–45°N, 90°–110°E)(the boxed area shown in Figure 2(b)). Figure 2(c) shows the 200 hPa geopotential height and wind regressed on the teleconnection pattern index. The figure depicts a zonal wave train–like pattern over the Eurasian continent,which is similar to the wave train–like pattern in Figure 2(b). Therefore, the teleconnection pattern index is defined reasonably, which can be used to investigate the variation of the teleconnection pattern over the Eurasian continent.

    The correlation coefficient between the EHE frequency and the teleconnection pattern index is 0.46, at the 99%confidence level. If the interdecadal variation is obtained using the 15-year running mean, the correlation coefficient between the two can reach 0.92, confirming the covariation of the EHE frequency and teleconnection pattern on the interdecadal timescale.

    The above analysis indicates the upper-level teleconnection pattern is closely related to the EHE frequency interdecadal variation over the MLYR. We then want to see whether or not the teleconnection pattern is a dominant mode. To answer this question, empirical orthogonal function (EOF) analysis is applied to the detrended 200 hPa geopotential height over the Eurasian continent (10°–65°N,0°–130°E). The second EOF mode (EOF2) accounts for 14.4%of the total variance. The 200 hPa geopotential height and wind regressed on the principal component time series of EOF2 (PC2) are shown in Figure 2(d), and a zonal wave train–like pattern can also be seen over the Eurasian continent. The spatial correlation between Figures 2(c) and(d) is 0.75, at the 99% confidence level. In addition, PC2 is highly correlated with the teleconnection pattern index;the coefficient between them is 0.62 on the year-to-year timescale, at the 99% confidence level. On the interdecadal timescale, based on the 15-year running mean method,the correlation coefficient between PC2 and the teleconnection pattern index is 0.92. The correlation between PC2 and the EHE frequency is also high; the coefficient is 0.39 on the year-to-year timescale, and 0.92 on the interdecadal timescale, both at the 99% confidence level. This result indicates there is a close correlation between the Eurasian continent’s upper-level dominant atmospheric mode and the MLYR’s large-scale EHE variability on the interdecadal timescale.

    To further investigate the temporal evolution of the EHE frequency, WPSH, and PC2, on the decadal timescale,Figure 3(b) depicts the three normalized 15-year running mean indices. We calculate the correlation distribution of the 500 hPa geopotential height with the MLYR EHE frequency on the year-to-year variability. The figure displays a significant signal over the MLYR region (Figure 3(a)). The result is consistent with previous studies (e.g., Peng et al. 2005), which have shown the WPSH affects EHEs over southern China via its western extension, controlling the region. Thus, here, the averaged 500 hPa geopotential height over the MLYR is defined as the WPSH index. In Figure 3(b), PC2 shows a consistent variability with the EHE frequency. If the linear trends are removed, the variations of PC2 and MLYR are more consistent. In contrast, the interdecadal variation of the WPSH is different from that of the large-scale EHE frequency over the MLYR. In particular,during the period before the early 1970s, there are more EHEs over the MLYR; however, the WPSH is weakened. The index analysis confirms the change in the upper-level dominant teleconnection pattern over the Eurasian continent is closely related to the EHE frequency interdecadal change over the MLYR, while the WPSH cannot be the major factor for the MLYR’s EHE variation on the interdecadal timescale,consistent with the result in Figure 2.

    Figure 4. Linear regression patterns of summer anomalous (a) 200 hPa zonal wind (units: m s?1), (b) 200 hPa divergence (units: 10?7 s?1),(c) 200–500 hPa averaged omega (units: 10?2 Pa s?1), and (d) middle and low cloud cover (units: %), against the normalized PC2 (principal component time series of the second EOF mode) on the year-to-year timescale over the period 1960–2013. Dark (light) shading indicates statistical significance at the 95% (90%) confidence level.

    Figure 5. Normalized 15-year running mean of the detrended MST (mean surface temperature) index (blue line) and the teleconnection pattern index (green line) over the period 1900–2014.

    In order to further analyze the linkage of the physical processes between PC2 and the large-scale EHEs over the MLYR, the PC2-related 200 hPa zonal wind, the 200 hPa divergence, the 200–500 hPa averaged omega, and the middle and low cloud cover are regressed. Li et al. (2015)showed the upper-level westerly jet has an effect on EHEs in the Jianghuai region. The effect of the upper-level westerly is even larger than the effect of the WPSH (Sun 2014).Wang, Zhou, and Chen (2013) indicated the upper-level westerly jet has a stable relationship with EHEs over southeastern China; however, the WPSH’s relationship with EHEs is unstable. In Figure 4(a), the positive-phase teleconnection pattern is related to the weakened westerly jet over East Asia. Against such a background, there is an upperlevel convergence over the MLYR (Figure 4(b)). Based on mass balance, the upper-level convergence can result in downward motion over the MLYR, and is consistent with the positive signal of the 200–500 hPa average omega anomalies in Figure 4(c). According to the positive-phase upper-level teleconnection, the downward motion does not benefit cloud formation, and results in less middle and low cloud cover over the MLYR (Figure 4(d)), and less cloud cover is favorable for solar radiation reaching the ground and consequently raising the temperature. These atmospheric changes are all favorable for the occurrence of EHEs over the MLYR.

    4. Summary and discussion

    Based on analysis of the summer large-scale EHE frequency over the MLYR during 1960–2013, it is found that the largescale summer EHE frequency over the MLYR has significant interdecadal variability. There are more large-scale EHEs over the MLYR before the early 1970s and after the early 2000s, and fewer between the two periods.

    Some studies have suggested that the WPSH is an important factor for EHEs over the MLYR on the interannual and synoptic scale (Peng et al. 2005; Shi, Ding, and Cui 2009;Wang, Zhou, and Chen 2013; Yang and Li 2005); however,the atmospheric circulation analysis in this study indicates that the WPSH can not be the major factor responsible for the interdecadal variation of EHE frequency over the MLYR.In contrast, the dominant teleconnection pattern over the Eurasian continent at the upper level has a highly consistent variability with the EHE frequency over the MLYR. When the teleconnection is in a positive phase, it results in a weakened upper-level westerly jet over East Asia, upper-level convergence, downward motion, and less cloud cover over the MLYR. All these changes are favorable for solar radiation reaching the ground, and thus rising temperatures. Such atmospheric changes favor more EHEs over the MLYR.

    The above result of a close relationship between the Eurasian continent’s upper-level teleconnection and the MLYR’s large-scale EHE frequency is based on an analysis over the past half century. The result is also confirmed by long-term data. Specifically, the teleconnection pattern index is calculated using the NOAA-CIRES twentieth Century Reanalysis data over the period 1900–2014. Because there are no century-scale daily temperature data over China,the monthly mean data are used as a proxy for the EHE variability. Here, the summer mean surface temperature(MST) index over MLYR (25°–35°N, 105°–125°E) is calculated using the GISS data. Over the period 1960–2013, the correlation coefficient on the year-to-year timescale between the MLYR’s large-scale EHE frequency and the MST index is 0.75, and on the interdecadal timescale it is 0.95, both at the 99% confidence level. Therefore, it is reasonable to use the MST index to represent the large-scale EHE frequency over the MLYR. Figure 5 shows the normalized 15-year running mean of the detrended MST index and teleconnection pattern index. The figure suggests that these two indices show a consistent variability on the interdecadal timescale, with a correlation coefficient of 0.92. Although there is quantitative uncertainty in analyzing data over the first half of the twentieth century, the qualitative aspect of the result is reliable. The long-term data analysis further confirms there is a close relationship between the variability of large-scale EHE frequency over the MLYR region and the upper-level teleconnection pattern over the Eurasian continent on the interdecadal timescale.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Natural Science Foundation of China [grant number 41421004], [grant number 41522503]; and the External Cooperation Program of the Bureau of International Co-operation, Chinese Academy of Sciences [grant number 134111KYSB20150016].

    Alexander, L. V., X. Zhang, T. C. Peterson, J. Caesar, B. Gleason,A. M. G. Klein Tank, M. Haylock, et al. 2012. “Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation.”Journal of Geophysical Research Atmospheres111: D05109. doi: 10.1029/2005JD006290.

    Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, N. Matsui,R. J. Allan, X. Yin, B. E. Gleason, et al. 2011. “The Twentieth Century Reanalysis Project.”Quarterly Journal of the Royal Meteorological Society137 (654): 1–28.

    Ding, Q. H., and B. Wang. 2005. “Circumglobal Teleconnection in the Northern Hemisphere Summer.”Journal of Climate18(17): 3483–3505.

    Ding, T., W. H. Qian, and Z. W. Yan. 2009. “Changes in Hot Days and Heat Waves in China during 1961–2007.”International Journal of Climatology30 (10): 1452–1462.

    Easterling, D. R., J. L. Evans, P. Y. Groisman, T. R. Karl, K. E. Kunkel,and P. Ambenje. 2000. “Observed Variability and Trends in Extreme Climate Events: A Brief Review.”Bulletin of the American Meteorological Society81 (3): 417–426.

    GISTEMP Team. 2016. “GISS Surface Temperature Analysis(GISTEMP): NASA Goddard Institute for Space Studies.”Dataset. https://data.giss.nasa.gov/gistemp/.

    Hansen, J., R. Ruedy, M. Sato, and K. Lo. 2010. “Global Surface Temperature Change.”Reviews of Geophysics48 (4): 7362–7388.

    IPCC. 2013.Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis Summary for Policymakers. Cambridge: Cambridge University Press.

    Karl, T. R., and D. R. Easterling. 1999. “Climate Extremes: Selected Review and Future Research Directions.”Climatic Change42(1): 309–325.

    Karl, T. R., and R. W. Knight. 1985. “Secular Trends of Precipitation Amount, Frequency, and Intensity in the United States.”Bulletin of the American Meteorological Society79 (2): 231–241.

    Katz, R. W., and B. G. Brown. 1992. “Extreme Events in a Changing Climate: Variability is More Important than Averages.”Climatic Change21 (3): 289–302.

    Li, J., W. J. Wang, and Z. W. Yan. 2012. “Changes of Climate Extremes of Temperature and Precipitation in Summer in Eastern China Associated with Changes in Atmospheric Circulation in East Asia during 1960–2008 (in Chinese).”Science Bulletin57 (15): 1856–1861.

    Li, Z. H., C. Y. Li, J. Song, Y. K. Tan, and X. Li. 2015. “An Analysis of the Characteristics and Causes of Extremely High Temperature Days in the Yangtze-Huaihe River Basins in Summer 1960–2013 (in Chinese).”Climatic and Environmental Research20 (5): 511–522.

    Li, Z., L. Cao, Y. Zhu, and Z. Yan. 2016. “Comparison of Two Homogenized Datasets of Daily Maximum/Mean/Minimum Temperature in China during 1960–2013.”Journal of Meteorological Research30 (1): 53–66.

    Lu, R. Y., J. H. Oh, and B. J. Kim. 2002. “A Teleconnection Pattern in Upper-level Meridional Wind over the North African and Eurasian Continent in Summer.”Tellus54 (1): 44–55.

    Peng, H. Y., Z. K. Zhou, Y. L. Zhao, J. S. Jian, and Q. M. Yang. 2005.“The Analysis of Abnormal High Temperature in 2003 Summer(in Chinese).”Scientia Meteorologica Sinica25 (4): 355–361.

    Plummer, N., M. J. Salinger, N. Nicholls, R. Suppiah, K. J. Hennessy,R. M. Leighton, B. Trewin, C. M. Page, and J. M. Lough. 1999.“Changes in Climate Extremes over the Australian Region and New Zealand during the Twentieth Century.”Weather and Climate Extremes42 (1): 183–202.

    Ren, Y. G., G. L. Feng, and Z. W. Yan. 2010. “Progresses in Observation Studies of Climate Extremes and Changes in Mainland China (in Chinese).”Climatic and Environmental Research15 (4): 337–353.

    Shi, J., H. Ding, and L. L. Cui. 2009. “Climatic Characteristics of Extreme Maximum Temperature in East China and Its Causes(in Chinese).”Chinese Journal of Atmospheric Sciences33 (2):347–358.

    Su, B. D., T. Jiang, and W. B. Jin. 2006. “Recent Trends in Observed Temperature and Precipitation Extremes in the Yangtze River Basin, China.”Theoretical and Applied Climatology83 (1): 139–151.

    Sun, J. Q. 2014. “Record-breaking SST over mid-North Atlantic and Extreme High Temperature over the Jianghuai-Jiangnan Region of China in 2013.”Science Bulletin59 (27): 3465–3470.

    Sun, J. Q., H. J. Wang, and W. Yuan. 2008. “Decadal Variations of the Relationship between the Summer North Atlantic Oscillation and Middle East Asian Air Temperature.”Journal of Geophysical Research113: D15107. doi: 10.1029/2007JD009626.

    Sun, J. Q., H. J. Wang, and W. Yuan. 2011. “Decadal Variability of the Extreme Hot Event in China and Its Association with Atmospheric Circulations (in Chinese).”Climate and Environment Research16 (2): 199–208.

    Sun, Y., X. Zhang, F. W. Zwiers, L. C. Song, H. Wan, T. Hu, H. Yin,and G. Y. Ren. 2014. “Rapid Increase in the Risk of Extreme Summer Heat in Eastern China.”Nature Climate Change4 (12):1082–1085.

    Wang, W., W. Zhou, X. Wang, S. K. Fong, and K. C. Leong. 2013.“Summer High Temperature Extremes in Southeast China Associated with the East Asian Jet Stream and Circumglobal Teleconnection.”Journal of Geophysical Research Atmospheres118 (15): 8306–8319.

    Wang, W., W. Zhou, and D. Chen. 2013. “Summer High Temperature Extremes in Southeast China: Bonding with the El Nino-southern Oscillation and East Asian Summer Monsoon Coupled System.”Journal of Climate27 (11): 4122–4138.

    Yang, H., and C. Y. Li. 2005. “Diagnostic Study of Serious High Temperature over South China in 2003 Summer (in Chinese).”Climatic and Environmental Research10 (1): 80–85.

    Yin, Z., J. Yin, and X. Zhang. 2013. “Multi-Scenario-Based Hazard Analysis of High Temperature Extremes Experienced in China during 1951–2010.”Journal of Geographical Sciences23 (3):436–446.

    You, Q. L., S. C. Kang, E. Aguilar, N. Pepin, W. A. Flügel, Y. P. Yan,Y. W. Xu, Y. J. Zhang, and J. Huang. 2011. “Changes in Daily Climate Extremes in China and Their Connection to the Large Scale Atmospheric Circulation during 1961–2003.”Climate Dynamics36 (11): 2399–2417.

    Zhai, P. M., and X. H. Pan. 2003. “Trends in Temperature Extremes during 1951–1999 in China.”Geophysical Research Letters30(17): 169–172.

    中国国产av一级| 高清黄色对白视频在线免费看 | 人人妻人人看人人澡| 精品视频人人做人人爽| 亚洲不卡免费看| 99热全是精品| a级毛色黄片| 欧美日韩亚洲高清精品| 蜜桃亚洲精品一区二区三区| 欧美丝袜亚洲另类| 欧美精品亚洲一区二区| 国产乱来视频区| 国产成人a∨麻豆精品| 天天躁日日操中文字幕| 色视频在线一区二区三区| av卡一久久| 欧美xxxx黑人xx丫x性爽| 插阴视频在线观看视频| 国产在视频线精品| 国产精品久久久久久av不卡| 久久韩国三级中文字幕| 国产成人a∨麻豆精品| 丰满少妇做爰视频| 欧美xxxx黑人xx丫x性爽| 在线观看免费高清a一片| 2021少妇久久久久久久久久久| 一级a做视频免费观看| 成人国产av品久久久| 午夜免费男女啪啪视频观看| 黄色欧美视频在线观看| 直男gayav资源| 国产深夜福利视频在线观看| 国产深夜福利视频在线观看| 亚洲av成人精品一区久久| 午夜免费男女啪啪视频观看| 不卡视频在线观看欧美| 尾随美女入室| 熟女av电影| 久久鲁丝午夜福利片| 亚洲丝袜综合中文字幕| 精品一品国产午夜福利视频| 国产伦在线观看视频一区| 人妻制服诱惑在线中文字幕| 免费大片黄手机在线观看| 人人妻人人澡人人爽人人夜夜| 老司机影院毛片| av福利片在线观看| 久久久亚洲精品成人影院| 欧美精品一区二区免费开放| 成人黄色视频免费在线看| 最新中文字幕久久久久| 最近最新中文字幕免费大全7| 精品午夜福利在线看| 久久ye,这里只有精品| 久久精品久久精品一区二区三区| 精品久久久久久久末码| 97热精品久久久久久| 精品久久久精品久久久| 亚洲国产最新在线播放| 中文乱码字字幕精品一区二区三区| 国产精品一区www在线观看| 干丝袜人妻中文字幕| 在线亚洲精品国产二区图片欧美 | 这个男人来自地球电影免费观看 | 精品久久国产蜜桃| 97在线视频观看| 久久青草综合色| 18禁裸乳无遮挡免费网站照片| 亚洲av免费高清在线观看| 国产成人aa在线观看| 亚洲精品第二区| 亚洲精品456在线播放app| 欧美 日韩 精品 国产| 中文字幕制服av| 亚洲国产毛片av蜜桃av| 精品一区二区三卡| 久久亚洲国产成人精品v| 99国产精品免费福利视频| av天堂中文字幕网| 国产亚洲欧美精品永久| 久久久久精品久久久久真实原创| av国产免费在线观看| 国产一区二区在线观看日韩| 日韩精品有码人妻一区| 黑人高潮一二区| 精品久久国产蜜桃| 国产亚洲午夜精品一区二区久久| 激情五月婷婷亚洲| 一区二区三区四区激情视频| 久久久色成人| 欧美精品亚洲一区二区| 国产69精品久久久久777片| 久久久久久久久久久丰满| 国产日韩欧美亚洲二区| 免费少妇av软件| 久久这里有精品视频免费| 国产伦精品一区二区三区四那| 欧美变态另类bdsm刘玥| 大香蕉久久网| 国产av精品麻豆| 免费大片黄手机在线观看| 简卡轻食公司| 久久精品久久久久久久性| 中文字幕免费在线视频6| 亚洲图色成人| 日韩一区二区视频免费看| 欧美日韩综合久久久久久| 久久热精品热| 99热网站在线观看| 啦啦啦中文免费视频观看日本| 成年人午夜在线观看视频| 久久久久久久大尺度免费视频| a级一级毛片免费在线观看| 久久国产精品大桥未久av | 日韩一本色道免费dvd| 日本午夜av视频| 中文天堂在线官网| 亚洲精品自拍成人| 国产成人91sexporn| 舔av片在线| 亚洲国产色片| 建设人人有责人人尽责人人享有的 | 日韩中文字幕视频在线看片 | 精品人妻一区二区三区麻豆| 大又大粗又爽又黄少妇毛片口| 亚洲最大成人中文| 日韩国内少妇激情av| 肉色欧美久久久久久久蜜桃| 免费人妻精品一区二区三区视频| 中国三级夫妇交换| 精品少妇久久久久久888优播| 中文乱码字字幕精品一区二区三区| 极品教师在线视频| 男女无遮挡免费网站观看| 黄色日韩在线| 天天躁夜夜躁狠狠久久av| 草草在线视频免费看| 大片电影免费在线观看免费| a级毛片免费高清观看在线播放| 亚洲成人手机| 国产淫片久久久久久久久| 中文字幕制服av| 成人午夜精彩视频在线观看| 国产精品99久久久久久久久| 亚洲av二区三区四区| 国产精品一区二区性色av| 最黄视频免费看| 精品久久国产蜜桃| av国产久精品久网站免费入址| 一级黄片播放器| 亚洲人成网站高清观看| 免费看光身美女| 高清黄色对白视频在线免费看 | 少妇人妻一区二区三区视频| 日韩av免费高清视频| 丰满少妇做爰视频| 日本黄色片子视频| 观看免费一级毛片| 亚洲欧美成人精品一区二区| 大陆偷拍与自拍| 国产精品偷伦视频观看了| 黑人高潮一二区| 欧美成人一区二区免费高清观看| 国产中年淑女户外野战色| 精品久久久噜噜| 成人亚洲精品一区在线观看 | 一边亲一边摸免费视频| 日韩成人av中文字幕在线观看| 亚洲精品日本国产第一区| 欧美 日韩 精品 国产| 免费黄频网站在线观看国产| 国产高清不卡午夜福利| 久久久亚洲精品成人影院| 99久久精品热视频| 国产高清国产精品国产三级 | 欧美激情极品国产一区二区三区 | 纵有疾风起免费观看全集完整版| 日本wwww免费看| 啦啦啦视频在线资源免费观看| 美女高潮的动态| 亚洲丝袜综合中文字幕| av天堂中文字幕网| 男女边摸边吃奶| 国产成人91sexporn| 青春草亚洲视频在线观看| 国模一区二区三区四区视频| 亚洲成人一二三区av| 国产精品国产av在线观看| 欧美三级亚洲精品| 婷婷色综合大香蕉| 在线观看国产h片| 能在线免费看毛片的网站| 99热这里只有是精品在线观看| 成人综合一区亚洲| 波野结衣二区三区在线| 这个男人来自地球电影免费观看 | 日本一二三区视频观看| 中文字幕制服av| 国产又色又爽无遮挡免| 国产成人精品久久久久久| 日韩三级伦理在线观看| 国产成人a∨麻豆精品| 日日啪夜夜爽| 欧美日韩综合久久久久久| 日日撸夜夜添| 丝袜脚勾引网站| 国产成人午夜福利电影在线观看| 国产女主播在线喷水免费视频网站| 国产欧美另类精品又又久久亚洲欧美| 久久午夜福利片| 亚洲精品456在线播放app| 亚洲国产精品999| 日韩av不卡免费在线播放| 黑人高潮一二区| 国产在视频线精品| 国产大屁股一区二区在线视频| 国产成人freesex在线| 少妇人妻一区二区三区视频| 成人影院久久| 水蜜桃什么品种好| 丝袜喷水一区| 大香蕉久久网| 亚洲天堂av无毛| 国产精品女同一区二区软件| 干丝袜人妻中文字幕| 国产精品99久久久久久久久| 日本av免费视频播放| 欧美另类一区| 国产人妻一区二区三区在| 中文字幕久久专区| 国产免费一级a男人的天堂| 99久久中文字幕三级久久日本| 91久久精品国产一区二区成人| 欧美成人精品欧美一级黄| 赤兔流量卡办理| 我的老师免费观看完整版| 最近最新中文字幕免费大全7| 97热精品久久久久久| 久久精品国产鲁丝片午夜精品| 99re6热这里在线精品视频| 欧美亚洲 丝袜 人妻 在线| 多毛熟女@视频| 色婷婷久久久亚洲欧美| 中文字幕久久专区| 亚洲国产高清在线一区二区三| 国产成人91sexporn| 卡戴珊不雅视频在线播放| 一级av片app| 亚洲在久久综合| 五月伊人婷婷丁香| 日本爱情动作片www.在线观看| 韩国av在线不卡| 亚洲av中文字字幕乱码综合| 1000部很黄的大片| xxx大片免费视频| 我要看黄色一级片免费的| 久久精品国产鲁丝片午夜精品| 不卡视频在线观看欧美| 观看av在线不卡| 青青草视频在线视频观看| 国产亚洲一区二区精品| 国产精品人妻久久久久久| 亚洲av中文av极速乱| 亚洲精品国产成人久久av| 国产人妻一区二区三区在| 国产免费又黄又爽又色| 国产女主播在线喷水免费视频网站| 各种免费的搞黄视频| videossex国产| 国产 一区 欧美 日韩| 在线天堂最新版资源| 久久久久久伊人网av| 18禁在线无遮挡免费观看视频| 免费看av在线观看网站| 亚洲国产精品999| 2022亚洲国产成人精品| 多毛熟女@视频| 日韩 亚洲 欧美在线| a级一级毛片免费在线观看| 男的添女的下面高潮视频| 大片电影免费在线观看免费| 亚洲人与动物交配视频| 久久久精品免费免费高清| 久久久亚洲精品成人影院| 多毛熟女@视频| 亚洲人与动物交配视频| 亚洲欧美成人精品一区二区| 街头女战士在线观看网站| 亚洲,一卡二卡三卡| 国产v大片淫在线免费观看| 久久久久国产网址| 搡女人真爽免费视频火全软件| 精品久久久精品久久久| 精品人妻一区二区三区麻豆| 国产男女超爽视频在线观看| 最近最新中文字幕免费大全7| 女性被躁到高潮视频| 久久精品久久久久久久性| 国产高清不卡午夜福利| 国产真实伦视频高清在线观看| 91久久精品国产一区二区三区| 亚洲人与动物交配视频| 欧美日本视频| 男女下面进入的视频免费午夜| 丰满少妇做爰视频| 熟妇人妻不卡中文字幕| 亚洲中文av在线| 久久99热这里只有精品18| 最近手机中文字幕大全| 男女无遮挡免费网站观看| 久久99精品国语久久久| 国产成人免费无遮挡视频| av黄色大香蕉| 欧美三级亚洲精品| 97在线视频观看| 国产精品久久久久久精品古装| 欧美激情国产日韩精品一区| 日韩精品有码人妻一区| 男人和女人高潮做爰伦理| 免费看不卡的av| 国产精品偷伦视频观看了| 最近中文字幕高清免费大全6| 极品教师在线视频| 国产av精品麻豆| 九色成人免费人妻av| 美女高潮的动态| 国产精品.久久久| 国产精品一及| 黄色视频在线播放观看不卡| 尤物成人国产欧美一区二区三区| 国产av码专区亚洲av| 又粗又硬又长又爽又黄的视频| 最近的中文字幕免费完整| 国产探花极品一区二区| 免费播放大片免费观看视频在线观看| 国产亚洲精品久久久com| 免费少妇av软件| 天天躁夜夜躁狠狠久久av| 噜噜噜噜噜久久久久久91| 欧美极品一区二区三区四区| 色网站视频免费| 欧美国产精品一级二级三级 | 国产精品熟女久久久久浪| 国产淫语在线视频| 久久99精品国语久久久| 精品少妇久久久久久888优播| av线在线观看网站| 亚洲第一区二区三区不卡| av一本久久久久| 亚洲精品456在线播放app| 国产精品一区二区在线观看99| 色婷婷av一区二区三区视频| 女性被躁到高潮视频| 国产成人freesex在线| 最新中文字幕久久久久| 夫妻午夜视频| 日韩一区二区三区影片| 女人久久www免费人成看片| 丰满人妻一区二区三区视频av| 熟女人妻精品中文字幕| 岛国毛片在线播放| 日本vs欧美在线观看视频 | 性色avwww在线观看| 18+在线观看网站| 成人国产麻豆网| 美女cb高潮喷水在线观看| 80岁老熟妇乱子伦牲交| 观看av在线不卡| 美女cb高潮喷水在线观看| 日韩欧美一区视频在线观看 | 国产精品无大码| 美女内射精品一级片tv| 午夜视频国产福利| 精品人妻视频免费看| 欧美成人一区二区免费高清观看| 一级爰片在线观看| 日本与韩国留学比较| 18禁裸乳无遮挡免费网站照片| 久久久精品免费免费高清| 精华霜和精华液先用哪个| 亚洲四区av| 成人免费观看视频高清| 国产一区亚洲一区在线观看| 51国产日韩欧美| 岛国毛片在线播放| 少妇的逼好多水| 18禁动态无遮挡网站| 国产成人精品久久久久久| av在线播放精品| 国产一区有黄有色的免费视频| 午夜福利在线观看免费完整高清在| 国产高清国产精品国产三级 | 久久久久精品久久久久真实原创| 最近的中文字幕免费完整| 欧美区成人在线视频| 18禁在线播放成人免费| 亚洲国产精品国产精品| 日本av免费视频播放| 18禁在线无遮挡免费观看视频| 久久毛片免费看一区二区三区| 亚洲熟女精品中文字幕| 国产淫片久久久久久久久| 日本黄色日本黄色录像| 精品午夜福利在线看| 国产精品一二三区在线看| 亚洲电影在线观看av| 校园人妻丝袜中文字幕| 在线观看一区二区三区激情| 亚洲美女黄色视频免费看| 春色校园在线视频观看| 成人午夜精彩视频在线观看| 91aial.com中文字幕在线观看| 男男h啪啪无遮挡| 老熟女久久久| 一区二区三区精品91| 春色校园在线视频观看| 日韩成人伦理影院| 久久久国产一区二区| 精品99又大又爽又粗少妇毛片| 久久久久久九九精品二区国产| 最近手机中文字幕大全| 在线精品无人区一区二区三 | 高清毛片免费看| 大话2 男鬼变身卡| 天美传媒精品一区二区| 免费少妇av软件| 亚洲欧美精品专区久久| 99久国产av精品国产电影| 黄色一级大片看看| 久久ye,这里只有精品| av黄色大香蕉| 国产一区二区三区av在线| 麻豆成人午夜福利视频| 久久精品国产亚洲av涩爱| 哪个播放器可以免费观看大片| 亚洲国产精品成人久久小说| 亚洲经典国产精华液单| 国产精品一区二区在线不卡| 丝袜喷水一区| 亚洲天堂av无毛| 人妻少妇偷人精品九色| 国产成人精品福利久久| 免费av中文字幕在线| 大陆偷拍与自拍| 一级二级三级毛片免费看| 国产成人精品一,二区| 99久久精品热视频| 欧美丝袜亚洲另类| 精品国产一区二区三区久久久樱花 | 日韩一本色道免费dvd| 美女内射精品一级片tv| 国产毛片在线视频| 国产精品人妻久久久影院| 精品一区二区三区视频在线| 久久97久久精品| 午夜视频国产福利| 99久久中文字幕三级久久日本| 97精品久久久久久久久久精品| 伊人久久精品亚洲午夜| 成人国产av品久久久| 久久久国产一区二区| 涩涩av久久男人的天堂| 精华霜和精华液先用哪个| 51国产日韩欧美| 大话2 男鬼变身卡| 在线观看免费高清a一片| 欧美+日韩+精品| 男女国产视频网站| 国产免费又黄又爽又色| 亚洲av男天堂| 中文字幕亚洲精品专区| 免费高清在线观看视频在线观看| 亚洲四区av| 黄色日韩在线| 少妇裸体淫交视频免费看高清| 国产色婷婷99| 亚洲国产欧美在线一区| 乱码一卡2卡4卡精品| 亚洲国产av新网站| 性色av一级| 在线观看免费日韩欧美大片 | 在线观看av片永久免费下载| 久久国内精品自在自线图片| 亚洲成色77777| 超碰av人人做人人爽久久| 97超碰精品成人国产| 精品一区在线观看国产| 精品人妻一区二区三区麻豆| 在线观看一区二区三区| 青春草国产在线视频| 亚洲精品视频女| 亚洲欧美中文字幕日韩二区| 国产av码专区亚洲av| 少妇猛男粗大的猛烈进出视频| 不卡视频在线观看欧美| 青春草亚洲视频在线观看| 国产精品国产av在线观看| 国产亚洲欧美精品永久| 新久久久久国产一级毛片| 搡女人真爽免费视频火全软件| 国产黄色视频一区二区在线观看| 五月开心婷婷网| 色哟哟·www| 熟妇人妻不卡中文字幕| 我的老师免费观看完整版| 国国产精品蜜臀av免费| 免费看日本二区| 在线天堂最新版资源| 多毛熟女@视频| 建设人人有责人人尽责人人享有的 | 亚洲美女搞黄在线观看| 国产高潮美女av| 国产高清有码在线观看视频| 秋霞伦理黄片| 国产男女内射视频| 又黄又爽又刺激的免费视频.| 又大又黄又爽视频免费| 男人狂女人下面高潮的视频| 国产精品国产三级专区第一集| 成年免费大片在线观看| 国产精品国产三级专区第一集| 麻豆乱淫一区二区| 久久精品人妻少妇| 午夜激情福利司机影院| 天天躁夜夜躁狠狠久久av| 久久久久精品性色| 久久久久久九九精品二区国产| 男人爽女人下面视频在线观看| 亚洲av日韩在线播放| 久久久色成人| 久久人妻熟女aⅴ| 一本一本综合久久| 亚洲第一区二区三区不卡| 亚洲欧美清纯卡通| 一级毛片黄色毛片免费观看视频| 午夜老司机福利剧场| 黑丝袜美女国产一区| 最后的刺客免费高清国语| 国产av精品麻豆| 日韩欧美精品免费久久| 一级毛片黄色毛片免费观看视频| 丰满少妇做爰视频| 欧美日韩一区二区视频在线观看视频在线| 精品久久久精品久久久| 欧美xxⅹ黑人| 精品一区二区三区视频在线| 寂寞人妻少妇视频99o| 麻豆成人午夜福利视频| 亚洲精品aⅴ在线观看| 久久久久网色| 人妻夜夜爽99麻豆av| 乱系列少妇在线播放| 男女边摸边吃奶| 久久久久国产精品人妻一区二区| 中文天堂在线官网| 黄色视频在线播放观看不卡| 91午夜精品亚洲一区二区三区| 一级黄片播放器| 只有这里有精品99| 一级av片app| 欧美bdsm另类| 欧美成人午夜免费资源| 国产伦精品一区二区三区视频9| 亚洲国产精品国产精品| 亚洲一级一片aⅴ在线观看| 熟妇人妻不卡中文字幕| 99热网站在线观看| 亚洲人成网站高清观看| 亚洲av.av天堂| 美女中出高潮动态图| 欧美国产精品一级二级三级 | 亚洲性久久影院| 久久青草综合色| 一个人看的www免费观看视频| 日韩欧美精品免费久久| 亚洲欧美一区二区三区黑人 | 美女国产视频在线观看| 免费黄网站久久成人精品| 日本vs欧美在线观看视频 | 精品一区二区三卡| 丰满乱子伦码专区| 国产伦理片在线播放av一区| 日本爱情动作片www.在线观看| 97热精品久久久久久| 黄色日韩在线| 免费观看的影片在线观看| 成人毛片60女人毛片免费| 国产黄色视频一区二区在线观看| 免费人妻精品一区二区三区视频| 亚洲精品中文字幕在线视频 | www.av在线官网国产| 亚洲婷婷狠狠爱综合网| 在线天堂最新版资源| 老司机影院成人| 亚洲精品aⅴ在线观看| 少妇熟女欧美另类| 国产精品无大码| 极品教师在线视频| 我的女老师完整版在线观看| 美女中出高潮动态图| 美女xxoo啪啪120秒动态图| 国产精品国产av在线观看| 观看美女的网站| 国产在线免费精品| 高清欧美精品videossex| 日韩av不卡免费在线播放| 亚洲成人一二三区av| 少妇人妻 视频| 少妇精品久久久久久久| 日韩大片免费观看网站| 久热这里只有精品99| 伦理电影免费视频| 日本黄色日本黄色录像| av国产久精品久网站免费入址| 国产精品一区二区性色av|