• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ENSO hindcast skill of the IAP-DecPreS near-term climate prediction system:comparison of full-field and anomaly initialization

    2018-01-31 03:32:08SUNQinWUBoZHOUTinJunYANZiXingCollegeofAtmospheriSieneChenguUniversityofInformtionTehnologyChenguChinLeshnCentrlSttionofEnvironmentMonitoringLeshnChinLASGInstituteofAtmospheriPhysisChineseAemyofSienesBeijingChinColleg

    SUN Qin, WU Bo, ZHOU Tin-Jun n YAN Zi-XingCollege of Atmospheri Siene, Chengu University of Informtion Tehnology, Chengu, Chin; Leshn Centrl Sttion of Environment Monitoring, Leshn, Chin; LASG, Institute of Atmospheri Physis, Chinese Aemy of Sienes, Beijing, Chin; College of Atmospheri Siene, Nnjing University of Informtion Siene n Tehnology, Nnjing, Chin

    1. Introduction

    El Ni?o–Southern oscillation (ENSO) is the most dominant air–sea coupling mode of the climate system and has striking impacts on the global climate system (Aceituno 1992; Alexander et al. 2002; McPhaden, Zebiak, and Glantz 2006; Wang, Wu, and Fu 2000; Webster et al. 1998).Conventional ENSO is characterized by maximum warm sea surface temperature anomalies (SSTAs) in the equatorial eastern Pacific (Harrison and Larkin 1998; Rasmusson and Carpenter 1983). In the last 10 years, a new type of El Ni?o has emerged from the conventional El Ni?o, referred to as El Ni?o Modoki (Ashok et al. 2007), central Pacific (CP)El Ni?o (Yeh et al. 2009), or warm pool El Ni?o (Kug, Jin,and An 2009). The dominant feature of El Ni?o Modoki is maximum warm SSTAs in the equatorial central Pacific around the date line and weak negative SSTAs in the equatorial western and eastern Pacific.

    Because of its strong variability and substantial global climate impacts, ENSO has always been a central target of seasonal and interannual climate predictions (see review by Barnston et al. 2012). ENSO predictions can be conducted using dynamical or statistical models. Impressive progress has been achieved in ENSO prediction by dynamical models. Some strong ENSO events can be predicted by dynamic models at 1-yr or even longer lead times, and most moderate and weak ENSO events can also be predicted several months in advance (Anderson et al. 2002;Cane, Zebiak, and Dolan 1986; Jin et al. 2008; Latif et al.1998; Luo and Yamagata 2005). ENSO predictive skill can be improved through the following approaches: ensemble forecasting using an intermediate coupled model (Zheng et al. 2006), assimilating wind observations (Zheng and Zhu 2010), and minimizing the uncertainties of parameterizing the effects of subsurface temperature (Zheng and Zhu 2015). At present, the skills of dynamical models exceed those of statistical models, especially for real-time predictions (Barnston et al. 2012).

    An essential step of dynamical prediction is initialization, which obtains an initial model state close to the observation. There are two distinct types of initialization approaches: full-field and anomaly initialization (Smith,Eade, and Pohlmann 2013). Their major difference is that the former initializes the model through assimilating raw observational data, while the latter through assimilating model climatology plus observational anomalies. Full-field initialization effectively corrects model biases by constraining model states to the observations during assimilation processes, and thus obtains more accurate initial conditions than those obtained from anomaly initialization.However, a model initialized by the full-field approach will tend to gradually drift towards its preferred climatology,because it is not constrained by observations during hindcast/forecast integrations. In contrast, anomaly initialization preserves the preferred climatology of the model to a large extent, and thus minimizes the drift during hindcast/forecast integrations (Smith, Eade, and Pohlmann 2013).

    Recently, the Institute of Atmospheric Physics (IAP)near-term climate prediction system, referred to as IAPDecPreS, was constructed using the FGOALS-s2 global general circulation model and a new ocean data assimilation scheme. The main aim of this study are to evaluate the skill of the system in ENSO and El Ni?o Modoki prediction,and to compare the differences in skill between the anomaly and full-field initialization approaches. IAP-DecPreS and the observational datasets used are introduced in Section 2. Section 3 evaluates the skill of the system in ENSO prediction from two aspects–the temporal evolution of ENSO indices and large-scale spatial patterns during ENSO mature winter. A summary is given in Section 4.

    2. Climate prediction system and observational data

    2.1. Climate prediction system

    IAP-DecPreS was constructed based on a state-of-the-art coupled global climate model (CGCM), FGOALS-s2, developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG) at the IAP, Chinese Academy of Sciences (Bao et al.2013; Zhou et al. 2014, supplementary material). A new ocean data assimilation scheme, referred to as ‘ensemble optimal interpolation-incremental analysis update’(EnOI-IAU; supplementary material) was developed for FGOALS-s2. EnOI-IAU is the result of a combination of the EnOI and IAU assimilation schemes. EnOI is used to generate an analysis increment. Then, IAU is used to incorporate the analysis increment into the model (Wu, Zhou, and Sun 2017, supplementary material). Initializations using two different approaches–full-field and anomaly initializations–were conducted separately.

    Initiated from the initial states derived from the full-field or anomaly initialization runs, systematic hindcast runs were conducted. They are referred to as full-field or anomaly hindcasts. The hindcast runs were initiated from February, May, August, and November, separately, for each year in the period 1979–2015. Both the full-field and anomaly hindcasts had nine ensemble members, with small perturbations of atmospheric and oceanic initial states.Following Barnston et al. (2012), three-month mean variables were taken as prediction targets. We used ann-month lead time to represent the separation between the initial date and the three-month forecast target period. For both the hindcasts and the corresponding observational references, anomalies were calculated as deviations from their climatology over the period 1979–2015.

    2.2. Observational data

    The following observational datasets were used to assess the predictive skill: (1) The monthly mean precipitation data provided by the Global Precipitation Climatology Project(GPCP; Adler et al. 2003); (2) The extended reconstructed sea surface temperature (SST) from the National Oceanic and Atmospheric Administration (ERSST.v4; Huang et al.2015); (3) The monthly mean sea level pressure (SLP) and circulation data derived from ERA-Interim (Dee et al. 2011).All the datasets cover the period 1979–2015.

    3. Results

    3.1. Temporal correlation skill for SSTAs

    Figure 1 shows the spatial distributions of the temporal correlation skill scores for SSTA predictions at 1-, 4-, 7-, and 10-month lead time. For the anomaly hindcasts, significant correlations are apparent in most areas of the Pacific, tropical Indian Ocean, and North Atlantic at 1-month lead time(Figure 1(a)). The highest skill scores are in the equatorial central-eastern Pacific (CEP), a key area of ENSO. For the lead times of 4, 7, and 10 months, the ocean areas with significant skill scores gradually shrink (Figure 1(b)–(d)).The correlation skill scores in the equatorial CEP gradually decrease from about 0.6 to 0.3. In contrast, the skill scores in the tropical western Pacific, western Atlantic, and Indian Ocean remain above 0.6 persistently, which may be associated with the deeper thermocline and associated greater thermal inertia in these regions.

    Figure 1.Spatial distributions of temporal correlation skill scores for predictions of monthly SSTAs in the period 1979–2015: (a–d)anomaly hindcasts at 1-, 4-, 7-, and 10-month lead time; (e–h) as in (a–d) but for the full-field hindcasts. Dotted areas denote values reaching the 0.05 significance level. (i–l) Differences between (a–d) and (e–h).

    For the full-field hindcasts, the correlation skill scores at 1-month lead time are lower than their counterparts in the anomaly hindcasts in some ocean areas by about 0.1–0.2(Figure 1(a) and (e)). The areas with significant skill scores are also much smaller. For the lead times of 4, 7, and 10 months,the skill scores of the full-field hindcasts in the equatorial CEP decrease even faster than in the anomaly hindcasts(Figure 1(f)–(h)). However, the long persistence of high skill scores in the tropical western Pacific, western Atlantic, and Indian Ocean is also seen in the full-field hindcasts.

    3.2. Predictive skill for temporal evolution of Ni?o3.4 and El Ni?o Modoki indices

    The Ni?o3.4 index, defined as the area-averaged SSTAs in the equatorial CEP (5°N–5°S, 170°–120°W), is commonly used to measure the intensity of conventional ENSO events (Barnston, Chelliah, and Goldenberg 1997). Ashok et al. (2007) defined an El Ni?o Modoki index (EMI) as the area-averaged SSTA over the equatorial central Pacific(165°E–140°W, 10°S–10°N) minus half of the sum of SSTAs in the equatorial far eastern Pacific (110°–70°W, 15°S–5°N)and equatorial western Pacific (125°–145°E, 10°S–20°N),which characterizes the sandwich structure of El Ni?o Modoki. The predictive skill scores of the hindcast runs in the Ni?o3.4 index and EMI are evaluated.

    The Ni?o3.4 index values predicted by the anomaly hindcasts are significantly correlated with those in the observation, with correlation coefficients reaching 0.84,0.67, 0.56, and 0.42 at 1-, 4-, 7-, and 10-month lead time,respectively (Table 1). The strongest El Ni?o event in 1997/1998, and La Nina event in 1988/1989, are successfully predicted at the 10-month lead time. Most moderate and weak ENSO events are reproduced at the 4- and 7-month lead times. The intensities of the predicted El Ni?o events are underestimated in the hindcast runs at the 7- and 10-month lead times, while the intensities of the predicted La Ni?a events are close to those in the observation (Figure 2(a)). As a result, the positive skewness of ENSO in the observation, representing that El Ni?o tends to be stronger than La Ni?a (An and Jin 2004), is underestimated in the anomaly hindcasts at the 7-month lead time by about 45%, and even wrongly simulated in sign at the 10-month lead time.

    A previous study noted that the predictive skill for ENSO after 2000 has reduced (Barnston et al. 2012), because of the variability reduction of ENSO events during the period(Hu et al. 2013; McPhaden 2012). However, such a decline in skill is not seen in the anomaly hindcasts of IAP-DecPreS.The temporal correlation skill scores for the Ni?o3.4 index after 2000 are even somewhat higher that before 2000.The correlation coefficients are 0.83, 0.66, 0.54, and 0.43(0.85, 0.7, 0.59, and 0.42) at the 1-, 4-, 7-, and 10-month lead time for the period before (after) 2000. We calculated the correlation accuracies of the anomaly initialization runs for sea surface height (SSH) anomalies in the CEP over the periods 1980–2000 and 2001–2015, separately. The correlation accuracy increases from 0.90 to 0.94. It is speculated that the increase in skill in the anomaly hindcasts is associated with more accurate initial conditions due to a considerable increase in assimilated ocean observation records after the implementation of the Argo project (supplementary material).

    The correlation skill scores of the full-field hindcasts for the Ni?o3.4 index are 0.85, 0.58, 0.39, and 0.24 at the 1-,4-, 7-, and 10-month lead time, respectively–lower than those of the anomaly hindcasts, except at the 3-month lead time (Table 1). Though the strongest El Ni?o and La Ni?a events are predicted, the full-field hindcasts show much lower skill than the anomaly hindcasts in moderate and weak events (Figure 2(b)).

    For the EMI, the correlation skill scores of the anomaly hindcasts are 0.76, 0.62, 0.53 and 0.43 at the 1-, 4-, 7-, and 10-month lead time, respectively (Table 1). The strong ElNi?o Modoki event in 2009/2010 is predicted up to the 10-month lead time, though the predicted intensity is weaker than that in the observation (Figure 2(c)). As for the Ni?o3.4 index, the predictive skill scores for the EMI index after 2000 are somewhat higher than those before 2000.

    Table 1. Correlation skill scores of the Ni?o3.4 index and El Ni?o Modoki index at the 1-, 4-, 7-, and 10-month lead time predicted by the anomaly and full-field hindcasts, separately.

    The correlation skill scores of the full-field hindcasts for the EMI index are 0.68, 0.38, 0.1, and ?0.14 at the 1-,4-, 7-, and 10-month lead time, respectively–much lower than those of the anomaly hindcasts (Table 1). In addition,the intensities of the EMI predicted by the full-field hindcasts are far weaker than those in the observation and the anomaly hindcasts (Figure 2(d)).

    Figure 2. Time series of Ni?o3.4 index values predicted by the (a) anomaly and (b) full-field hindcasts. Black lines denote observations. Red, blue, purple, and green lines denote the 1-, 4-,7-, and 10-month lead times, respectively. (c, d) As in (a, b) but for the El Ni?o Modoki index.

    Figure 3. (a–d) Temporal correlation skill scores of time series of Ni?o3.4 index values as a function of forecast lead time for hindcast runs initiated from (a) February, (b) May, (c) August, and (d) November. Blue and red lines denote anomaly and full-field hindcasts,respectively. Bars denote ranges of best and worst skill scores of individual members. Black lines denote persistence predictions. (e–h)As in (a–d) but for the El Ni?o Modoki index.

    The temporal correlation skill scores of the Ni?o3.4 index initiated from February, May, August, and November as a function of lead time are shown separately in the left-hand panels of Figure 3. The most prominent feature is that the skill scores of the anomaly hindcasts are higher than the full-field hindcasts for all four initiating months. To objectively evaluate the skill of the dynamical model, persistence predictions were conducted. For example, for the persistence prediction initiated from February, the state in January was taken as a persistent state. The anomaly hindcasts initiated from February, May, August, and November outperform the corresponding persistence predictions at the 3-, 2-, 8-, and 6-month lead time, respectively. The persistence prediction beats the model prediction at short lead times probably due to the inaccuracy of ocean initial conditions (Zhou and Zeng 2001). We calculated the annual cycle of the correlation accuracies of the anomaly initialization runs for SSH anomalies in the equatorial CEP(figure not shown). The accuracies of the initial conditions reached the lowest level in July, which suggests that the initial ocean subsurface states have the largest biases in July and thus cause the lowest skill scores of the hindcast initiated from August relative to the corresponding persistence prediction. There are marked declines in skill scores at the lead times of 1–4, 7–10, and 4–7 months, for both the persistent and model predictions initiated from February, August, and November, respectively (Figure 3(a),(c) and (d)). The declines in skill are associated with the‘spring prediction barrier’ of ENSO (Jin et al. 2008). Finally, it is worth noting that the skill scores of ensemble means are higher than those of most individual ensemble members,suggesting that the multi-member ensemble mean is an effective way to improve the skill and reduce the uncertainty of ENSO predictions (Zheng and Zhu 2016).

    For the EMI, the skill scores of the anomaly hindcasts initiated from any month are higher than their counterparts in the full-field hindcasts (Figure 3(e)–(h)). The anomaly hindcasts initiated from February, May, and November outperform the corresponding persistence predictions at the 3-, 4-, and 6-month lead time, respectively (Figure 3(e),(f), and (h)). The skill scores of the hindcasts initiated from August are lower than those of the persistence predictions at all lead times (Figure 3(g)). Compared with the Ni?o3.4 index, both the model and persistence predictions of the EMI do not show a clear prediction barrier feature.

    3.3. Predictive skill for spatial patterns of ENSO during boreal winter

    Figure 4. (a–c) Boreal winter-mean SST (shading; units: K) and SLP (contours; units: Pa) anomalies regressed against the simultaneous normalized Ni?o3.4 index for the (a) observation and (b, c) anomaly hindcasts at (b) one-season and (c) two-season lead time. (d–f) As in (a–c) but for the precipitation (shading; units: mm d?1) and 850-hPa wind anomalies (vectors, units: m s?1).

    Typical conventional ENSO events show a strong phase-locking feature and tend to reach mature phase during boreal winter (Rasmusson and Carpenter 1983).The relationship between El Ni?o Modoki and the seasonal cycle is much more complicated than that of conventional El Ni?o. Boreal winter is one of two dominant peak phases of El Ni?o Modoki (Weng et al. 2007). The predictive skill of IAP-DecPreS in terms of large-scale SST, precipitation and low-level circulation anomalies during ENSO (El Ni?o Modoki) peak winter are evaluated specifically. Above,we demonstrated that the anomaly hindcasts have much greater skill than the full-field hindcasts in terms of the temporal evolution of both ENSO and El Ni?o Modoki.Hence, we focus on the former in this section.

    For conventional El Ni?o, both the warm SSTAs in the equatorial CEP and V-shaped cold SSTAs to the west are reproduced well by the hindcasts at the 1- and 4-month lead time (Figure 4(a)–(c)). The basin-wide warming of the tropical Indian Ocean is also reproduced. The major discrepancies of the hindcasts are that the warm SSTAs along the western coast of North America, the South China Sea, and the Kuroshio extension are not reproduced. The predicted warm SSTAs in the equatorial CEP extend excessively westward compared with those in the observation.

    During El Ni?o mature winter, precipitation over the equatorial CEP is enhanced by underlying warm SSTAs(Figure 4(d)). The positive precipitation anomalies stimulate twin Rossby-wave-like cyclonic circulation anomalies to the west, symmetric about the equator in terms of the Gill model. The tropical western North Pacific is dominated by an anomalous anticyclone, referred to as the WNPAC.The WNPAC increases the precipitation over southeastern China. The convection over the tropical eastern Indian Ocean is suppressed by the remote forcing from the equatorial CEP, though the SSTAs in the tropical Indian Ocean evolve to the basin-wide warming. The extratropical eastern North Pacific is dominated by an anomalous cyclone(low pressure; Figure 4(a) and (c)), which is associated with the Pacific North American teleconnection pattern(Wallace and Gutzler 1981). All these features are reproduced by the anomaly hindcasts at the 1- and 4-month lead time (Figure 4(b), (c), (e), and (f)). The major discrepancies are that: (1) the predicted positive precipitation anomalies over the equatorial CEP are shifted westward relative to those in the observation, corresponding to the underlying excessively extended warm SSTAs; and (2) the intensities of the low-pressure anomalies over the extratropical eastern North Pacific in the hindcasts are much weaker than those in the observation, which is associated with the fact that over the midlatitude North Pacific the atmospheric circulation anomalies are modulated by unpredictable internal high-frequency variability (Pierce 2001).

    For El Ni?o Modoki, the major features of the large-scale SST, precipitation, and low-level circulation anomalies in winter are reproduced well by the anomaly hindcast at the 1- and 4-month lead time (supplementary material).

    4. Conclusions

    In this study, we evaluated the performances of the IAP’s near-term climate prediction system, IAP-DecPreS, which is based on the CGCM FGOALS-s2 and the EnOI-IAU initialization scheme, in ENSO prediction. The skill scores of hindcasts initiated from two distinct initialization approaches–anomaly and full-field initialization–were compared. The major conclusions can be summarized as follows:

    (1) The anomaly hindcasts show higher predictive skill than the full-field hindcasts for SSTAs in most global ocean areas at lead times from 1 to 10 months. For both the Ni?o3.4 and El Ni?o Modoki indices, the anomaly hindcasts have higher predictive skill than the full-field hindcast at most lead times. Hence, for the current IAPDecPreS based on FGOALS-s2, anomaly initialization is superior to full-field initialization in terms of ENSO prediction.

    (2) The ensemble mean results have predictive skill close to those individual ensemble members with highest skill, for both the Ni?o3.4 and El Ni?o Modoki indices. This indicates that the ensemble mean is an effective way to improve the prediction skill and reduce the uncertainty.

    (3) The predictive skill for ENSO is dependent on the initiating month. Both model and persistence predictions for the Ni?o3.4 index initiated from February, August, and November experience declines in skill at the 1–4-, 7–10-, and 4–7-month lead times, respectively, due to the so-called spring prediction barrier of ENSO.

    (4) The anomaly hindcasts at the 1- and 4-month lead time reproduce the major features of largescale SST, precipitation, and low-level circulation anomalies during ENSO (El Ni?o Modoki) winter.Impressively, the anomalous anticyclone over the tropical western North Pacific and positive precipitation anomalies over southeastern China are realistically predicted, suggesting that the prediction system has potential in the seasonal prediction of the western North Pacific–East Asian winter monsoon.

    The results of this study suggest that, for the current IAP-DecPreS system based on FGOALS-s2, the anomaly initialization method is superior to full-field initiation. It is speculated that this superiority is associated with the following reason: The method of anomaly initialization only assimilates the anomaly field, and thus preserves the model’s preferred climatology, which can effectively reduce the initial shocks in the hindcast/forecast runs.However, this result is model-dependent. For example,Smith, Eade, and Pohlmann (2013) reported that full-field initialized hindcasts are more skillful than anomaly initialized hindcasts. What mechanisms are responsible for the differences in skill between the two initialization approaches deserves further study.

    There are many other interesting questions that also deserve further study based on IAP-DecPreS. For example,Zheng, Hu, and L’Heureux (2016) found that the decaying phase of ENSO is more predictable than its developing phase. Thus, an interesting line of research in the future would be to evaluate the impacts of the two different initialization approaches on the predictive skill for ENSO in its different phases.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Key Research and Development Program of China (grant number 2017YFA0604201), the National Natural Science Foundation of China (grant numbers. 41661144009 and 41675089), and the R&D Special Fund for Public Welfare Industry (meteorology)(grant number GYHY201506012).

    Aceituno, P. 1992. “El Ni?o, the Southern Oscillation, and ENSO: Confusing Names for a Complex Ocean-atmosphere Interaction.”Bulletin of the American Meteorological Society73(4): 483–485.

    Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. P. Xie, J. Janowiak,B. Rudolf, et al. 2003. “The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis(1979 Present).”Journal of Hydrometeorology4 (6): 1147–1167.

    Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau,and J. D. Scott. 2002. “The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans.”Journal of Climate15 (16): 2205–2231.

    An, S. I., and F. F. Jin. 2004. “Nonlinearity and Asymmetry of ENSO.”Journal of Climate17 (12): 2399–2412.

    Anderson, D., T. Stockdale, M. Balmaseda, L. Ferranti, F. Vitart,R. Doblasreyes, R. Hagedorn, et al. 2002. “Comparison of the ECMWF Seasonal Forecast System 1 and 2, including the Relative Performance for the 1997/98 El Nino.”Logic Colloquium211–227.

    Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata. 2007.“El Ni?o Modoki and Its Possible Teleconnection.”Journal of Geophysical Research112 (C11): 505.

    Bao, Q., P. Lin, T. Zhou, L. Liu, J. Liu, Q. Bao, S. Xu, and W.Huang. 2013. “The Flexible Global Ocean-atmosphere-land System Model, Spectral Version 2: FGOALS-s2.”Advances in Atmospheric Sciences30 (3): 561–576.

    Barnston, A. G., M. Chelliah, and S. B. Goldenberg. 1997.“Documentation of a Highly ENSO-Related SST Region in the Equatorial Pacific.”Atmosphere-Ocean35 (3): 367–383.

    Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G.DeWitt. 2012. “Skill of Real-time Seasonal ENSO Model Predictions during 2002–2011: Is Our Capability Increasing?”Bulletin of the American Meteorological Society93 (5): 631–651.

    Cane, M. A., S. E. Zebiak, and S. C. Dolan. 1986. “Experimental Forecasts of El Ni?o.”Nature322 (6073): 827–832.

    Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S.Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, and P.Bauer. 2011. “The ERA–Interim Reanalysis: Configuration and Performance of the Data Assimilation System.”Quarterly Journal of the Royal Meteorological Society137 (656): 553–597.

    Harrison, D. E., and N. K. Larkin. 1998. “El Ni?o-southern Oscillation Sea Surface Temperature and Wind Anomalies,1946–1993.”Reviews of Geophysics36 (3): 353–399.

    Hu, Z.-Z., A. Kumar, H. L. Ren, H. Wang, M. L’Heureux, and F.-F. Jin.2013. “Weakened Interannual Variability in the Tropical Pacific Ocean since 2000.”Journal of Climate26 (8): 2601–2613.

    Huang, B., V. F. Banzon, E. Freeman, J. Lawrimore, W. Liu, and T. C. Peterson. 2015. “Extended Reconstructed Sea Surface Temperature Version 4 (ersst.v4). Part I: Upgrades and Intercomparisons.”Journal of Climate28 (3): 911–930.

    Jin, E. K., J. L. Kinter, B. Wang, C. K. Park, I. S. Kang, B. P. Kirtman, J. S.Kug, A. Kumar, J. J. Luo, and J. Schemm. 2008. “Current Status of ENSO Prediction Skill in Coupled Ocean–Atmosphere Models.”Climate Dynamics31 (6): 647–664.

    Kug, J. S., F. F. Jin, and S. I. An. 2009. “Two Types of El Ni?o Events:Cold Tongue El Ni?o and Warm Pool El Ni?o.”Journal of Climate22 (22): 1499–1515.

    Latif, M., D. Anderson, T. Barnett, M. Cane, R. Kleeman, A. Leetmaa,J. O’Brien, A. Rosati, and E. Schneider. 1998. “A Review of the Predictability and Prediction of ENSO.”Journal of Geophysical Research Oceans103393 (30): 375–314.

    Luo, J. J., and T. Yamagata. 2005. “Seasonal Climate Predictability in a Coupled OAGCM Using a Different Approach for Ensemble Forecasts.”Journal of Climate18 (21): 4474–4497.

    McPhaden, M. J. 2012. “A 21st Century Shift in the Relationship between ENSO SST and Warm Water Volume Anomalies.”Geophysical Research Letters39 (9): 9706.

    McPhaden, M. J., S. E. Zebiak, and M. H. Glantz. 2006. “ENSO as an Integrating Concept in Earth Science.”Science314 (5806):1740.

    Pierce, D. W. 2001. “Distinguishing Coupled Ocean–Atmosphere Interactions from Background Noise in the North Pacific.”Progress in Oceanography49 (1-4): 331–352.

    Rasmusson, E. M., and T. H. Carpenter. 1983. “The Relationship between Eastern Equatorial Pacific Sea Surface Temperatures and Rainfall over India and Sri Lanka.”Monthly Weather Review111 (111): 517.

    Smith, D. M., R. Eade, and H. Pohlmann. 2013. “A Comparison of Full-field and Anomaly Initialization for Seasonal to Decadal Climate Prediction.”Climate Dynamics41 (11–12): 3325–3338.

    Wallace, J. M., and D. S. Gutzler. 1981. “Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter.”Monthly Weather Review109: 784–804.

    Wang, B., R. Wu, and X. Fu. 2000. “Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate?”Journal of Climate13 (9): 1517–1536.

    Webster, P. J., V. O. Maga?a, T. N. Palmer, J. Shukla, R. A. Tomas,M. Yanai, and T. Yasunari. 1998. “Monsoons: Processes,Predictability, and the Prospects for Prediction.”Journal of Geophysical Research: Oceans1031 (C7): 14451–14510.

    Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata. 2007.“Impacts of Recent cp El Ni?o on Dry/Wet Conditions in the Pacific Rim during Boreal Summer.”Climate Dynamics29 (2):113–129.

    Wu, B., T. J. Zhou, and Q. Sun. 2017. “Impacts of Initialization Schemes of Oceanic States on the Predictive Skills of the IAP near-Term Climate Prediction System.”Advances in Earth Science32 (4): 342–352.

    Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F.Jin. 2009. “El Ni?o in a Changing Climate.”Nature461 (7263):511.

    Zheng, F., and J. Zhu. 2010. “Coupled Assimilation for an Intermediated Coupled ENSO Prediction Model.”O(jiān)cean Dynamics60 (5): 1061–1073.

    Zheng, F., and J. Zhu. 2015. “Roles of Initial Ocean Surface and Subsurface States on Successfully Predicting 2006–2007 El Ni?o with an Intermediate Coupled Model.”O(jiān)cean Science11(1): 187–194.

    Zheng, F., and J. Zhu. 2016. “Improved Ensemble-mean Forecasting of ENSO Events by a Zero-mean Stochastic Error Model of an Intermediate Coupled Model.”Climate Dynamics2016: 1–15.

    Zheng, F., J. Zhu, R. H. Zhang, and G. Q. Zhou. 2006. “Ensemble Hindcasts of SST Anomalies in the Tropical Pacific Using an Intermediate Coupled Model.”Geophysical Research Letters33(19): 318–37.

    Zheng, Z., Z. Z. Hu, and M. L’Heureux. 2016. “Predictable Components of ENSO Evolution in Real-time Multi-model Predictions.”Scientific Reports6: 35909.

    Zhou, G., and Q. Zeng. 2001. “Predictions of Enso with a Coupled Atmosphere-Ocean General Circulation Model.”Advances in Atmospheric Sciences18 (4): 587–603.

    Zhou, T. J., Y. Q. Yu, Y. M. Liu, and B. Wang. 2014. “Flexible Global Ocean-atmosphere-land System Model: A Modeling Tool for the Climate Change Research Community.”Springer-Verlag,Berlin Heidelberg483: 217–224. doi:10.1007/978-3-642-41801-3.

    免费人妻精品一区二区三区视频| 成人毛片a级毛片在线播放| 熟女人妻精品中文字幕| 天堂8中文在线网| 国产成人精品婷婷| 日韩制服骚丝袜av| 久久精品久久久久久噜噜老黄| 在线天堂最新版资源| 波野结衣二区三区在线| 看免费成人av毛片| 在线精品无人区一区二区三| 亚洲人成网站在线观看播放| 国产精品久久久久久久久免| 亚洲精品成人av观看孕妇| 人妻少妇偷人精品九色| 亚洲国产最新在线播放| 国产高清国产精品国产三级| 亚洲成国产人片在线观看| 中国三级夫妇交换| 日韩精品有码人妻一区| 亚洲精品,欧美精品| 香蕉国产在线看| 免费av不卡在线播放| 9热在线视频观看99| 国产免费一级a男人的天堂| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品人妻偷拍中文字幕| 国产av精品麻豆| 精品国产一区二区三区四区第35| 秋霞伦理黄片| 激情视频va一区二区三区| 国产1区2区3区精品| 日本wwww免费看| 99热国产这里只有精品6| 中文字幕人妻熟女乱码| 日本av免费视频播放| 黄片无遮挡物在线观看| 亚洲精品视频女| 亚洲人成77777在线视频| 成人亚洲欧美一区二区av| 久久国产精品大桥未久av| 久久精品人人爽人人爽视色| 少妇高潮的动态图| 亚洲伊人色综图| 热re99久久精品国产66热6| 亚洲精品成人av观看孕妇| 亚洲人与动物交配视频| 热re99久久国产66热| 黄色怎么调成土黄色| 成人漫画全彩无遮挡| 9色porny在线观看| 丰满迷人的少妇在线观看| 狠狠婷婷综合久久久久久88av| 婷婷成人精品国产| 麻豆精品久久久久久蜜桃| 亚洲精品成人av观看孕妇| 一边摸一边做爽爽视频免费| 久久精品久久久久久久性| 亚洲精品中文字幕在线视频| 久久精品久久久久久久性| 国产黄色视频一区二区在线观看| 亚洲精品日本国产第一区| 一本久久精品| 亚洲av免费高清在线观看| 色婷婷久久久亚洲欧美| 国产精品嫩草影院av在线观看| 又黄又粗又硬又大视频| 国产在视频线精品| 亚洲综合精品二区| 国产亚洲精品久久久com| 亚洲四区av| 女性被躁到高潮视频| 久久97久久精品| 人人妻人人添人人爽欧美一区卜| 亚洲精品日韩在线中文字幕| 全区人妻精品视频| 成人免费观看视频高清| 亚洲成人av在线免费| 久久人妻熟女aⅴ| 久久久久久久久久久久大奶| 这个男人来自地球电影免费观看 | 国产激情久久老熟女| 成人国语在线视频| 国产欧美另类精品又又久久亚洲欧美| 日韩大片免费观看网站| 亚洲综合色网址| 一级a做视频免费观看| 视频中文字幕在线观看| 久久99热这里只频精品6学生| 久久午夜综合久久蜜桃| 黄色怎么调成土黄色| 色视频在线一区二区三区| 在线观看国产h片| 夫妻午夜视频| 国产高清国产精品国产三级| 久久久久久久精品精品| 国产免费视频播放在线视频| 色婷婷av一区二区三区视频| 成人毛片60女人毛片免费| 免费观看av网站的网址| 欧美精品一区二区大全| 日本与韩国留学比较| 久久99蜜桃精品久久| 美女国产视频在线观看| 五月玫瑰六月丁香| 久久久久视频综合| 久久这里只有精品19| 亚洲精品aⅴ在线观看| 2022亚洲国产成人精品| 蜜臀久久99精品久久宅男| 久久99精品国语久久久| 伊人亚洲综合成人网| 男女免费视频国产| 国产黄色免费在线视频| 亚洲综合色惰| 又粗又硬又长又爽又黄的视频| 男女高潮啪啪啪动态图| 午夜免费鲁丝| 天堂8中文在线网| 午夜91福利影院| 免费日韩欧美在线观看| 丝袜在线中文字幕| 在线观看人妻少妇| 国产日韩欧美在线精品| 午夜免费观看性视频| 99视频精品全部免费 在线| 伊人亚洲综合成人网| 国产精品偷伦视频观看了| 少妇人妻久久综合中文| 如日韩欧美国产精品一区二区三区| 1024视频免费在线观看| 国产一区二区三区av在线| 日韩伦理黄色片| 日韩大片免费观看网站| 久久青草综合色| 下体分泌物呈黄色| 欧美 日韩 精品 国产| 日韩 亚洲 欧美在线| 三级国产精品片| 99久久人妻综合| tube8黄色片| 高清视频免费观看一区二区| 国产亚洲av片在线观看秒播厂| 久久久久久人人人人人| 久久久久久人人人人人| 巨乳人妻的诱惑在线观看| 免费看光身美女| 免费观看在线日韩| 午夜av观看不卡| 国产黄色免费在线视频| 好男人视频免费观看在线| av不卡在线播放| 一级黄片播放器| tube8黄色片| 国产一区二区激情短视频 | 亚洲欧美一区二区三区国产| 久久久久久久国产电影| 亚洲精品国产av蜜桃| 精品亚洲成国产av| 黑人巨大精品欧美一区二区蜜桃 | 亚洲熟女精品中文字幕| √禁漫天堂资源中文www| 美女内射精品一级片tv| 少妇人妻精品综合一区二区| 一个人免费看片子| www.av在线官网国产| 少妇高潮的动态图| freevideosex欧美| 日本午夜av视频| 自拍欧美九色日韩亚洲蝌蚪91| 色视频在线一区二区三区| 欧美精品亚洲一区二区| 久久久久久久国产电影| 日韩成人伦理影院| 国产成人精品无人区| 美女主播在线视频| 午夜久久久在线观看| 咕卡用的链子| 韩国av在线不卡| 精品亚洲成a人片在线观看| 精品视频人人做人人爽| 人妻一区二区av| 欧美日韩综合久久久久久| 精品人妻偷拍中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 国产精品免费大片| 91精品国产国语对白视频| 99热6这里只有精品| 男人添女人高潮全过程视频| 国产成人精品在线电影| 国产极品天堂在线| 国产精品秋霞免费鲁丝片| 最近中文字幕高清免费大全6| 欧美精品亚洲一区二区| 欧美成人午夜免费资源| 少妇精品久久久久久久| 国产伦理片在线播放av一区| 九九在线视频观看精品| 在线观看免费日韩欧美大片| 国产片内射在线| 国产老妇伦熟女老妇高清| 18禁观看日本| 午夜福利视频在线观看免费| 人妻一区二区av| 中文天堂在线官网| 极品人妻少妇av视频| 各种免费的搞黄视频| 日本爱情动作片www.在线观看| 亚洲av免费高清在线观看| 国产亚洲精品第一综合不卡 | 制服人妻中文乱码| 热99国产精品久久久久久7| 日日啪夜夜爽| 看十八女毛片水多多多| 亚洲av中文av极速乱| 日韩中文字幕视频在线看片| 久久99热这里只频精品6学生| 青春草国产在线视频| 亚洲人成网站在线观看播放| 一级毛片黄色毛片免费观看视频| 国产精品秋霞免费鲁丝片| 美女xxoo啪啪120秒动态图| 久久99热6这里只有精品| 欧美日韩亚洲高清精品| 人人妻人人爽人人添夜夜欢视频| 天天躁夜夜躁狠狠久久av| 18禁裸乳无遮挡动漫免费视频| 亚洲情色 制服丝袜| 国产黄色视频一区二区在线观看| 亚洲国产精品国产精品| 国产精品一区二区在线观看99| 亚洲精品,欧美精品| 欧美性感艳星| 黄色 视频免费看| 日韩制服丝袜自拍偷拍| 深夜精品福利| 91午夜精品亚洲一区二区三区| 亚洲熟女精品中文字幕| 青春草亚洲视频在线观看| 日本欧美国产在线视频| av在线app专区| 18+在线观看网站| 午夜日本视频在线| 午夜久久久在线观看| 下体分泌物呈黄色| 国产色爽女视频免费观看| 国产成人精品久久久久久| 大码成人一级视频| 久久午夜福利片| 国产 精品1| 中文字幕制服av| 国产精品人妻久久久久久| 亚洲av中文av极速乱| 久久精品国产自在天天线| 久久韩国三级中文字幕| 一二三四在线观看免费中文在 | 久久久久久久久久久久大奶| 一级片'在线观看视频| 久久久久精品性色| 亚洲av在线观看美女高潮| 欧美激情 高清一区二区三区| 日产精品乱码卡一卡2卡三| 国产国拍精品亚洲av在线观看| 99久国产av精品国产电影| 国产色婷婷99| 大片免费播放器 马上看| 免费看av在线观看网站| 91精品三级在线观看| 伊人亚洲综合成人网| 精品一区在线观看国产| 下体分泌物呈黄色| 国产精品久久久av美女十八| 欧美人与善性xxx| 免费高清在线观看视频在线观看| 搡老乐熟女国产| 9热在线视频观看99| 三上悠亚av全集在线观看| 久久精品国产亚洲av涩爱| 日本午夜av视频| 亚洲国产最新在线播放| 日韩制服丝袜自拍偷拍| 国产精品久久久久久久电影| 日本wwww免费看| 精品少妇内射三级| 内地一区二区视频在线| 亚洲国产日韩一区二区| 亚洲一区二区三区欧美精品| 亚洲国产av影院在线观看| 欧美国产精品va在线观看不卡| 国产高清三级在线| 午夜日本视频在线| 国产精品欧美亚洲77777| 天堂俺去俺来也www色官网| 男女无遮挡免费网站观看| 制服丝袜香蕉在线| 国国产精品蜜臀av免费| 亚洲国产精品成人久久小说| 午夜影院在线不卡| 国产精品久久久久久久电影| 我的女老师完整版在线观看| 一二三四中文在线观看免费高清| 丝袜在线中文字幕| 岛国毛片在线播放| 日韩伦理黄色片| 精品国产国语对白av| 99久久人妻综合| 免费观看在线日韩| 少妇的逼好多水| 五月天丁香电影| 欧美变态另类bdsm刘玥| 母亲3免费完整高清在线观看 | 欧美最新免费一区二区三区| 七月丁香在线播放| 国产精品一区www在线观看| 国产色爽女视频免费观看| 制服丝袜香蕉在线| 2018国产大陆天天弄谢| a 毛片基地| 日韩一区二区视频免费看| 最新的欧美精品一区二区| 天堂8中文在线网| 女人被躁到高潮嗷嗷叫费观| 熟女av电影| 国产一区二区在线观看日韩| 人妻人人澡人人爽人人| 亚洲欧美色中文字幕在线| 久久久久久久久久久久大奶| 一级毛片电影观看| 免费看av在线观看网站| 欧美老熟妇乱子伦牲交| 中文欧美无线码| 黄色毛片三级朝国网站| 黑人巨大精品欧美一区二区蜜桃 | 免费av中文字幕在线| 国产69精品久久久久777片| 亚洲经典国产精华液单| 一本—道久久a久久精品蜜桃钙片| 老司机亚洲免费影院| 欧美人与善性xxx| 18禁裸乳无遮挡动漫免费视频| a 毛片基地| 免费大片黄手机在线观看| 在线观看三级黄色| 一边摸一边做爽爽视频免费| 九九在线视频观看精品| 男女国产视频网站| 纯流量卡能插随身wifi吗| 亚洲欧美一区二区三区黑人 | 22中文网久久字幕| 美女xxoo啪啪120秒动态图| 在线亚洲精品国产二区图片欧美| 成年美女黄网站色视频大全免费| 日韩大片免费观看网站| 99久久综合免费| 日本91视频免费播放| 久久免费观看电影| 黑人欧美特级aaaaaa片| 亚洲国产色片| 在线天堂中文资源库| 26uuu在线亚洲综合色| videossex国产| 午夜免费男女啪啪视频观看| 久久这里只有精品19| 五月天丁香电影| 少妇被粗大的猛进出69影院 | 在线观看美女被高潮喷水网站| 亚洲欧美一区二区三区国产| 大香蕉久久网| 亚洲av.av天堂| 99久国产av精品国产电影| 深夜精品福利| 日本vs欧美在线观看视频| av卡一久久| 18禁在线无遮挡免费观看视频| 午夜视频国产福利| 国产精品久久久av美女十八| 国产熟女午夜一区二区三区| 亚洲av综合色区一区| 国产欧美日韩一区二区三区在线| 国产深夜福利视频在线观看| 午夜福利在线观看免费完整高清在| 久久ye,这里只有精品| 性色av一级| 国产熟女欧美一区二区| 日韩制服骚丝袜av| 一区二区三区乱码不卡18| 日韩欧美一区视频在线观看| 美女大奶头黄色视频| 亚洲精品国产色婷婷电影| a级毛色黄片| 看免费成人av毛片| 26uuu在线亚洲综合色| 久久久久精品性色| 国产成人精品无人区| freevideosex欧美| 天美传媒精品一区二区| 国产日韩欧美视频二区| 国产免费现黄频在线看| 亚洲av.av天堂| 亚洲欧美日韩另类电影网站| 中文字幕人妻丝袜制服| 91在线精品国自产拍蜜月| 一区二区日韩欧美中文字幕 | 欧美精品av麻豆av| 一级黄片播放器| 成年美女黄网站色视频大全免费| 日本爱情动作片www.在线观看| 精品一区二区三卡| 日韩伦理黄色片| 一二三四在线观看免费中文在 | 免费播放大片免费观看视频在线观看| 午夜老司机福利剧场| 人妻一区二区av| 日本猛色少妇xxxxx猛交久久| 国产一级毛片在线| 寂寞人妻少妇视频99o| 高清不卡的av网站| 亚洲精品久久成人aⅴ小说| 日韩制服骚丝袜av| 欧美丝袜亚洲另类| 国产有黄有色有爽视频| 9色porny在线观看| 边亲边吃奶的免费视频| 国产高清国产精品国产三级| av黄色大香蕉| 久久99蜜桃精品久久| 高清欧美精品videossex| 日韩,欧美,国产一区二区三区| 亚洲精品国产色婷婷电影| 亚洲第一av免费看| 欧美日韩精品成人综合77777| 一级毛片我不卡| 亚洲,欧美,日韩| 国产男人的电影天堂91| 999精品在线视频| 美女脱内裤让男人舔精品视频| 亚洲情色 制服丝袜| 日韩视频在线欧美| 爱豆传媒免费全集在线观看| 午夜精品国产一区二区电影| 汤姆久久久久久久影院中文字幕| 精品国产国语对白av| 亚洲国产日韩一区二区| 亚洲精品色激情综合| 18禁动态无遮挡网站| 天天躁夜夜躁狠狠久久av| 国产成人a∨麻豆精品| 国产精品国产av在线观看| 国产精品秋霞免费鲁丝片| 人妻系列 视频| 国产精品久久久久久久电影| 久久久久人妻精品一区果冻| 丝袜喷水一区| 日本午夜av视频| 亚洲欧美日韩另类电影网站| 日本免费在线观看一区| 啦啦啦中文免费视频观看日本| 久久国产精品男人的天堂亚洲 | 丝袜脚勾引网站| 99精国产麻豆久久婷婷| 成人18禁高潮啪啪吃奶动态图| 欧美97在线视频| 精品国产一区二区久久| 日日爽夜夜爽网站| 少妇的逼水好多| av黄色大香蕉| 999精品在线视频| 永久网站在线| 久久韩国三级中文字幕| 亚洲性久久影院| 亚洲欧洲日产国产| 亚洲第一av免费看| 国产熟女午夜一区二区三区| 国产精品99久久99久久久不卡 | 嫩草影院入口| 久久这里有精品视频免费| 精品一区二区免费观看| 另类精品久久| 免费观看av网站的网址| 国产av国产精品国产| 80岁老熟妇乱子伦牲交| av免费在线看不卡| 午夜精品国产一区二区电影| 大香蕉久久成人网| 国产 精品1| 成年美女黄网站色视频大全免费| 天堂8中文在线网| 精品人妻在线不人妻| 一本色道久久久久久精品综合| 天天躁夜夜躁狠狠躁躁| 18在线观看网站| 午夜激情av网站| 久久99一区二区三区| 国产成人a∨麻豆精品| 18+在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美日韩另类电影网站| 日韩熟女老妇一区二区性免费视频| av天堂久久9| 日韩电影二区| 国产精品秋霞免费鲁丝片| 国产一级毛片在线| 寂寞人妻少妇视频99o| 高清不卡的av网站| 欧美+日韩+精品| 国产综合精华液| 两个人免费观看高清视频| 国产一区亚洲一区在线观看| 国产欧美日韩一区二区三区在线| 午夜av观看不卡| 一级黄片播放器| 亚洲一码二码三码区别大吗| 亚洲国产色片| 精品福利永久在线观看| 欧美国产精品va在线观看不卡| 国产欧美亚洲国产| 亚洲精品久久午夜乱码| 亚洲成av片中文字幕在线观看 | 26uuu在线亚洲综合色| 在线亚洲精品国产二区图片欧美| 观看av在线不卡| 亚洲国产欧美日韩在线播放| 日本爱情动作片www.在线观看| 人妻 亚洲 视频| 午夜激情久久久久久久| 精品亚洲成a人片在线观看| 99久久中文字幕三级久久日本| 少妇精品久久久久久久| xxx大片免费视频| 新久久久久国产一级毛片| 国产成人免费观看mmmm| 涩涩av久久男人的天堂| 久久久久视频综合| 国产亚洲av片在线观看秒播厂| 十分钟在线观看高清视频www| 涩涩av久久男人的天堂| 极品人妻少妇av视频| 国产乱人偷精品视频| 色吧在线观看| 久久久久久久亚洲中文字幕| 爱豆传媒免费全集在线观看| 丝袜喷水一区| 免费不卡的大黄色大毛片视频在线观看| 国产在线一区二区三区精| www.色视频.com| av在线app专区| 日韩大片免费观看网站| 一级爰片在线观看| 色哟哟·www| 精品视频人人做人人爽| 免费久久久久久久精品成人欧美视频 | 欧美日韩视频高清一区二区三区二| 久久久久久久久久成人| 校园人妻丝袜中文字幕| 亚洲精品美女久久久久99蜜臀 | 欧美性感艳星| 精品一区二区三卡| 亚洲,欧美,日韩| 亚洲精华国产精华液的使用体验| 欧美日韩视频精品一区| 久久久久人妻精品一区果冻| 成人午夜精彩视频在线观看| 色吧在线观看| 最近的中文字幕免费完整| 日韩熟女老妇一区二区性免费视频| 亚洲精品国产色婷婷电影| 久久精品熟女亚洲av麻豆精品| 国产精品一国产av| 亚洲精品国产av成人精品| 亚洲成av片中文字幕在线观看 | 男人爽女人下面视频在线观看| 国产免费现黄频在线看| 亚洲情色 制服丝袜| 人妻系列 视频| 欧美精品一区二区免费开放| 久久久久国产精品人妻一区二区| 在线精品无人区一区二区三| 国产成人精品婷婷| av黄色大香蕉| 国产精品国产三级国产av玫瑰| 欧美精品亚洲一区二区| 宅男免费午夜| 欧美日韩视频高清一区二区三区二| 免费人成在线观看视频色| 国产亚洲午夜精品一区二区久久| 国产免费又黄又爽又色| 欧美少妇被猛烈插入视频| 男女午夜视频在线观看 | 18禁在线无遮挡免费观看视频| 亚洲国产看品久久| 女人精品久久久久毛片| 一个人免费看片子| 成人黄色视频免费在线看| 如何舔出高潮| 蜜臀久久99精品久久宅男| 中文乱码字字幕精品一区二区三区| 黄色一级大片看看| 一级a做视频免费观看| 久热这里只有精品99| 黑人高潮一二区| 成人国产av品久久久| 日韩一区二区视频免费看| 男女高潮啪啪啪动态图| 国产成人精品一,二区| 国产精品欧美亚洲77777| 久久亚洲国产成人精品v| 大片电影免费在线观看免费| 国产午夜精品一二区理论片| 精品久久国产蜜桃| 日韩成人伦理影院| 欧美少妇被猛烈插入视频| 久久毛片免费看一区二区三区| 一本色道久久久久久精品综合| 人妻 亚洲 视频| 日本av手机在线免费观看|