• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparisons of cloud detection among four satellite sensors on severe haze days in eastern China

    2018-01-31 03:32:12TANSiChunZHANGXioWANGHongCHENBinSHIGungYuSHIChongSttKyLortoryofNumrilMolingofAtmosphriSinsGophysilFluiDynmisInstitutofAtmosphriPhysisChinsAmyofSinsBijingChinCollortivInnovtionCntronForstEvlutionofMtorologilDisstr

    TAN Si-Chun, ZHANG Xio, WANG Hong, CHEN Bin, SHI Gung-Yu n SHI ChongStt Ky Lortory of Numril Moling of Atmosphri Sins n Gophysil Flui Dynmis, Institut of Atmosphri Physis,Chins Amy of Sins, Bijing, Chin; Collortiv Innovtion Cntr on Forst n Evlution of Mtorologil Disstrs, Nnjing Univrsity of Informtion Sin n Thnology, Nnjing, Chin; Collg of Erth Sin, Univrsity of Chins Amy of Sins, Bijing,Chin; Stt Ky Lortory of Svr Wthr/Institut of Atmosphri Composition, Chins Amy of Mtorologil Sins, Chin Mtorologil Aministrtion, Bijing, Chin; Ky Lortory of Clou-Pripittion Physis n Svr Storms, Institut of Atmosphri Physis, Chins Amy of Sins, Bijing, Chin

    1. Introduction

    Clouds play an important role in weather, climate, and the Earth’s energy balance. Clouds have a cooling effect through the enhancement of the planetary albedo and a heating effect through emitting longwave infrared radiation to the surface (Ramanathan et al. 1989; Liu, Shi,and Zhao 2007). The observed net cloud forcing is about four times the radiative forcing under a doubling of CO2(Ramanathan et al. 1989). Thus, it is very important to observe and study cloud properties.

    Satellite remote sensing is an important approach to obtain a variety of cloud properties because of its continuous temporal and spatial resolution. Nevertheless,discrepancies among satellite cloud datasets are apparent and these can be explained by differences in instruments,algorithms, and sampling (Kahn et al. 2014). The MODIS instrument onboard the Aqua and Terra satellites, launched respectively in 2002 and 1999, has 36 spectral bands covering a wide spectral range from 0.41 to 14.24 μm. The MODIS cloud mask algorithm uses a series of threshold tests applied to as many as 22 of the 36 bands to identify the presence of clouds in each pixel. Finally, it classifies each 1 × 1 km pixel as either ‘confidently clear’, ‘probably clear’, ‘probably cloudy’, or ‘cloudy’ (Ackerman et al. 1998;Platnick et al. 2003; King et al. 2013). The infrared/microwave sounder suite, AIRS/AMSU, located onboard Aqua,has also been used in cloud detection and climate studies(Aumann et al. 2003; Kahn et al. 2008, 2014). The AIRS/AMSU suite uses a cloud-clearing methodology to detect cloud (Susskind, Barnet, and Blaisdell 2003). The AIRSfield-of-view (FOV) spatial resolution is 13.5 km at nadir,whereas that of AMSU is ~45 km at nadir and coaligned to a 3 × 3 array of AIRS FOVs. The cloud top and fraction properties are retrieved after completion of the cloud-clearing steps by comparing calculated and observed AIRS radiances in a set of channels sensitive to cloud amount and height (Kahn et al. 2014). A milestone for cloud and aerosol research was the launching of CloudSat (Stephens et al. 2002) and CALIPSO in 2006 (Winker et al. 2009), both carrying active sensors–a 94-GHz cloud profiling radar(CPR) onboard CloudSat and a two-wavelength (532 and 1064 nm) CALIOP lidar onboard CALIPSO. CALIOP detects aerosol and cloud vertically from laser backscatter intensity profiles. The cloud–aerosol discrimination algorithm is based on statistical differences in the various optical and physical properties of cloud and aerosol layers (Winker et al. 2009). The CPR cloud mask algorithm detects cloud vertically from the raw radar-measured return power, which is due primarily to microwave emissions by the radar components (Marchand et al. 2008). CloudSat and CALIOP generally provide more direct and easily interpreted vertical cloud detection than passive methods, and a priori assumptions of surface and atmospheric quantities are necessary to infer cloud properties from passive methods(Kahn et al. 2008).

    Figure 1. (a) Daily averages of AQI and PM10 concentration from 1 November 2015 to 31 January 2016 over the research region. The labeled dates are the two haze cases in this study. (b) Averaged AQI during 19–26 December 2015.

    Some studies have deduced that aerosol may be one of the reasons for the difference in cloud fraction between satellite and ground-based observations. Comparisons between satellite and surface observations have shown that AVHRR obtains an overly high cloud amount in the Mediterranean region due to urban and aerosol haze effects (K?stner, Bissolli, and Hoppner 2004). Several studies have shown that MODIS is weakly correlated with the ground-based cloud amount over the North China Plain and Taklimakan Desert and that this may be attributable to aerosol (Ma et al. 2014; Shang et al. 2014; Mao et al.2015). In recent years, haze pollution has occurred more frequently in central and eastern China, especially in the North China Plain region, including Beijing–Tianjin–Hebei(Chen and Wang 2015; Wang et al. 2015; Wu, Ding, and Liu 2017). Therefore, it is important for cloud climatology to assess the accuracy of satellite cloud detection in haze pollution regions through combining active (CPR and CALIOP)and passive satellite sensors (like MODIS and AIRS). These sensors are flying onboard the ‘A-train’ constellation, in which only slight observational time differences (<70 s)enable near simultaneous and collocated cloud observations (Kahn et al. 2008).

    In this paper, we present results from a case study that compared the cloud detection retrieved from MODIS, AIRS,CloudSat, and CALIPSO in eastern China. We assessed the impact of serious haze pollution on cloud detection from different satellites. The specific questions we set out to answer were: (1) Are there any errors in satellite cloud detection for serious haze events? (2) What is the impact of haze pollution on satellite cloud fraction?

    2. Data and methods

    The ground-based air quality index (AQI) was used to recognize a severe pollution day in eastern China. Hourly AQI and PM10concentration data were obtained from the surface observations of the China National Environmental Monitoring Center (http://www.mep.gov.cn). The dataset included a total of 837 monitoring stations across the research region (Figure 1). The air quality was classified as excellent, good, lightly polluted, moderately polluted,heavily polluted, and severely polluted when the AQI was ≤50, 51–100, 101–150, 151–200, 201–300, and ≥301,respectively. For haze episodes, the data from 12:00 to 14:00 China Standard Time (CST = UTC + 08), covering the overpass times of Aqua, CALIPSO, and CloudSat, were averaged to obtain daily mean data.

    The cloud mask products of MODIS and AIRS onboard the Aqua satellite were used for intercomparison.Specifically, the MODIS collection 6 MYD35 cloud mask products (Ackerman et al. 2010) were used. The MODIS cloud mask was recorded at a 1-km (at nadir) spatial resolution. According to the cloud likelihood of a given pixel, it was labeled as ‘cloudy’, ‘uncertain – probably cloudy’, ‘probably clear’, or ‘confidently clear’. When calculating the cloud fraction, the first two conditions were regarded as cloudy,while the latter two were clear (Platnick et al. 2003). The cloud top pressure (CTP) and cloud top height (CTH) were also used. AIRS was the first hyperspectral infrared radiometer, with 2378 spectral channels covering 3.7–15.4 μm(Aumann et al. 2003). The Version 6 Level 2 AIRS products,including effective cloud fraction (ECF) and CTP, were used in this study. The ECF is the cloud fraction value if the cloud emissivity value is always 1 (Kahn et al. 2008, 2014). The spatial resolution of the AIRS FOV is 13.5 km at nadir and is coaligned to a 3 × 3 array of the AIRS FOV in each AMSU FOV. All 1-km MODIS cloud masks in each AIRS FOV were used to calculate one cloud fraction compared with AIRS.

    The vertical cloud profiles from CloudSat (Stephens et al. 2002) and the cloud and aerosol profiles from CALIPSO(Winker et al. 2009) were used to compare with cloud detection from MODIS to AIRS. The Version R04 Level 2B CloudSat 2B-GEOPROF product was used. The confidence mask values in this product ranged from 0 to 40 (Kahn et al.2008). The vertical resolution is 480 m and the horizontal resolution is approximately 1.4 km (cross-track) × 2.5 km(along-track) (Kahn et al. 2008). The latest Level 2 Version 4.10 CALIPSO product was used. The data have a 5-km horizontal resolution. The vertical resolution is 30 m below 8.2 km, 60 m within 8.2–20.2 km, and 180 m above 20.2 km(Winker et al. 2009). The cloud properties of MODIS and AIRS located in the CALIPSO and CloudSat tracks were then calculated to compare with CALIPSO and CloudSat.

    3. Results and discussion

    3.1. Haze episodes over eastern China

    From 18 December 2015 to 16 January 2016, severe haze pollution occurred successively in eastern China, particularly in the Beijing–Tianjin–Hebei region. A red alert for haze(the most serious level) was issued in Beijing for the period from 07:00 CST 19 December to 24:00 CST 22 December 2015. Then, during 19 December 2015 to 16 January 2016,an orange alert (the second-highest level) and yellow alert(the third-highest level) for haze were published in eastern China. The daily AQI and PM10(Figure 1(a)) averaged over the research region (Figure 1(b)) showed that the highest AQI and PM10occurred on 23 December 2015, with an AQI value of 177 and PM10concentration of 196 μg m?3.

    Over eastern China, the severest haze episode lasted from 19 to 26 December 2015. The average AQI during this period is shown in Figure 1(b). AQI values showed that the haze pollution affected the whole of eastern China,particularly in the Beijing–Tianjin city region and southern Hebei, Shandong, and Henan provinces. In Beijing city,the air quality on seven consecutive days from 20 to 26 December 2015 remained at heavily or severely polluted levels, with a daily AQI ≥209. Similarly, the air quality onfive consecutive days for Tianjin city (21–25 December 2015) and six consecutive days for Shijiazhuang (21–26 December 2015), the capital of Hebei Province, remained at heavily or severely polluted levels, with a daily AQI ≥259 for Tianjin and ≥228 for Shijiazhuang, respectively. The average AQI during 19–26 December 2015 at 213 monitoring stations was >200 (heavily polluted), and 45 sites were >300 (severely polluted). In Beijing, the average AQI at all 12 monitoring sites was >200.

    Two cases, on 21 and 30 December 2015 respectively,when severe haze pollution occurred and, simultaneously,the orbit track of CloudSat and CALIPSO passed over the haze region, were selected to compare the cloud detection of MODIS, AIRS, CloudSat, and CALIPSO. The daily AQI on the two days was 162 and 136, respectively, ranking as the second and eighth highest level of pollution during the period from 1 November 2015 to 31 January 2016 (Figure 1(a)).

    3.2. Cloud detection comparison during haze days

    To compare different satellite sensors’ cloud detection on haze days, the cloud fields of four satellite sensors–MODIS,AIRS, CPR, and CALIOP–over the orbit track of CALIPSO and CloudSat on 21 and 30 December 2015 are shown in Figures 2 and 3, respectively.

    On 21 December 2015, a severe haze event occurred at the overpass time of the three satellites, i.e. Aqua, CALIPSO,and CloudSat. The MODIS true-color image (Figure 2(a))showed that an aerosol layer overhung the center of eastern China and the Bohai–Yellow seas. The aerosol layer was consistent with high AQI values observed by surface monitoring sites (Figure 2(b)). The AQI was >300 over Beijing–Tianjin–Hebei and surrounding regions, meaning it was the region with the severest pollution level. Along the CloudSat and CALIPSO orbit track passing over the haze region, the four satellite sensors observed their cloud fields(Figure 2(c) and (d)). CPR and CALIOP revealed details on the vertical structure of clouds. The location and height of cloud resolved by CPR were highly consistent with CALIOP. The main difference was that CALIOP observed more cloud, e.g. the 2-km altitude cloud and >11-km-high cloud between 27.5°N and 28.5°N (Figure 2(d)), while CPR observed a weak confidence mask at about 2 km but not at 11 km.

    Figure 2. (a) MODIS Aqua true-color image on the haze day of 21 December 2015. (b) Air quality index at the satellite overpass time. The black line shows the orbit-track of CloudSat and CALIPSO on the same day. The lines (i) and (ii) show the agreement between the CPR onboard the CloudSat satellite and AIRS, and between CPR and MODIS, respectively. Blue coloring indicates agreement and red indicates disagreement. (c) Vertical cross-sections of the CloudSat cloud mask for the orbit shown in (b), with the AIRS cloud fraction (black circles)and cloud top height (centers of the circles) and MODIS cloud top height (red asterisks) also shown. (d) Vertical cross-sections of the CALIPSO cloud and aerosol mask for the orbit shown in (b).

    Figure 3. (a) MODIS Aqua true-color image on the haze day of 30 December 2015. (b) Air quality index at the satellite overpass time. The black line shows the orbit-track of CloudSat and CALIPSO on the same day. The lines (i) and (ii) show the agreement between CPR and AIRS, and between CPR and MODIS, respectively. Blue coloring indicates agreement and red indicates disagreement. (c) Vertical crosssections of the CloudSat cloud mask for the orbit shown in (b), with the AIRS cloud fraction (black circles) and cloud top height (centers of the circles) and MODIS cloud top height (red asterisks) also shown. (d) Vertical cross-sections of the CALIPSO cloud and aerosol mask for the orbit shown in (b).

    The color of the lines showing agreement in Figure 2(b) indicates the level of accordance between the cloud detection of MODIS/AIRS and CPR, with blue for agreement (either cloudy or clear) and red for disagreement,respectively. The lines of agreement show that when compared to CPR and CALIOP cloud masks, the AIRS cloud field agreed better with them than MODIS. Kahn et al. (2008)reported that the AIRS CTH agreed better with CPR when the cloud fraction was relatively large over South America,and similar results were obtained from the case on 21 December. The AIRS CTH was consistent with CPR and/or CALIOP when the cloud fraction was relatively large(Figure 2(c)). In the severe haze region around 31.6°–35.6°N and 37.6°–38.4°N, MODIS detected cloud with a CTH of 0 m and a CTP of >1015 hPa. That is distinctly false cloud according to the true-color image, ground surface AQI,and CALIOP aerosol vertical structure observations. Mao et al. (2015) also analyzed an intermediate and serious aerosol loading cases in January 2009 and found that heavy aerosol loading during hazy days affected the capability of MODIS cloud detection. Along this track, AIRS did not observe cloud, which was consistent with CPR and CALIOP,suggesting AIRS did a better job than MODIS under high aerosol loading conditions.

    The MODIS true-color image also showed high aerosol loading and less cloud over eastern China on 30 December 2015 (Figure 3(a)). High AQI values indicated a severe haze event occurred in eastern China, particularly in southern Hebei and Shandong provinces, where the AQI was >300–the most severe pollution level (Figure 3(b)). The cloud detection from AIRS, MODIS, CPR, and CALIOP along the orbit track of CloudSat and CALIPSO are compared in Figure 3(c) and (d). CPR and CALIOP observed similar vertical cloud structures along-track. Under the condition of a clean environment (south of 28°N and north of 40.5°N)or cloud located above the aerosol layer (31°–32°N), the AIRS and MODIS CTHs and cloud identification were to a certain extent consistent with CPR or CALIOP. Over the severe haze region between around 32.5°–39.5°N, CALIOP observed an aerosol layer at low levels (<3 km), and MODIS mistook aerosol for cloud because the CTH was close to the surface (0 m). Along the same track, AIRS observed no cloud in most locations and a small cloud fraction (<0.2)at several points. This is consistent with the case on 21 December 2015 in that AIRS did a better job in the haze region than MODIS, as clearly shown by the line of agreement in Figure 3(b).

    3.3. Cloud fraction difference between MODIS and AIRS

    To compare the impact of aerosol on cloud detection, the difference in cloud fraction between MODIS and AIRS was further investigated.

    Figure 4. AIRS cloud fraction on (a) 21 December 2015 and (c) 30 December 2015; MODIS cloud mask on (b) 21 December 2015 and (d)30 December 2015.

    The AIRS cloud fraction and MODIS cloud mask on 21 and 30 December 2015 are shown in Figure 4. The spatial distribution of the AIRS cloud fraction (Figure 4(a) and (c))was consistent with the MODIS true-color image (Figures 2(a) and 3(a)), and no cloud was observed by AIRS over the haze region. MODIS could identify extensive clouds well, e.g. the southwestern and southeastern region on 21 December (Figures 2(a) and 4(b)) and the southwestern and eastern region over the Bohai and Yellow seas and Korean peninsula on 30 December (Figures 3(a) and 4(d)).However, over many high aerosol regions on the two days(Figures 2(a) and 3(a)), the MODIS cloud mask observed‘cloudy’ or ‘uncertain – probably cloudy’ results (Figure 4(b)and (d)).

    To quantify the difference in cloud fraction between MODIS and AIRS over the haze region of (30°–40°N, 110°–120°E), another six haze cases (26 and 28 December 2015;6, 8, 15, and 27 January 2016) were also considered. The cloud fractions are shown in Table 1. The results showed that MODIS observed a 13%–49% (average: 36%) greater cloud fraction than AIRS, suggesting a large difference in cloud fraction between these two instruments.

    4. Conclusion

    In this study, we compared the MODIS and AIRS cloud mask onboard the Aqua satellite and the cloud vertical products from the CALIPSO and CloudSat satellites over eastern China on two severe haze pollution days (21 and 30 December 2015). Compared with MODIS, AIRS, CALIPSO and CloudSat showed better cloud detection over severe haze pollution regions, while MODIS may have led to the misclassification of high aerosol as cloud, suggesting that high pollution may induce a greater MODIS cloud amount.In fact, MODIS observed a 13%–49% (average: 36%) greater cloud fraction than AIRS in eastern China for eight haze cases in December 2015 and January 2016. Although only two cases are reported in detail in this paper, they were representative of very severe haze pollution in eastern China and the results still have implications for satellite cloud detection. In future, more cases will be discussed to compare the differences among these satellites.

    The MODIS cloud and aerosol properties were provided by the Level 1 and Atmosphere Archive and Distribution System of the NASA Goddard Space Flight Center (http://ladsweb.nascom.nasa.gov/). We thank the NASA Goddard Earth Science Data and Information Services Center for providing the AIRS cloud products (http://daac.gsfc.nasa.gov/), the CloudSat Data Processing Center (http://www.cloudsat.cira.colostate.edu/) for providing the vertical profiles of cloud detection, and the NASA Langley Research Center Atmospheric Science Data Center (http://eosweb.larc.nasa.gov/) for providing the vertical profiles of the CALIPSO cloud and aerosol mask.

    Table 1. Comparisons of cloud fraction between MODIS and AIRS over the region (30°–40°N, 110°–120°E).

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was supported by the National Natural Science Foundation of China [grant number 41590874] and [grant number 41590875].

    Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C.Moeller, and L. E. Gumley. 1998. “Discriminating Clear Sky from Clouds with MODIS.”Journal of Geophysical Research:Atmospheres103: 32141–32157. doi:10.1029/1998JD200032.

    Ackerman, S. A., R. Frey, K. I. Strabala, Y. Liu, L. Gumley, B. A.Baum, and W. P. Menzel. 2010.Discriminating Clear-sky from Cloud with MODIS: Algorithm Theoretical Basis Document(MOD35), Version 6.1., Madison: Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison.

    Aumann, H. H., M. T. Chahine, C. Gautier, M. D. Goldberg, E.Kalnay, L. M. McMillin, H. Revercomb, et al. 2003. “AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objectives,Data Products, and Processing Systems.”IEEE Transactions on Geoscience and Remote Sensing41: 253–264. doi:10.1109/TGRS.2002.808356.

    Chen, H., and H. Wang. 2015. “Haze Days in North China and the Associated Atmospheric Circulations Based on Daily Visibility Data from 1960 to 2012.”Journal of Geophysical Research:Atmospheres120: 5895–5909. doi:10.1002/2015JD023225.

    Kahn, B. H., M. T. Chahine, G. L. Stephens, G. G. Mace, R. T.Marchand, Z. Wang, C. D. Barnet, et al. 2008. “Cloud Type Comparisons of AIRS, CloudSat, and CALIPSO Cloud Height and Amount.”Atmospheric Chemistry and Physics8: 1231–1248. doi:10.5194/acp-8-1231-2008.

    Kahn, B. H., F. W. Irion, V. T. Dang, E. M. Manning, S. L. Nasiri, C. M.Naud, J. M. Blaisdell, et al. 2014. “The Atmospheric Infrared Sounder Version 6 Cloud Products.”Atmospheric Chemistry and Physics14: 399–426. doi:10.5194/acp-14-399-2014.

    K?stner, M., P. Bissolli, and K. Hoppner. 2004. “Comparison of a Satellite Based Alpine Cloud Climatology with Observations of Synoptic Stations.”Meteorologische Zeitschrift13: 233–243.doi:10.1127/0941-2948/2004/0013-0233.

    King, M. D., S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A.Hubanks. 2013. “Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites.”IEEE Transactions on Geoscience and Remote Sensing51: 3826–3852. doi:10.1109/TGRS.2012.2227333.

    Liu, Y.-Z., G.-Y. Shi, and J.-Q. Zhao. 2007. “A Study of the Radiative Forcing of Clouds by Using a One-dimensional Radiative-convective Model.”Chinese Journal of Atmospheric Sciences31: 486–494. (in Chinese).

    Ma, J., H. Wu, C. Wang, X. Zhang, Z. Li, and X. Wang. 2014.“Multiyear Satellite and Surface Observations of Cloud Fraction over China.”Journal of Geophysical Research:Atmospheres119: 7655–7666. doi:10.1002/2013JD021413.

    Mao, F., M. Duan, Q. Min, W. Gong, Z. Pan, and G. Liu. 2015.“Investigating the Impact of Haze on MODIS Cloud Detection.”Journal of Geophysical Research: Atmospheres120:12237–212247. doi:10.1002/2015JD023555.

    Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens. 2008.“Hydrometeor Detection Using Cloudsat – An Earth-orbiting 94-GHz Cloud Radar.”Journal of Atmospheric and Oceanic Technology25: 519–533. doi:10.1175/2007jtecha1006.1.

    Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum,J. C. Riedi, and R. A. Frey. 2003. “The MODIS Cloud Products:Algorithms and Examples from Terra.”IEEE Transactions on Geoscience and Remote Sensing41: 459–473. doi:10.1109/TGRS.2002.808301.

    Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom,E. Ahmad, and D. Hartmann. 1989. “Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment.”Science243: 57–63. doi:10.1126/science.243.4887.57.

    Shang, H., L. Chen, J. Tao, L. Su, and S. Jia. 2014. “Synergetic Use of MODIS Cloud Parameters for Distinguishing High Aerosol Loadings from Clouds over the North China Plain.”IEEE Journalof Selected Topics in Applied Earth Observations and Remote Sensing7: 4879–4886. doi:10.1109/JSTARS.2014.2332427.

    Stephens, G. L., D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z.Wang, A. J. Illingworth, et al. 2002. “The Cloudsat Mission and the A-train.”Bulletin of the American Meteorological Society83:1771–1790. doi:10.1175/bams-83-12-1771.

    Susskind, J., C. D. Barnet, and J. M. Blaisdell. 2003. “Retrieval of Atmospheric and Surface Parameters from AIRS/AMSU/HSB Data in the Presence of Clouds.”IEEE Transactions on Geoscience and Remote Sensing41: 390–409. doi:10.1109/TGRS.2002.808236.

    Wang, H., M. Xue, X. Y. Zhang, H. L. Liu, C. H. Zhou, S.-C. Tan, H.Z. Che, B. Chen, and T. Li. 2015. “Mesoscale Modeling Study of the Interactions between Aerosols and PBL Meteorology during a Haze Episode in Jing–Jin–Ji (China) and Its Nearby Surrounding Region – Part 1: Aerosol Distributions and Meteorological Features.”Atmospheric Chemistry and Physics15: 3257–3275. doi:10.5194/acp-15-3257-2015.

    Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu,W. H. Hunt, and S. A. Young. 2009. “Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms.”Journal of Atmospheric and Oceanic Technology26: 2310–2323.doi:10.1175/2009JTECHA1281.1.

    Wu, P., Y. Ding, and Y. Liu. 2017. “Atmospheric Circulation and Dynamic Mechanism for Persistent Haze Events in the Beijing–Tianjin–Hebei Region.”Advances in Atmospheric Sciences34: 429–440.

    精品高清国产在线一区| 亚洲欧美一区二区三区久久| 又紧又爽又黄一区二区| tube8黄色片| 国产日韩欧美亚洲二区| 五月天丁香电影| 久久99一区二区三区| 岛国毛片在线播放| 丝瓜视频免费看黄片| 三上悠亚av全集在线观看| 好男人电影高清在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品视频人人做人人爽| 成年动漫av网址| 欧美黄色片欧美黄色片| 国产欧美日韩精品亚洲av| 90打野战视频偷拍视频| 高清黄色对白视频在线免费看| 在线观看免费日韩欧美大片| 91国产中文字幕| 国产欧美日韩综合在线一区二区| 久久99热这里只频精品6学生| 亚洲专区国产一区二区| 国产91精品成人一区二区三区 | 香蕉国产在线看| 欧美另类一区| 老司机在亚洲福利影院| 国产欧美日韩一区二区三 | 搡老熟女国产l中国老女人| 亚洲国产成人一精品久久久| 十八禁网站免费在线| 亚洲人成电影观看| 亚洲精品久久午夜乱码| 亚洲精品国产av蜜桃| 99国产精品免费福利视频| 黄片大片在线免费观看| 成人18禁高潮啪啪吃奶动态图| 国产精品一区二区精品视频观看| 午夜免费观看性视频| 狠狠婷婷综合久久久久久88av| 日本一区二区免费在线视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲av成人不卡在线观看播放网 | 不卡av一区二区三区| 新久久久久国产一级毛片| 亚洲人成77777在线视频| 国产国语露脸激情在线看| 亚洲色图综合在线观看| 自线自在国产av| 国产亚洲欧美在线一区二区| 最新在线观看一区二区三区| a级毛片黄视频| 国产精品香港三级国产av潘金莲| 欧美在线一区亚洲| 高清在线国产一区| 建设人人有责人人尽责人人享有的| 蜜桃在线观看..| 又大又爽又粗| 久久99热这里只频精品6学生| 老司机靠b影院| 成年人免费黄色播放视频| 成年人黄色毛片网站| 久久人人爽av亚洲精品天堂| 老熟妇仑乱视频hdxx| 亚洲国产日韩一区二区| 日本wwww免费看| 午夜福利视频精品| 精品人妻一区二区三区麻豆| 大型av网站在线播放| 欧美日韩亚洲国产一区二区在线观看 | 精品高清国产在线一区| 狠狠精品人妻久久久久久综合| 黄色视频不卡| 日韩大片免费观看网站| a 毛片基地| 久久亚洲精品不卡| tocl精华| av国产精品久久久久影院| 成人av一区二区三区在线看 | 欧美性长视频在线观看| 国产精品久久久人人做人人爽| 欧美在线一区亚洲| 淫妇啪啪啪对白视频 | 午夜福利在线观看吧| 法律面前人人平等表现在哪些方面 | 91国产中文字幕| 黄色怎么调成土黄色| 成人av一区二区三区在线看 | 国产老妇伦熟女老妇高清| 久久精品熟女亚洲av麻豆精品| a级毛片在线看网站| www.熟女人妻精品国产| 精品少妇一区二区三区视频日本电影| 国产伦理片在线播放av一区| 在线观看免费午夜福利视频| 99国产精品99久久久久| 啦啦啦免费观看视频1| 欧美精品一区二区大全| 黄片播放在线免费| 午夜精品国产一区二区电影| 亚洲七黄色美女视频| 欧美日韩亚洲国产一区二区在线观看 | 日本av免费视频播放| 黄色怎么调成土黄色| 亚洲全国av大片| 日韩视频一区二区在线观看| 日本猛色少妇xxxxx猛交久久| 老熟妇乱子伦视频在线观看 | 久久久久视频综合| 亚洲欧美激情在线| 日本黄色日本黄色录像| 成人国产av品久久久| 欧美亚洲日本最大视频资源| 90打野战视频偷拍视频| 国产成人啪精品午夜网站| 黑人猛操日本美女一级片| 亚洲激情五月婷婷啪啪| 亚洲精品国产色婷婷电影| 精品一区二区三区四区五区乱码| 人人妻人人澡人人爽人人夜夜| 国产精品香港三级国产av潘金莲| 深夜精品福利| kizo精华| 亚洲精品一二三| 国产免费现黄频在线看| 久久毛片免费看一区二区三区| 久久久久国产一级毛片高清牌| 精品国产乱码久久久久久小说| 人妻久久中文字幕网| 欧美久久黑人一区二区| 亚洲精品久久午夜乱码| 国产日韩欧美视频二区| 十八禁高潮呻吟视频| 国产一区二区三区综合在线观看| 午夜福利在线观看吧| 成人三级做爰电影| 亚洲av片天天在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 性色av一级| 天天影视国产精品| 老汉色av国产亚洲站长工具| 亚洲国产日韩一区二区| 国产av精品麻豆| 超色免费av| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区在线不卡| 夜夜骑夜夜射夜夜干| 超碰97精品在线观看| 精品一品国产午夜福利视频| 99精国产麻豆久久婷婷| 两性夫妻黄色片| 2018国产大陆天天弄谢| 在线观看舔阴道视频| 婷婷色av中文字幕| 亚洲,欧美精品.| 国产成人精品无人区| 女人精品久久久久毛片| 久久99热这里只频精品6学生| 亚洲伊人色综图| 日本a在线网址| 欧美另类一区| videos熟女内射| 亚洲黑人精品在线| 看免费av毛片| 午夜免费观看性视频| 亚洲天堂av无毛| 欧美乱码精品一区二区三区| 高清视频免费观看一区二区| 欧美一级毛片孕妇| 亚洲国产成人一精品久久久| 亚洲精品中文字幕一二三四区 | 少妇 在线观看| 欧美日本中文国产一区发布| 777米奇影视久久| 亚洲中文字幕日韩| 天堂中文最新版在线下载| 男女高潮啪啪啪动态图| 亚洲伊人色综图| 欧美精品人与动牲交sv欧美| 真人做人爱边吃奶动态| 蜜桃在线观看..| 人人妻人人澡人人看| 成年人午夜在线观看视频| 欧美午夜高清在线| 一本色道久久久久久精品综合| 水蜜桃什么品种好| 黄色视频,在线免费观看| 亚洲国产欧美在线一区| 悠悠久久av| 欧美xxⅹ黑人| 中文字幕av电影在线播放| 精品亚洲乱码少妇综合久久| 日本精品一区二区三区蜜桃| 亚洲中文av在线| 麻豆av在线久日| 日本猛色少妇xxxxx猛交久久| 黑人操中国人逼视频| 三上悠亚av全集在线观看| 精品少妇黑人巨大在线播放| 国产成人影院久久av| 午夜影院在线不卡| 亚洲av电影在线进入| 亚洲国产av影院在线观看| 看免费av毛片| 美女视频免费永久观看网站| 涩涩av久久男人的天堂| www.999成人在线观看| 国产亚洲精品久久久久5区| 中文欧美无线码| 自拍欧美九色日韩亚洲蝌蚪91| 欧美久久黑人一区二区| 亚洲欧美清纯卡通| 少妇粗大呻吟视频| 精品人妻熟女毛片av久久网站| 这个男人来自地球电影免费观看| 免费av中文字幕在线| 亚洲午夜精品一区,二区,三区| 日本欧美视频一区| 亚洲欧美精品自产自拍| 首页视频小说图片口味搜索| 99九九在线精品视频| 丝瓜视频免费看黄片| 国产免费现黄频在线看| 黄色片一级片一级黄色片| 亚洲精品av麻豆狂野| 国产高清视频在线播放一区 | 十分钟在线观看高清视频www| 男男h啪啪无遮挡| 亚洲专区国产一区二区| 精品国产超薄肉色丝袜足j| 午夜精品国产一区二区电影| av又黄又爽大尺度在线免费看| 脱女人内裤的视频| 久久久久久人人人人人| 人人妻人人爽人人添夜夜欢视频| 一区二区三区精品91| 青青草视频在线视频观看| 九色亚洲精品在线播放| 国产又爽黄色视频| 亚洲av国产av综合av卡| 欧美精品av麻豆av| 少妇 在线观看| 他把我摸到了高潮在线观看 | 99国产精品一区二区蜜桃av | 最近中文字幕2019免费版| 亚洲av男天堂| av电影中文网址| 97在线人人人人妻| 久久中文字幕一级| 国产一区二区 视频在线| 精品亚洲成国产av| 久久精品久久久久久噜噜老黄| 777久久人妻少妇嫩草av网站| 免费高清在线观看日韩| 久久影院123| 免费黄频网站在线观看国产| 日本一区二区免费在线视频| 动漫黄色视频在线观看| 这个男人来自地球电影免费观看| 手机成人av网站| 国产极品粉嫩免费观看在线| 国产深夜福利视频在线观看| 青春草视频在线免费观看| 亚洲av日韩在线播放| 日本av免费视频播放| 国产精品欧美亚洲77777| 夜夜骑夜夜射夜夜干| 天天躁夜夜躁狠狠躁躁| 精品少妇黑人巨大在线播放| 老鸭窝网址在线观看| 在线观看免费午夜福利视频| 日日夜夜操网爽| 老熟妇仑乱视频hdxx| 国内毛片毛片毛片毛片毛片| 精品欧美一区二区三区在线| 亚洲精品第二区| 免费在线观看完整版高清| 日本wwww免费看| 下体分泌物呈黄色| a级片在线免费高清观看视频| 久久九九热精品免费| 欧美大码av| 97人妻天天添夜夜摸| 少妇精品久久久久久久| 最近中文字幕2019免费版| 亚洲精品乱久久久久久| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| 国产97色在线日韩免费| 老司机影院成人| 午夜影院在线不卡| 一级,二级,三级黄色视频| 青春草亚洲视频在线观看| 国产精品久久久久久精品古装| 成年人免费黄色播放视频| 色婷婷av一区二区三区视频| 免费日韩欧美在线观看| 久久久欧美国产精品| 久久精品亚洲av国产电影网| 男男h啪啪无遮挡| 丝袜喷水一区| 国产一区二区在线观看av| 热re99久久精品国产66热6| 亚洲国产欧美一区二区综合| 中文字幕精品免费在线观看视频| 俄罗斯特黄特色一大片| 亚洲av片天天在线观看| 久久女婷五月综合色啪小说| 亚洲成人手机| 欧美黑人精品巨大| 日本猛色少妇xxxxx猛交久久| 丝袜喷水一区| 桃花免费在线播放| 国产亚洲精品第一综合不卡| 一级毛片电影观看| 好男人电影高清在线观看| 两性夫妻黄色片| 精品少妇一区二区三区视频日本电影| 亚洲精品自拍成人| 亚洲专区国产一区二区| 视频在线观看一区二区三区| 亚洲欧美精品综合一区二区三区| 最近最新免费中文字幕在线| 国产精品1区2区在线观看. | 亚洲精品国产区一区二| 波多野结衣一区麻豆| 99热全是精品| 桃红色精品国产亚洲av| 国产精品国产三级国产专区5o| 久久久久久久久久久久大奶| 一边摸一边抽搐一进一出视频| 久久人妻福利社区极品人妻图片| 美国免费a级毛片| 日韩熟女老妇一区二区性免费视频| 午夜免费鲁丝| 黄片小视频在线播放| 国产精品欧美亚洲77777| 精品国产一区二区三区四区第35| av又黄又爽大尺度在线免费看| 国产野战对白在线观看| 一本—道久久a久久精品蜜桃钙片| 久久人人97超碰香蕉20202| 国产一区二区三区av在线| 久久国产精品影院| 汤姆久久久久久久影院中文字幕| 亚洲成人免费电影在线观看| 亚洲五月婷婷丁香| 妹子高潮喷水视频| 制服诱惑二区| 亚洲国产成人一精品久久久| 国产成人av教育| 999久久久国产精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产成人一精品久久久| 人人妻人人澡人人看| 亚洲精品国产av蜜桃| 美女主播在线视频| 亚洲 国产 在线| 久久精品久久久久久噜噜老黄| 久久久久久久大尺度免费视频| 成年人黄色毛片网站| 在线观看www视频免费| 大香蕉久久成人网| 韩国高清视频一区二区三区| 超色免费av| 国产日韩欧美视频二区| 欧美精品一区二区免费开放| 国产精品久久久久久精品古装| 两性夫妻黄色片| 另类精品久久| 操出白浆在线播放| 精品亚洲乱码少妇综合久久| 一本—道久久a久久精品蜜桃钙片| 丁香六月天网| 777米奇影视久久| 国产xxxxx性猛交| 日本vs欧美在线观看视频| 亚洲精品第二区| 男女无遮挡免费网站观看| 超碰97精品在线观看| 亚洲精品国产精品久久久不卡| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩黄片免| 欧美精品一区二区大全| 一级毛片女人18水好多| 免费少妇av软件| 国产一区二区在线观看av| 天堂俺去俺来也www色官网| 午夜福利免费观看在线| 午夜激情久久久久久久| 亚洲一区中文字幕在线| 国产99久久九九免费精品| 男人舔女人的私密视频| 97精品久久久久久久久久精品| 久久久精品免费免费高清| 日韩大码丰满熟妇| 国产1区2区3区精品| 精品一区二区三卡| 美女大奶头黄色视频| 国产免费视频播放在线视频| 两个人免费观看高清视频| 成在线人永久免费视频| 另类亚洲欧美激情| 国产精品久久久久久人妻精品电影 | 久久国产精品男人的天堂亚洲| 日本av免费视频播放| 免费久久久久久久精品成人欧美视频| 国产97色在线日韩免费| 久久精品国产综合久久久| 欧美97在线视频| 久9热在线精品视频| 在线观看免费高清a一片| 国产野战对白在线观看| 久久人妻熟女aⅴ| 欧美大码av| 天天影视国产精品| 国产精品秋霞免费鲁丝片| 黄网站色视频无遮挡免费观看| 精品免费久久久久久久清纯 | 日韩熟女老妇一区二区性免费视频| 人妻久久中文字幕网| 国产无遮挡羞羞视频在线观看| 一区二区三区精品91| 久久久久国产精品人妻一区二区| 久久久水蜜桃国产精品网| 亚洲国产欧美在线一区| 老熟女久久久| 免费人妻精品一区二区三区视频| 午夜日韩欧美国产| 久久中文看片网| 欧美一级毛片孕妇| 欧美av亚洲av综合av国产av| 欧美成狂野欧美在线观看| 一区二区三区乱码不卡18| 午夜福利,免费看| 狂野欧美激情性xxxx| 国产成人欧美| 欧美精品一区二区大全| 亚洲av成人一区二区三| 亚洲av美国av| 大片电影免费在线观看免费| 丝袜在线中文字幕| 男女边摸边吃奶| 欧美精品啪啪一区二区三区 | 久久精品久久久久久噜噜老黄| 色老头精品视频在线观看| 日韩视频一区二区在线观看| 精品国产乱子伦一区二区三区 | 久久人人爽人人片av| 国产在线免费精品| 窝窝影院91人妻| 天天影视国产精品| 欧美日本中文国产一区发布| 欧美精品av麻豆av| 久久精品国产综合久久久| 男人添女人高潮全过程视频| 久久久国产一区二区| 女性被躁到高潮视频| 国产av精品麻豆| 国产免费一区二区三区四区乱码| 精品久久久久久电影网| 激情视频va一区二区三区| 亚洲九九香蕉| 人妻人人澡人人爽人人| 精品国产乱码久久久久久男人| 欧美日韩国产mv在线观看视频| 午夜福利在线免费观看网站| xxxhd国产人妻xxx| 在线精品无人区一区二区三| 欧美大码av| 国产淫语在线视频| 狂野欧美激情性xxxx| 男女午夜视频在线观看| 大香蕉久久网| 国产黄频视频在线观看| 9热在线视频观看99| 久久久水蜜桃国产精品网| 成人18禁高潮啪啪吃奶动态图| 在线观看免费视频网站a站| 亚洲第一欧美日韩一区二区三区 | 99国产精品99久久久久| 女性生殖器流出的白浆| 久久青草综合色| 美女高潮喷水抽搐中文字幕| 中国国产av一级| 两个人免费观看高清视频| 午夜成年电影在线免费观看| 男人添女人高潮全过程视频| 婷婷丁香在线五月| 国产一区有黄有色的免费视频| 日本wwww免费看| 黑人巨大精品欧美一区二区蜜桃| 国产成人一区二区三区免费视频网站| 久久久久久久国产电影| 精品熟女少妇八av免费久了| 亚洲国产成人一精品久久久| 欧美日韩福利视频一区二区| 少妇粗大呻吟视频| 精品熟女少妇八av免费久了| 久久久久久久国产电影| 免费在线观看黄色视频的| 女人被躁到高潮嗷嗷叫费观| 超色免费av| 成年人午夜在线观看视频| 精品国产乱码久久久久久男人| 高清在线国产一区| 波多野结衣av一区二区av| bbb黄色大片| 国产日韩欧美视频二区| 最近中文字幕2019免费版| 丰满少妇做爰视频| 美女高潮到喷水免费观看| 欧美日韩国产mv在线观看视频| 亚洲欧美精品自产自拍| 少妇猛男粗大的猛烈进出视频| 1024香蕉在线观看| 2018国产大陆天天弄谢| 亚洲第一av免费看| 丰满人妻熟妇乱又伦精品不卡| 两个人免费观看高清视频| 亚洲情色 制服丝袜| 中文字幕人妻丝袜一区二区| 精品国内亚洲2022精品成人 | 亚洲精品国产色婷婷电影| 久热这里只有精品99| 美女扒开内裤让男人捅视频| 亚洲成人国产一区在线观看| 免费一级毛片在线播放高清视频 | 99国产精品免费福利视频| 美女扒开内裤让男人捅视频| 日韩欧美一区视频在线观看| 欧美久久黑人一区二区| 十八禁网站网址无遮挡| 亚洲精品av麻豆狂野| 亚洲性夜色夜夜综合| 国产老妇伦熟女老妇高清| 日本a在线网址| 在线十欧美十亚洲十日本专区| 伊人亚洲综合成人网| 亚洲成人免费电影在线观看| 女警被强在线播放| 波多野结衣av一区二区av| 亚洲国产欧美在线一区| 男女无遮挡免费网站观看| 亚洲av电影在线观看一区二区三区| av有码第一页| 欧美 亚洲 国产 日韩一| 免费看十八禁软件| 亚洲专区国产一区二区| 日本a在线网址| 曰老女人黄片| 亚洲国产欧美一区二区综合| 国产精品一区二区精品视频观看| 亚洲精品自拍成人| 精品福利观看| 老鸭窝网址在线观看| 又紧又爽又黄一区二区| 电影成人av| 美女视频免费永久观看网站| av福利片在线| 18禁观看日本| 国产麻豆69| 国产在线一区二区三区精| 精品国产一区二区久久| 亚洲av成人不卡在线观看播放网 | 欧美 日韩 精品 国产| 人人妻人人澡人人看| 男女午夜视频在线观看| 老司机福利观看| 国产欧美日韩一区二区三 | 老司机靠b影院| 国产色视频综合| 超碰97精品在线观看| 丝袜人妻中文字幕| 亚洲欧美日韩另类电影网站| 最新的欧美精品一区二区| 一级a爱视频在线免费观看| 1024视频免费在线观看| 久久国产精品影院| 色精品久久人妻99蜜桃| 欧美性长视频在线观看| 久久精品国产亚洲av高清一级| 无限看片的www在线观看| 亚洲欧美一区二区三区黑人| 老熟妇乱子伦视频在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 好男人电影高清在线观看| 菩萨蛮人人尽说江南好唐韦庄| videos熟女内射| 色综合欧美亚洲国产小说| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| 久久国产精品男人的天堂亚洲| 国产激情久久老熟女| 日韩欧美一区视频在线观看| 成人三级做爰电影| 国产免费av片在线观看野外av| 人人妻人人添人人爽欧美一区卜| 国产精品一区二区在线观看99| 欧美 亚洲 国产 日韩一| 亚洲精品久久久久久婷婷小说| 天天躁夜夜躁狠狠躁躁| 大码成人一级视频| 亚洲,欧美精品.| 王馨瑶露胸无遮挡在线观看| 久久中文字幕一级| 少妇 在线观看| bbb黄色大片| 精品一区二区三卡| 我的亚洲天堂| 丝袜美腿诱惑在线| 欧美精品亚洲一区二区| 亚洲美女黄色视频免费看| 91字幕亚洲| 夫妻午夜视频|