• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cloud vertical structures associated with precipitation magnitudes over the Tibetan Plateau and its neighboring regions

    2018-01-31 03:32:07YANFeiWANGXioCongndLIUYiMinShnghiInstituteofMeteorologilSieneShnghiMeteorologilBureuShnghiChinStteKeyLortoryofNumerilModelingforAtmospheriSienesndGeophysilFluidDynmisLASGInstituteofAtmospheriPhysisBeijingChinCollegeo

    YAN Y-Fei, WANG Xio-Cong nd LIU Yi-MinShnghi Institute of Meteorologil Siene, Shnghi Meteorologil Bureu, Shnghi, Chin; Stte Key Lortory of Numeril Modeling for Atmospheri Sienes nd Geophysil Fluid Dynmis (LASG), Institute of Atmospheri Physis, Beijing, Chin; College of Erth Siene,University of Chinese Ademy of Sienes, Beijing, Chin

    1. Introduction

    Clouds play a pivotal role in modulating the global radiation budget through reflection of solar radiation and absorption of thermal radiance (Ramanathan et al. 1989;Li, Barker, and Moreau 1995; Kubar, Hartmann, and Wood 2009). However, clouds remain one of the key sources of uncertainty in climate modeling (Dufresne and Bony 2008; Zelinka et al. 2013). One reason is that cloud vertical structures and its microphysical processes are poorly represented (Zhang et al. 2005; Jiang et al. 2012). As an intermediate link between water vapor evaporation and condensation, the effect of cloud on the water cycle is related to both cloud microphysical characteristics and cloud macroscopic characteristics (Charlson et al. 1987).Moreover, cloud vertical structures particularly affect the occurrence and intensity of precipitation (Jakob and Klein 1999). The Tibetan Plateau (TP) significantly affects the atmospheric circulation and climate of Asia through its dynamic and thermal forcing (Wu and Zhang 1998; Duan and Wu 2005; Liu et al. 2007). The transformation process between clouds and precipitation has considerable effects on manipulating atmospheric heating profiles and generating plateau-scale uplifting force, which is a major forcing for establishing and maintaining the TP monsoon circulation (Kuo and Qian 1981). Therefore, exploring cloud vertical structures and its relationship with precipitation over the TP is not only beneficial to further understanding the complexity of the climate system over the plateau, but also helpful in improving the representation of the moist processes that modulate the distribution and variability of clouds and precipitation in numerical models over the TP.

    Many studies have investigated the characteristics of cloud over the TP, especially following the advent of satellite-based passive remote sensing (e.g. Fujinami and Yasunari 2001; Kurosaki and Kimura 2002; Chen and Liu 2005; Li, Liu, and Chen 2006; Fu, Li, and Zi 2007). The launch of the CloudSat satellite (Stephens et al. 2002) carrying cloud profile radar, and the CALIPSO satellite (Winker,Hunt, and McGill 2007) carrying the Cloud–Aerosol Lidar with Orthogonal Polarization, in 2006, by NASA, provides an unprecedented opportunity to explore cloud internal properties and vertical structures based on active sensors.Based on CloudSat/CALIPSO products, previous studies have analyzed the vertical structures of cloud microphysical and macrophysical properties over the TP (Wang et al. 2010; Luo, Zhang, and Qian 2011; Rüthrich et al. 2013;Chen and Zhou 2015; Hong and Liu 2015), as well as the relationship between cloud vertical properties and precipitation (Yin, Wang, and Zhai 2011; Zhao, Wang, and Yin 2014). However, little attention has been paid to cloud vertical structures at different precipitation magnitudes.

    In operational forecasting, precipitation strength is categorized into light rain (0–10 mm d?1), moderate rain(10–25 mm d?1), heavy rain (25–50 mm d?1), rainstorms(50–100 mm d?1) and heavy rainstorms (>100 mm d?1).But what are the corresponding characteristics of cloud macro- and microphysics in the vertical direction? In this paper, we aim to understand the nature of cloud vertical structures over the TP in association with the precipitation magnitudes used in operational forecasting. For comparison, the TP’s neighboring regions, which we refer to as NIST (northern India and south of the Tibetan Plateau) and TO (tropical ocean), are also analyzed. Following Yan, Liu,and Lu (2016), the three areas are defined as follows: TP(27°–40°N, 70°–103°E; altitude >3000 m); NIST (20°–27°N,70°–103°E); and TO (20S°–20°N, 60°–150°E; over ocean only).

    The rest of the paper is organized as follows: Section 2 describes the data and methodology. Section 3 presents the relationship between cloud macrophysical structures and precipitation, as well as the spectral distribution of cloud vertical microphysics in terms of different precipitation magnitudes. Section 4 presents our conclusions and offers additional discussion.

    2. Data and methodology

    Two datasets (2B-CWC-RO and 2B-CLDCLASS-LIDAR)(Stephens et al. 2002; 2008), from January 2007 to December 2010, obtained by CloudSat/CALIPSO, are used in this study. The periods when the products failed to provide retrievals are excluded from the diagnostics(Table 1). The 2B-CWC-RO product retrieves estimates of cloud water content, particle effective radius, and numberconcentration in liquid or ice phase. The portion of the profile colder than ?20 °C is deemed to be pure ice, and warmer than 0 °C pure liquid. When the temperature is between 0 °C and ?20 °C, the ice and liquid solutions are scaled linearly with temperature by adjusting their particle number concentrations (Austin 2007). Based on this product, GCMs have been evaluated (Su et al. 2011), revealing that models underestimate ice water content in the upper troposphere. Cloud radar has proven to be a highly valuable tool for studies on rainfall and thick precipitating clouds (Matrosov 2007). It has been found that cloud radar can accurately sense between ?28 and 6 dBZe, and above 6 dBZe with uncertainties of ±50% (Heymsfield et al. 2008). Thus, especially for heavy rainstorm conditions,the uncertainties in satellite data should be kept in mind.The 2B-CLDCLASS-LIDAR product identifies each cloud detected as one of the eight cloud types (cumulus, stratocumulus, stratus, altocumulus, altostratus, nimbostratus,cirrus, and deep convective cloud), and provides cloud-top height and cloud-base height (Sassen and Wang 2008).

    Table 1. The periods when the products failed to provide retrievals.

    We use the same period of three-hourly precipitation data from TRMM 3B42 (Version 6 (Huffman et al. 2007) with a horizontal resolution of 0.25 × 0.25°), together with the CloudSat/CALIPSO datasets, to calculate the relationship between cloud vertical structures and precipitation. This TRMM product has been shown to agree well with gauge measurements and have a weak dependence on topography over the TP (Gao and Liu 2013; Tong et al. 2014). It should be clarified that original orbital profile data (horizontal resolution: ~1.3 km in the across-track direction and~1.1 km in the along-track direction; vertical resolution:~240 m) from the 2B-CLDCLASS-LIDAR and 2B-CWC-RO products are used in this study. The sorting method to match the CloudSat/CALIPSO orbital data and TRMM grid data is similar to that used by Yan, Liu, and Lu (2016),which ensures the cloud and precipitation to be almost synchronous (sorted within 1.5 h in the spatial range of 12.5 × 12.5 km). In this study, we define the precipitation rate bins in 10 mm d?1intervals. In total, 26 bins from 0 mm d?1to 260 mm d?1, and 1 bin greater than 260 mm d?1, are used, which can provide an intuitive reference for operational forecasting. The joint probability distribution functions (PDFs) are only calculated over precipitating samples, to facilitate comparison of the three regions.The height above sea surface level is used in the analysis.

    3. Results

    3.1. Cloud vertical macrophysical structures

    Figure 1 indicates that the TP’s terrain has a compression effect on both precipitation intensity and cloud total thickness (with the clear-sky thickness between adjacent cloud layers deducted). Given that cirrus cloud has little effect on precipitation and may be advected from other regions, it is excluded in the diagnosis. It is found that,even in summer, when precipitation most likely occurs,the main magnitude of precipitation is light, moderate or heavy, while the occurrence of rainstorms or greater magnitude on the plateau is much less than for other regions(Figure 1(d)), which is consistent with the findings of Pan and Fu (2015). The likely reason for this is the restriction of moisture transport caused by high terrain. By calculating the vertically integrated water vapor transport, Zhang(2001) and Yan, Liu, and Lu (2016) found that the abundant water vapor transported from the Indian Ocean is consumed mostly over the southern slopes of the Himalaya.In July, the average divergence of the vertically integrated moisture flux over the three regions is 0.18, ?0.59 and?0.08 (units: 10?4kg s?1m?2), respectively. In addition, in summer, the total cloud thickness is 0–12 km over the TP when precipitation is smaller than 50 mm d?1, contrasting to 0–16 km over NIST and TO. It is a common feature that clouds thicken with an increase in precipitation magnitude when precipitation is greater than 50 mm d?1. The dominant thickness is 8–12 km over the TP – far thinner compared with the other regions (12–17 km over NIST and TO) (Figure 1(d–f)), demonstrating the limitation imposed by the plateau on the vertical expansion of precipitating clouds.

    The PDF of precipitation intensity and cloud-top height(Figure 2) further illustrates the suppression effect of the plateau’s topography on precipitation intensity and cloud vertical expansion. When moderate or heavy rain occurs,the main range of cloud-top height over the TP is 4–17 km,indicating that precipitation over the TP during summer is mainly due to shallow convection – consistent with Fu and Liu (2007). While the cloud-top height between 12 and 18 km over TO is more frequent for any precipitation magnitude, combined with the distribution of total cloud thickness (Figure 1), it is clear that more frequent deep convection occurs over TO. The cloud-top height above 18 km over TO in all four seasons, and over NIST in the warm seasons, is related to the activities of overshooting convection(Jensen, Ackerman, and Smith 2007). The variational range of cloud-top height associated with a certain precipitation magnitude shows visible seasonal variation over the TP.For example, when heavy rainstorms occur in spring, the cloud-top height is around 12 km and with a narrow variational range (Figure 2(a)), whereas the top height increases and the variational range expands to 12–18 km in summer,demonstrating strong seasonal variation of cloud vertical structures associated with precipitation magnitudes over the TP.

    3.2. Cloud vertical microphysical structures

    We focus on the primary rainfall season, summer (June–August), to analyze the vertical distributions of cloud microphysics corresponding to different precipitation magnitudes. Taking into account that the presence of precipitation causes large uncertainty in liquid water inversion (Austin 2007), the features of the liquid phase are not given.

    Figure 3 shows the normalized frequency by altitude diagram of cloud ice microphysics for no-rain conditions.In total, there are 566 006, 465 134, and 6 087 019 profiles over the TP, NIST, and TO, respectively. The cloud ice particles are mainly concentrated within 5–10 km, wherein lies the maximum frequency of radar reflectivity (Zhao, Wang,and Yin 2014). The height with maximum probability of cloud ice water content (CIWC) is 7.5 km over the TP, 13 km over NIST, and 12 km over TO, as shown by the curve’s peak on the right-hand side of each plot. Large number concentrations (i.e. >400 L?1) of ice particles are less likely to occur in upper layers of the troposphere (higher than 10 km) over the TP, while moderate values of ice number concentration (<200 L?1) occur more frequently in the whole vertical column compared with other regions (Figure 3(d–f)).Moreover, ice particles distribute over a wider spectrum in lower layers (lower than 10 km) over the plateau, and there are even large particles with sizes greater than 160 μm (Figure 3(g)). The normalized frequency by altitude diagram of CIWC and effective radius under no-rain conditions are generally consistent with all-sky conditions(Zhang, Duan, and Shi 2015). This is because, compared with precipitation profile samples, no-rain profile samples are dominant in the multi-year average over broad areas.A wider variety of ice particle sizes (Figure 3(g)) and number concentration (Figure 3(d)) at 5–10 km in the vertical direction makes a plentiful drift of the CIWC value over the TP (Figure 3(a)). In short, cloud ice particles over the TP are mostly located within 5–10 km, with a wide variety of sizes and aggregation, under no-rain conditions, as compared to the other regions. Above 12 km, particles with large number concentrations appear more over NIST and TO than over the TP.

    Figure 1. Probability distribution function of precipitation intensity and total cloud thickness for (a–c) spring (March–May), (d–f) summer(June–August), (g–i) autumn (September–November), (j–l) winter (December–February), and (m–o) the annual mean.

    Figure 2. Probability distribution function of precipitation intensity and cloud top height for (a–c) spring (March–May), (d–f) summer(June–August), (g–i) autumn (September–November), (j–l) winter (December–February), and (m–o) the annual mean.

    When precipitation occurs, the spectrum of large CIWC increases with an increase in rainfall intensity (Figure 4(a–c); Figure 5(a–c)). Moreover, the particles are more inclined to be large in size at low layers, but still small at high layers(Figure 4(g–i); Figure 5(g–i)), and the radius decreases obviously with height (Figure 5(g–i)). Again, the TP shows unique features, reflected as follows: The CIWC is more diverse over the TP than the other two regions at the same rainfall intensity (Figure 4(a–c); Figure 5(a–c)), and the CIWC over the TP is largely concentrated between 4 and 10 km.When rain is heavy (25–50 mm d?1) (8922, 18 525, and 234 938 profiles over the TP, NIST, and TO regions, respectively), the CIWC, as well as the ice number concentration,increases with altitude below 8 km over the TP (Figure 4(a)and (d)). Above 8 km, the CIWC decreases mainly due to the sharp reduction in the ice effective radius, although the probability of a larger number concentration is increased(Figures 3(d) and 4(d)). Despite heavy rain, the maximum probability of the CIWC is still located near 8 km. Large number concentrations (>600 L?1) seldom occur, and ice clouds are more inclined to gather at moderate concentrations (100–250 L?1) above 9 km over the TP compared with the other regions. This also shows that the plateau features a relatively wider range of particle sizes at the same altitude (shown by the red or deeper colors in Figure 4(g–i)).

    Figure 3. The normalized frequency by (a–c) altitude diagram (color) of CIWC, (d–f) number concentration, and (g–i) effective radius over the TP (left), NIST (middle), and TO (right) under no rain condition in summer. The X-axis bin for (a–c) is 0.1 (the corresponding value of CIWC is e0.1 mg m?3), for (d–f) is 8 L?1, and for (g–i) is 2.5 μm. While Y-axis bin for all the plots is 240 m. The curve on the right side of each plot is PDF on different altitude. While the curve on the bottom of each plot is PDF on different variable values.

    Figure 4. The normalized frequency by (a–c) altitude diagram (color) of CIWC, (d–f) number concentration, and (g–i) effective radius over the TP (left), NIST (middle) and TO (right) under heavy rain conditions in summer. The X-axis bin for (a–c) is 0.1 (the corresponding value of CIWC is e0.1 mg m?3), for (d–f) is 8 L?1, and for (g–i) is 2.5 μm. While Y-axis bin for all the plots is 240 m. The curve on the right side of each plot is PDF on different altitude. While the curve on the bottom of each plot is PDF on different variable values.

    For heavy rainstorms (>100 mm d?1) (1613, 9175, and 91 333 profiles over the TP, NIST, and TO regions respectively), the CIWC, as well as the ice number concentration,corresponding to maximum probability, increase remarkably. For example, in heavy rainstorms, the order of dominant CIWC is e6mg m?3(Figure 5(a)), while it is e5mg m?3during heavy rain, over the TP (Figure 4(a)). Above 9 km, the probability of the ice number concentration being greater than 200 L?1enlarges too, indicating ice clouds consist of much more abundant particles during heavy rainstorms.However, like heavy rain, the probability of a larger number concentration (i.e. >600 L?1) is still less over the TP than over the other regions (Figure 5(d–f)). The particle sizes over the TP display a remarkable decreasing trend with increased altitude, similar to over TO and NIST. The larger occurrence frequencies (red shades) are narrowed (Figure 5(g)) at the same altitude compared with smaller magnitudes of precipitation (Figure 4(g)) over the TP, suggesting that the more even the sizes of cloud ice particles are, the larger the precipitation magnitude.

    Figure 5. The normalized frequency by (a–c) altitude diagram (color) of CIWC, (d–f) number concentration, and (g–i) effective radius over the TP (left), NIST (middle) and TO (right) under heavy rainstorm in summer. The X-axis bin for (a–c) is 0.1 (the corresponding value of CIWC is e0.1 mg m?3), for (d–f) is 8 L?1, and for (g–i) is 2.5 μm. While Y-axis bin for all the plots is 240 m. The curve on the right side of each plot is PDF on different altitude. While the curve on the bottom of each plot is PDF on different variable values.

    4. Conclusions and discussion

    Based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data, we analyze the characteristics of cloud vertical macro- and microphysical structures associated with precipitation magnitudes over the TP through comparison with neighboring land and ocean regions. The main conclusions are as follows:

    (1) The precipitation magnitude and cloud total thickness are compressed over the TP. Restrictions of water vapor supply induced by topography lead to a lower probability of the precipitation magnitude being greater than ‘rainstorm’ over the TP.

    (2) Cloud vertical expansion, as well as cloud-top height, for the same magnitude of precipitation,is severely confined over the TP compared with other regions. Also, cloud vertical structures associated with precipitation magnitudes show large seasonal variation over the TP.

    (3) Under no-rain conditions, cloud ice particles over the TP are mostly located at lower altitude (5–10 km), with a wide variety of sizes and aggregation, during summer. With an increase in precipitation magnitude, the CIWC and number concentration at high levels (above 10 km)enhance markedly. The low levels are dominated by large particles (100–140 μm).

    (4) Similar to under no-rain conditions, the vertical distributions of cloud ice microphysics are unique over the TP compared to the other regions, even for the same magnitude of precipitation, including a wider range of particle sizes and more moderate particle number concentrations, but a lower probability of dense aggregation (600 L?1).

    The results revealed here provide useful information for the potential relationship between cloud and precipitation. However, due to the limitation of local time sampling by CloudSat/CALIPSO, more precise information on the full diurnal cycle needs to be obtained by combining geostationary satellite measurements and ground-based observations. In addition, since uncertainties related to cloud radar retrievals increase with enhanced radar reflectivity,the results revealed here – especially for heavy rainstorm conditions – need to be verified using other datasets.Separating precipitation into convective and stratiform cases is also helpful to reveal associated cloud structures.

    Acknowledgements

    The authors are greatly appreciative of the discussions with,and suggestions made by, Prof. Jianhua LV, from the School of Atmospheric Sciences, Sun Yat-Sen University, China, which certainly improved the manuscript.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This study was jointly supported by the National Natural Science Foundation of China [grant number 91637312], [grant number 91437219]; the Key Research Program of Frontier Sciences of CAS, the Third Tibetan Plateau Scientific Experiment[grant number GYHY201406001]; the Science and Technology Development Project of Shanghai Meteorological Bureau [grant number QM201711]; and the Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund (second phase).

    Austin, R. 2007. “Level 2B Radar-Only Cloud Water Content(2B-CWC-RO) Process Description Document.”CloudSat Project Report, 24 pp. http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-cwc-ro?term=28.

    Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren.1987. “Oceanic Phytoplankton, Atmospheric Sulphur, Cloud Albedo and Climate.”Nature326: 655–661.

    Chen, B., and X. Liu. 2005. “Seasonal Migration of Cirrus Clouds over the Asian Monsoon Regions and the Tibetan Plateau Measured from MODIS/Terra.”Geophysical Research Letters32:L01804. doi:10.1029/2004GL020868.

    Chen, L., and Y. Zhou. 2015. “Different Physical Properties of Summer Precipitation Clouds over Qinghai Xizang Plateau and Sichuan Basin.” [In Chinese.]Plateau Meteorology34:621–632.

    Duan, A. M., and G. X. Wu. 2005. “Role of the Tibetan Plateau Thermal Forcing in the Summer Climate Patterns over Subtropical Asia.”Climate Dynamics24: 793–807. doi:10.1007/s00382-004-0488-8.

    Dufresne, J.-L., and S. Bony. 2008. “An Assessment of the Primary Sources of Spread of Global Warming Estimates from Coupled Atmosphere–Ocean Models.”Journal of Climate21:5135–5144. doi:10.1175/2008JCLI2239.1.

    Fu, Y., and G. Liu. 2007. “Possible Misidentification of Rain Type by TRMM PR over Tibetan Plateau.”Journal of Applied Meteorology and Climatology46: 667–672. doi:10.1175/jam2484.1.

    Fu, Y.-F., H.-T. Li, and Y. Zi. 2007. “Case Study of Precipitation Cloud Structure Viewed by TRMM Satellite in a Valley of the Tibetan Plateau.” [In Chinese.]Plateau Meteorology26: 98–106.

    Fujinami, H., and T. Yasunari. 2001. “The Seasonal and Intraseasonal Variability of Diurnal Cloud Activity over the Tibetan Plateau.”Journal of the Meteorological Society of Japan79: 1207–1227. doi:10.2151/jmsj.79.1207.

    Gao, Y., and M. Liu. 2013. “Evaluation of High-Resolution Satellite Precipitation Products Using Rain Gauge Observations over the Tibetan Plateau.”Hydrology and Earth System Sciences17:837–849. doi:10.5194/hess-17-837-2013.

    Heymsfield, A., A. Protat, R. T. Austin, D. Bouniol, R. Hogan, J.Delano?, H. Okamoto, et al. 2008. “Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ Data.”Journal of Applied Meteorology and Climatology47:135–163. doi:10.1175/2007JAMC1606.1.

    Hong, Y., and G. Liu. 2015. “The Characteristics of Ice Cloud Properties Derived from CloudSat and CALIPSO Measurements.”Journal of Climate28: 3880–3901.doi:10.1175/JCLI-D-14-00666.1.

    Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman,Y. Hong, E. Stocker, and D. B. Wolff. 2007. “The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear,Combined-Sensor Precipitation Estimates at Fine Scales.”Journal of Hydrometeorology8: 38–55. doi:10.1175/jhm560.1.

    Jakob, C., and S. A. Klein. 1999. “The Role of Vertically Varying Cloud Fraction in the Parametrization of Microphysical Processes in the ECMWF Model.”Quarterly Journal of the Royal Meteorological Society125: 941–965.

    Jensen, E. J., A. S. Ackerman, and J. A. Smith. 2007. “Can Overshooting Convection Dehydrate the Tropical Tropopause Layer?”Journal of Geophysical Research Atmospheres112:D11209. doi:10.1029/2006JD007943.

    Jiang, J. H., H. Su, C. Zhai, V. S. Perun, A. D. Genio, L. S. Nazarenko,L. J. Donner, et al. 2012. “Evaluation of Cloud and Water Vapor Simulations in CMIP5 Climate Models Using NASA “a-Train”Satellite Observations.”Journal of Geophysical Research Atmospheres117: D14105. doi:10.1029/2011JD017237.

    Kubar, T. L., D. L. Hartmann, and R. Wood. 2009. “Understanding the Importance of Microphysics and Macrophysics for Warm Rain in Marine Low Clouds. Part I: Satellite Observations.”Journal of the Atmospheric Sciences66: 2953–2972.doi:10.1175/2009JAS3071.1.

    Kuo, H. L., and Y. F. Qian. 1981. “Influence of the Tibetian Plateau on Cumulative and Diurnal Changes of Weather and Climate in Summer.”Monthly Weather Review109 (11): 2337–2356.

    Kurosaki, Y., and F. Kimura. 2002. “Relationship between Topography and Daytime Cloud Activity around Tibetan Plateau.”Journal of the Meteorological Society of Japan80:1339–1355.

    Li, Z., H. W. Barker, and L. Moreau. 1995. “The Variable Effect of Clouds on Atmospheric Absorption of Solar Radiation.”Nature376: 486–490.

    Li, Y., X. Liu, and B. Chen. 2006. “Cloud Type Climatology over the Tibetan Plateau: A Comparison of ISCCP and MODIS/TERRA Measurements with Surface Observations.”Geophysical Research Letters33: L17716. doi:10.1029/2006GL026890.

    Liu, Y., Q. Bao, A. Duan, Z. Qian, and G. Wu. 2007. “Recent Progress in the Impact of the Tibetan Plateau on Climate in China.”Advances in Atmospheric Sciences24: 1060–1076.doi:10.1007/s00376-007-1060-3.

    Luo, Y., R. Zhang, and W. Qian. 2011. “Intercomparison of Deep Convection over the Tibetan Plateau–Asian Monsoon Region and Subtropical North America in Boreal Summer Using CloudSat/CALIPSO Data.”Journal of Climate24: 2164–2177.doi:10.1175/2010jcli4032.1.

    Matrosov, S. Y. 2007. “Potential for Attenuation-Based Estimations of Rainfall Rate from CloudSat.”Geophysical Research Letters34: L05817. doi:10.1029/2006GL029161.

    Pan, X., and Y.-F. Fu. 2015. “Analysis on Climatological Characteristics of Deep and Shallow Precipitation Cloud in Summer over Qinghai-Xizang Plateau.” [In Chinese.]Plateau Meteorology34: 1191–1203.

    Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom,E. Ahmad, and D. Hartmann. 1989. “Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment.”Science243: 57–63. doi:10.1126/science.243.4887.57.

    Rüthrich, F., B. Thies, C. Reudenbach, and J. Bendix. 2013.“Cloud Detection and Analysis on the Tibetan Plateau Using Meteosat and CloudSat.”Journal of Geophysical Research Atmospheres118: 10,082–10,099. doi:10.1002/jgrd.50790.

    Sassen, K., and Z. Wang. 2008. “Classifying Clouds around the Globe with the CloudSat Radar: 1-Year of Results.”Geophysical Research Letter35 (L04): 805. doi:10.1029/2007GL032591.

    Stephens, G. L., D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z.Wang, A. J. Illingworth, et al. 2002. “The Cloudsat Mission and the A-Train.”Bulletin of the American Meteorological Society83:1771–1790. doi:10.1175/bams-83-12-1771.

    Stephens, G. L., D. G. Vane, S. Tanelli, E. Im, S. Durden, M. Rokey,D. Reinke, et al 2008. “CloudSat Mission: Performance and Early Science after the First Year of Operation.”Journal of Geophysical Research Atmospheres113: D00A18.doi:10.1029/2008JD009982.

    Su, H., J. H. Jiang, J. Teixeira, A. Gettelman, X. Huang, G.Stephens, D. Vane, and V. S. Peru. 2011. “Comparison of Regime-Sorted Tropical Cloud Profiles Observed by CloudSat with GEOS5 Analyses and Two General Circulation Model Simulations.”Journal of Geophysical Research116: D09104.doi:10.1029/2010JD014971.

    Tong, K., F. Su, D. Yang, and Z. Hao. 2014. “Evaluation of Satellite Precipitation Retrievals and Their Potential Utilities in Hydrologic Modeling over the Tibetan Plateau.”Journal of Hydrology519: 423–437. doi:10.1016/j.jhydrol.2014.07.044.

    Wang, S.-J., W.-Y. He, H.-B. Chen, J.-C. Bian, and Z.-H. Wang. 2010.“Statistics of Cloud Height over the Tibetan Plateau and Its Surrounding Region Derived from the CloudSat Data.”Plateau Meteorology (in Chinese)29: 1–9.

    Winker, D. M., W. H. Hunt, and M. J. McGill. 2007. “Initial Performance Assessment of CALIOP.”Geophysical Research Letters34: L19803. doi:10.1029/2007gl030135.

    Wu, G. X., and Y. S. Zhang. 1998. “Tibetan Plateau Forcing and the Timing of the Monsoon Onset over South Asia and the South China Sea.”Monthly Weather Review126: 913–927.doi:10.1175/1520-0493(1998)126<0913:Tpfatt>2.0.Co;2.

    Yan, Y., Y. Liu, and J. Lu. 2016. “Cloud Vertical Structure,Precipitation, and Cloud Radiative Effects over Tibetan Plateau and Its Neighboring Regions.”Journal of Geophysical Research Atmospheres121: 5864–5877. doi:10.1002/2015JD024591.

    Yin, J., D. Wang, and G. Zhai. 2011. “Long-Termin SituMeasurements of the Cloud-Precipitation Microphysical Properties over East Asia.”Atmospheric Research102: 206–217. doi:10.1016/j.atmosres.2011.07.002.

    Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J.M. Gregory, and P. Forster. 2013. “Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5.”Journal of Climate26: 5007–5027. doi:10.1175/JCLI-D-12-00555.1.

    Zhang, R. H. 2001. “Relations of Water Vapor Transport from Indian Monsoon with That over East Asia and the Summer Rainfall in China.”Advance of Atmosphere Science18 (5): 1005–1017.

    Zhang, M. H., W. Y. Lin, S. A. Klein, J. T. Bacmeister, S. Bony,R. T. Cederwall, A. D. Delgenio, et al 2005. “Comparing Clouds and Their Seasonal Variations in 10 Atmospheric General Circulation Models with Satellite Measurements.”Journal of Geophysical Research Atmospheres110: D15S02.doi:10.1029/2004JD005021.

    Zhang, X., K. Duan, and P. Shi. 2015. “Cloud Vertical Profiles from CloudSat Data over the Eastern Tibetan Plateau during Summer.”Chinese Journal of tmospheric Sciences (in Chinese)39: 1073–1080. doi:10.3878/j.issn.1006-9895.1502.14196.

    Zhao, Y., D. Wang, J. Yin. 2014. “A Study on Cloud Microphysical Characteristics over the Tibetan Plateau Using CloudSat Data.”Journal of Tropical Meteorology (in Chinese)30: 239–248.

    欧美不卡视频在线免费观看| av在线观看视频网站免费| 五月伊人婷婷丁香| 岛国在线免费视频观看| 国产69精品久久久久777片| 国产精品电影一区二区三区| ponron亚洲| 少妇被粗大猛烈的视频| 一夜夜www| xxxwww97欧美| 亚洲无线观看免费| 国产三级在线视频| 亚洲狠狠婷婷综合久久图片| 少妇人妻精品综合一区二区 | 在线观看免费视频日本深夜| 在线观看一区二区三区| 欧美黑人巨大hd| 很黄的视频免费| 国产精品电影一区二区三区| 国产乱人视频| 乱人视频在线观看| 麻豆av噜噜一区二区三区| 小蜜桃在线观看免费完整版高清| 久久久久久九九精品二区国产| 在线免费观看的www视频| 欧美xxxx黑人xx丫x性爽| 久久久久久久精品吃奶| 噜噜噜噜噜久久久久久91| 亚洲中文字幕日韩| 国产精品综合久久久久久久免费| 国产免费av片在线观看野外av| 国产精品自产拍在线观看55亚洲| 午夜福利视频1000在线观看| 毛片女人毛片| 久久九九热精品免费| 欧美极品一区二区三区四区| 天堂av国产一区二区熟女人妻| 在线观看66精品国产| 国产不卡一卡二| 露出奶头的视频| 中国美女看黄片| 搡老妇女老女人老熟妇| 亚洲七黄色美女视频| 日韩亚洲欧美综合| 丰满人妻熟妇乱又伦精品不卡| 国产精品不卡视频一区二区 | or卡值多少钱| 亚洲五月婷婷丁香| 免费看日本二区| 国产伦精品一区二区三区四那| 国产精品三级大全| 美女免费视频网站| 长腿黑丝高跟| 十八禁人妻一区二区| 一级黄片播放器| 欧美中文日本在线观看视频| 亚洲三级黄色毛片| 国产黄片美女视频| 人人妻,人人澡人人爽秒播| 国产国拍精品亚洲av在线观看| 搡老妇女老女人老熟妇| 51国产日韩欧美| 国产色婷婷99| 欧美最新免费一区二区三区 | av国产免费在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲黑人精品在线| 成人鲁丝片一二三区免费| 国产精品野战在线观看| 亚洲电影在线观看av| 3wmmmm亚洲av在线观看| or卡值多少钱| 热99re8久久精品国产| 国产精品久久电影中文字幕| 国产激情偷乱视频一区二区| 午夜两性在线视频| 午夜福利18| 国产欧美日韩精品亚洲av| 久久久久久久精品吃奶| 一级黄片播放器| 国产 一区 欧美 日韩| 国产精品98久久久久久宅男小说| 好男人电影高清在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区激情短视频| 午夜福利在线观看吧| 成人性生交大片免费视频hd| 直男gayav资源| 婷婷亚洲欧美| 国产真实伦视频高清在线观看 | 色综合站精品国产| 真人一进一出gif抽搐免费| 国产精品久久电影中文字幕| 好看av亚洲va欧美ⅴa在| 亚洲成人久久性| 欧美精品国产亚洲| 欧美成狂野欧美在线观看| 日本在线视频免费播放| 国产成+人综合+亚洲专区| ponron亚洲| 美女黄网站色视频| 丝袜美腿在线中文| 久久精品国产99精品国产亚洲性色| 久久久久精品国产欧美久久久| 亚洲,欧美,日韩| 亚洲av成人不卡在线观看播放网| 五月玫瑰六月丁香| 免费搜索国产男女视频| 精品午夜福利视频在线观看一区| 国产亚洲精品av在线| 久久精品人妻少妇| 国产三级黄色录像| 成人无遮挡网站| 久久伊人香网站| 在线十欧美十亚洲十日本专区| 大型黄色视频在线免费观看| 国产精品,欧美在线| 欧美一区二区国产精品久久精品| 99国产综合亚洲精品| 成年人黄色毛片网站| 欧美日韩亚洲国产一区二区在线观看| 亚洲人成网站高清观看| 国产精品国产高清国产av| 12—13女人毛片做爰片一| 日本五十路高清| 久久久久久久久久黄片| 女人十人毛片免费观看3o分钟| 三级毛片av免费| 淫妇啪啪啪对白视频| 少妇高潮的动态图| 国产精品综合久久久久久久免费| 久久国产乱子伦精品免费另类| 日韩中字成人| 最近中文字幕高清免费大全6 | 午夜福利18| 国产一区二区激情短视频| 简卡轻食公司| 最近最新中文字幕大全电影3| 在线a可以看的网站| 男女下面进入的视频免费午夜| 噜噜噜噜噜久久久久久91| 精品人妻熟女av久视频| 亚洲久久久久久中文字幕| 十八禁国产超污无遮挡网站| 特级一级黄色大片| www日本黄色视频网| 偷拍熟女少妇极品色| 日韩 亚洲 欧美在线| 国产欧美日韩精品一区二区| 国产高清视频在线播放一区| 国产精品一及| 色精品久久人妻99蜜桃| 国产亚洲欧美98| 级片在线观看| 欧美最黄视频在线播放免费| 国产乱人伦免费视频| 深夜a级毛片| 丰满乱子伦码专区| 欧美xxxx黑人xx丫x性爽| 91麻豆av在线| 精品久久久久久久久久免费视频| 小蜜桃在线观看免费完整版高清| 黄色日韩在线| 国产野战对白在线观看| 少妇被粗大猛烈的视频| 一个人免费在线观看的高清视频| 男人和女人高潮做爰伦理| 欧美国产日韩亚洲一区| 久久久久国产精品人妻aⅴ院| 精品人妻1区二区| 成年女人永久免费观看视频| 毛片女人毛片| 蜜桃久久精品国产亚洲av| 小蜜桃在线观看免费完整版高清| 国产精品98久久久久久宅男小说| 日本成人三级电影网站| 亚洲 国产 在线| 99在线人妻在线中文字幕| 欧美色视频一区免费| 欧美另类亚洲清纯唯美| 两性午夜刺激爽爽歪歪视频在线观看| 久久国产乱子免费精品| 性色av乱码一区二区三区2| 成年女人毛片免费观看观看9| 欧美日韩瑟瑟在线播放| 亚洲美女视频黄频| 亚洲成av人片免费观看| 成人欧美大片| 亚洲精品一区av在线观看| 制服丝袜大香蕉在线| 国产亚洲欧美98| 在线国产一区二区在线| 欧美三级亚洲精品| 久久精品国产自在天天线| 宅男免费午夜| 久久亚洲真实| 一本一本综合久久| 成人鲁丝片一二三区免费| 亚洲国产精品合色在线| 少妇丰满av| 欧美zozozo另类| 国产日本99.免费观看| 午夜免费男女啪啪视频观看 | 国产成人影院久久av| 一卡2卡三卡四卡精品乱码亚洲| 欧美乱色亚洲激情| 精华霜和精华液先用哪个| 我要搜黄色片| 18禁黄网站禁片午夜丰满| 国产精品电影一区二区三区| 亚洲人成网站在线播放欧美日韩| 少妇丰满av| 搡老妇女老女人老熟妇| 老司机福利观看| 内射极品少妇av片p| 神马国产精品三级电影在线观看| 有码 亚洲区| 国产淫片久久久久久久久 | 永久网站在线| 97超视频在线观看视频| 亚洲av熟女| 极品教师在线视频| 国产午夜精品论理片| 91午夜精品亚洲一区二区三区 | 淫秽高清视频在线观看| 三级毛片av免费| 天堂av国产一区二区熟女人妻| 久久香蕉精品热| 亚洲,欧美精品.| 一本一本综合久久| 国产精品电影一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 日韩欧美一区二区三区在线观看| 最近最新免费中文字幕在线| 91麻豆av在线| 少妇熟女aⅴ在线视频| av国产免费在线观看| 毛片一级片免费看久久久久 | 国产成人aa在线观看| 日日夜夜操网爽| 国产伦精品一区二区三区四那| 三级国产精品欧美在线观看| 国产精品三级大全| 色视频www国产| 国产精品乱码一区二三区的特点| 日韩人妻高清精品专区| 一个人免费在线观看的高清视频| 又爽又黄无遮挡网站| 久久精品国产亚洲av涩爱 | 午夜福利在线在线| 亚洲,欧美精品.| 高清毛片免费观看视频网站| 如何舔出高潮| 亚洲国产精品合色在线| 在线观看一区二区三区| 成年人黄色毛片网站| 国产高清三级在线| 亚洲专区中文字幕在线| 99国产综合亚洲精品| 首页视频小说图片口味搜索| 亚洲欧美日韩东京热| 少妇被粗大猛烈的视频| 精品久久久久久久末码| 免费人成在线观看视频色| 久久精品人妻少妇| 国产黄色小视频在线观看| 国产精品亚洲av一区麻豆| 亚洲欧美日韩东京热| 久久亚洲精品不卡| 国产欧美日韩一区二区精品| 免费人成在线观看视频色| 成人特级黄色片久久久久久久| 此物有八面人人有两片| 香蕉av资源在线| 淫秽高清视频在线观看| 真人一进一出gif抽搐免费| 99久久精品一区二区三区| 精品一区二区三区视频在线观看免费| 久久中文看片网| 别揉我奶头~嗯~啊~动态视频| 黄色丝袜av网址大全| 成年版毛片免费区| 亚洲熟妇熟女久久| 精品人妻熟女av久视频| 久久久精品大字幕| 他把我摸到了高潮在线观看| 变态另类丝袜制服| 18美女黄网站色大片免费观看| 欧美成人免费av一区二区三区| 亚洲,欧美,日韩| 热99在线观看视频| 色精品久久人妻99蜜桃| av在线老鸭窝| 老熟妇仑乱视频hdxx| 麻豆国产97在线/欧美| 女人被狂操c到高潮| 婷婷亚洲欧美| 亚洲av美国av| 麻豆国产av国片精品| 午夜日韩欧美国产| 亚洲成人中文字幕在线播放| 日韩av在线大香蕉| www.熟女人妻精品国产| 欧美区成人在线视频| 久久久久久大精品| 美女 人体艺术 gogo| 国产精品亚洲美女久久久| 少妇被粗大猛烈的视频| 欧美乱妇无乱码| 日日摸夜夜添夜夜添小说| 国产真实伦视频高清在线观看 | 国产精品女同一区二区软件 | av专区在线播放| 亚洲真实伦在线观看| 久久久久久久精品吃奶| 亚洲第一电影网av| 国产精品98久久久久久宅男小说| 国产免费av片在线观看野外av| 亚洲精华国产精华精| 直男gayav资源| 夜夜看夜夜爽夜夜摸| 综合色av麻豆| 一级av片app| 精品一区二区三区人妻视频| 精品久久久久久久久av| 国产精品久久久久久久久免 | 国产白丝娇喘喷水9色精品| 国产午夜精品久久久久久一区二区三区 | 日韩国内少妇激情av| 18禁黄网站禁片免费观看直播| 夜夜爽天天搞| av专区在线播放| 亚洲国产精品sss在线观看| 亚洲av第一区精品v没综合| 亚洲不卡免费看| 精品人妻1区二区| 嫁个100分男人电影在线观看| 国产精品野战在线观看| 国内揄拍国产精品人妻在线| 欧美色视频一区免费| 国产免费男女视频| 亚洲精品色激情综合| 成年免费大片在线观看| 亚洲国产高清在线一区二区三| 美女xxoo啪啪120秒动态图 | 欧美bdsm另类| 久久午夜亚洲精品久久| 波多野结衣巨乳人妻| 久久精品人妻少妇| 国产精品久久久久久人妻精品电影| 中文在线观看免费www的网站| h日本视频在线播放| 一个人免费在线观看的高清视频| 亚洲第一欧美日韩一区二区三区| 在线a可以看的网站| 欧美性猛交黑人性爽| 老司机午夜十八禁免费视频| 日韩国内少妇激情av| 亚洲综合色惰| 欧美色欧美亚洲另类二区| 在线观看66精品国产| 日韩欧美免费精品| 在线播放国产精品三级| 久久久久亚洲av毛片大全| 97热精品久久久久久| 欧美绝顶高潮抽搐喷水| 亚洲自偷自拍三级| 欧美另类亚洲清纯唯美| 午夜影院日韩av| 亚洲人与动物交配视频| 日本黄大片高清| 毛片一级片免费看久久久久 | 午夜激情欧美在线| 老熟妇乱子伦视频在线观看| 国产亚洲欧美在线一区二区| 黄色丝袜av网址大全| 人人妻人人澡欧美一区二区| 亚洲成av人片免费观看| 成人高潮视频无遮挡免费网站| 香蕉av资源在线| 国产精品久久久久久久久免 | 超碰av人人做人人爽久久| 成人美女网站在线观看视频| 丁香欧美五月| 欧美xxxx性猛交bbbb| 波野结衣二区三区在线| 女生性感内裤真人,穿戴方法视频| 校园春色视频在线观看| 国内少妇人妻偷人精品xxx网站| 最近最新免费中文字幕在线| 9191精品国产免费久久| 亚洲国产欧洲综合997久久,| 欧美高清性xxxxhd video| 神马国产精品三级电影在线观看| 美女cb高潮喷水在线观看| 亚洲va日本ⅴa欧美va伊人久久| 十八禁网站免费在线| 国产精品永久免费网站| 亚洲精品一区av在线观看| 麻豆成人午夜福利视频| av福利片在线观看| 亚洲av第一区精品v没综合| 看黄色毛片网站| 亚洲自偷自拍三级| 亚洲男人的天堂狠狠| 国产三级在线视频| 日韩 亚洲 欧美在线| 亚洲成人免费电影在线观看| 成人无遮挡网站| 夜夜看夜夜爽夜夜摸| 在现免费观看毛片| 神马国产精品三级电影在线观看| 蜜桃亚洲精品一区二区三区| 精品一区二区免费观看| 中文字幕久久专区| 欧美性猛交╳xxx乱大交人| 国产伦在线观看视频一区| 岛国在线免费视频观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美性感艳星| 国产黄片美女视频| 亚洲成av人片免费观看| 神马国产精品三级电影在线观看| 99久国产av精品| 久久这里只有精品中国| 午夜精品一区二区三区免费看| 精品久久国产蜜桃| 老司机深夜福利视频在线观看| 亚洲av熟女| 小说图片视频综合网站| 精品熟女少妇八av免费久了| 国产午夜精品久久久久久一区二区三区 | 99热这里只有是精品50| 老司机福利观看| 欧美日本视频| 男女床上黄色一级片免费看| 久久久国产成人精品二区| 两个人的视频大全免费| 性插视频无遮挡在线免费观看| 人人妻人人看人人澡| 97超视频在线观看视频| 色综合欧美亚洲国产小说| av中文乱码字幕在线| 国产真实乱freesex| 日韩中文字幕欧美一区二区| 丝袜美腿在线中文| 国产精品99久久久久久久久| 欧美性猛交黑人性爽| 免费在线观看日本一区| 国产私拍福利视频在线观看| 蜜桃久久精品国产亚洲av| 搡老岳熟女国产| 美女高潮的动态| 日本五十路高清| 三级毛片av免费| 久久热精品热| 国产一区二区三区在线臀色熟女| 中文字幕高清在线视频| 亚洲aⅴ乱码一区二区在线播放| 国产视频一区二区在线看| 欧美日韩福利视频一区二区| 91av网一区二区| 真人做人爱边吃奶动态| av在线天堂中文字幕| 久久久久国产精品人妻aⅴ院| www.www免费av| ponron亚洲| 一级av片app| 久久久久久久久大av| 中文字幕久久专区| 观看美女的网站| 欧美日韩综合久久久久久 | 亚洲精华国产精华精| 身体一侧抽搐| 性欧美人与动物交配| 黄色女人牲交| 日日夜夜操网爽| 国产黄色小视频在线观看| 国产老妇女一区| 亚洲成人久久爱视频| 亚洲成人中文字幕在线播放| 国产在线精品亚洲第一网站| 一个人免费在线观看的高清视频| 成年版毛片免费区| 成人性生交大片免费视频hd| 精华霜和精华液先用哪个| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲av电影不卡..在线观看| 天堂动漫精品| 亚洲一区二区三区不卡视频| 99riav亚洲国产免费| 嫩草影视91久久| 校园春色视频在线观看| 亚洲熟妇熟女久久| 亚洲国产精品合色在线| 麻豆国产av国片精品| 日韩成人在线观看一区二区三区| 观看免费一级毛片| 国产一区二区三区在线臀色熟女| av天堂中文字幕网| 无人区码免费观看不卡| 国产精品av视频在线免费观看| 精品国内亚洲2022精品成人| 狠狠狠狠99中文字幕| 夜夜看夜夜爽夜夜摸| xxxwww97欧美| 美女黄网站色视频| 久久久久免费精品人妻一区二区| 精品久久久久久久末码| 亚洲av成人不卡在线观看播放网| 日本在线视频免费播放| 露出奶头的视频| 网址你懂的国产日韩在线| 久久久国产成人免费| 亚洲成人中文字幕在线播放| 国产色婷婷99| 少妇裸体淫交视频免费看高清| 亚洲成人免费电影在线观看| 最新在线观看一区二区三区| 香蕉av资源在线| 9191精品国产免费久久| 18禁裸乳无遮挡免费网站照片| 亚洲av成人不卡在线观看播放网| www.熟女人妻精品国产| 久久久精品欧美日韩精品| 小说图片视频综合网站| xxxwww97欧美| 久久久久久久久久黄片| 久久精品国产亚洲av涩爱 | 亚洲自拍偷在线| 真实男女啪啪啪动态图| 少妇裸体淫交视频免费看高清| 中文亚洲av片在线观看爽| 欧美色欧美亚洲另类二区| 亚洲av.av天堂| 国产亚洲精品综合一区在线观看| 午夜福利在线观看吧| 亚洲av成人不卡在线观看播放网| 久久久久精品国产欧美久久久| 一个人免费在线观看的高清视频| 在线观看免费视频日本深夜| 国产亚洲欧美98| 久久久久久久久久黄片| 久久精品国产亚洲av涩爱 | 成人三级黄色视频| 啦啦啦观看免费观看视频高清| 51午夜福利影视在线观看| 日本黄大片高清| 精品午夜福利视频在线观看一区| 亚洲内射少妇av| 国产黄片美女视频| 非洲黑人性xxxx精品又粗又长| 国产伦精品一区二区三区视频9| 午夜免费男女啪啪视频观看 | 日韩av在线大香蕉| 欧美+亚洲+日韩+国产| 久久精品国产99精品国产亚洲性色| 亚洲精品成人久久久久久| 国产久久久一区二区三区| 成人av一区二区三区在线看| 亚洲熟妇熟女久久| a级一级毛片免费在线观看| 午夜福利免费观看在线| 欧美日本视频| 制服丝袜大香蕉在线| 少妇熟女aⅴ在线视频| 国产黄色小视频在线观看| 国产精品国产高清国产av| 老鸭窝网址在线观看| 久久精品91蜜桃| 熟女人妻精品中文字幕| 日韩精品青青久久久久久| 99久久精品国产亚洲精品| 中文字幕人成人乱码亚洲影| 午夜久久久久精精品| 国产黄a三级三级三级人| 麻豆一二三区av精品| 免费看美女性在线毛片视频| 精品福利观看| 亚洲最大成人手机在线| 好男人电影高清在线观看| 久久草成人影院| 男女做爰动态图高潮gif福利片| 午夜精品一区二区三区免费看| 一个人免费在线观看的高清视频| 在线十欧美十亚洲十日本专区| 最后的刺客免费高清国语| 成人av一区二区三区在线看| 国产亚洲欧美98| 国产伦精品一区二区三区视频9| 日本一本二区三区精品| 九九热线精品视视频播放| 国产免费男女视频| 亚洲精品久久国产高清桃花| 99久久久亚洲精品蜜臀av| 成年免费大片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久久久免费视频| 国产精品爽爽va在线观看网站| 少妇熟女aⅴ在线视频| 超碰av人人做人人爽久久| 日韩欧美 国产精品| 久久伊人香网站| 观看美女的网站| 中文字幕av成人在线电影| av在线老鸭窝| 国产精品久久久久久人妻精品电影| 午夜免费成人在线视频| 啦啦啦观看免费观看视频高清| 午夜福利在线观看吧| 久久国产乱子免费精品| 免费一级毛片在线播放高清视频| 久久久久九九精品影院| 国产不卡一卡二| 韩国av一区二区三区四区|