• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Understanding the dynamical mechanism of year-to-year incremental prediction by nonlinear time series prediction theory

    2018-01-31 03:32:10BiShuTingWngPengFeiPnXinNongLiChoFnCenterforMonsoonSystemReserhCMSRInstituteofAtmospheriPhysisChineseAemyofSienesBeijingChinStteKeyLortoryofNumerilMoelingforAtmospheriSienesGeophysilFluiDynmisLASGInstituteofAtmosp

    Bi Shu-Ting, Wng Peng-Fei, Pn Xin-Nong n Li Cho-FnCenter for Monsoon System Reserh (CMSR), Institute of Atmospheri Physis, Chinese Aemy of Sienes, Beijing, Chin; Stte Key Lortory of Numeril Moeling for Atmospheri Sienes n Geophysil Flui Dynmis (LASG), Institute of Atmospheri Physis, Chinese Aemy of Sienes, Beijing, Chin; University of Chinese Aemy of Sienes, Beijing, Chin; Key Lortory for Atmosphere n Glol Environment Oservtion (LAGEO), Institute of Atmospheri Physis, Chinese Aemy of Sienes, Beijing, Chin

    1. Introduction

    Short-term climate prediction is a hot but challenging scientific topic in current climate research. According to previous studies, the methods frequently used in short-term climate prediction include: the statistical approach, the hybrid statistical and dynamical approach, the numerical model approach, and the nonlinear time series prediction approach (hereafter NP). The latter is based on the phasespace reconstruction theorem (Casdagli 1989), which implicitly requires a stationary system. However, weather and climate systems are influenced by perturbations of driving forces; in other words, the atmosphere is essentially nonstationary in dynamic terms. Previous studies have indicated that the stationarity of atmospheric processes is changeable. For instance, Tsonis (1996) found that fluctuations around the global mean precipitation amount have increased significantly, which means that global precipitation was a nonstationary process over the past century. The cause of nonstationarity is the change in driving forces with time (Manuca and Savit 1996). This led Wang et al. (2011) to develop a new prediction model with such driving forces, which can improve the accuracy of prediction effectively when applied to the time series of a single climate variable.

    However, most time series from the real world, especially those of processes typically related to climate, are too short. When we apply the NP method to such short time series, the model sometimes encounters a data‘bottleneck’. Researchers have thus proposed the ‘spatiotemporal series’ method, which attempts to utilize the information at different spatial positions to remedy the insufficiency in the length of the time series. For example,with a spatiotemporal artificial neural network system,Yang, Zhou, and Bian (2000) carried out a regional prediction experiment regarding the distribution of atmospheric ozone over China, and the accuracy of the prediction was beyond 43%. In addition, based on the spatiotemporal series method, Chen et al. (2003) improved the extended-range (monthly) dynamical prediction of the pentad zonal mean height and revealed that spatiotemporal series can effectively improve the ergodicity of single-variable time series. Wang, Yang, and Lü (2004) introduced the idea of spatiotemporal series to enhance the original NP method and, through the example of 500 hPa height over the Northern Hemisphere, found that it is valuable to apply this technique to regional climate prediction.

    In short-term climate prediction, the predictands are traditional climate variable anomalies (Wang et al.2012). As most regions in East Asia vary in connection to the tropospheric biennial oscillation (TBO), it may be easy to capture the interannual change if the prediction method takes the TBO into consideration. However, decadal change in the climate mean may lead to uncertainty in the prediction. To deal with this issue, Fan, Wang, and Choi (2008) proposed a new prediction scheme in their study of summer rainfall over the middle to lower reaches of the Yangtze River, named the year-to-year incremental prediction (YIP) method. Hereafter, we use YR to stand for the summer rainfall in this region. In this approach, thefirst stage is to predict the year-to-year precipitation increments, and the precipitation and precipitation rate anomalies are computed. The average root-mean-square error(RMSE) of the fitting period is 20%, and 18% in the hindcast stage of YR. The prediction model captures the interannual variation of YR, and reproduces the ascending trend in 1984–1998 and the descending trend in 1998–2006, and thus raises the prediction skill of YR strikingly. This method has also been applied to the prediction of summer rainfall in North China (Fan, Lin, and Gao 2009), winter surface air temperature (Fan 2009) and summer temperature (Fan and Wang 2010) over Northeast China, typhoon frequency over the western North Pacific (Fan and Wang 2009), wintertime heavy snow activity in Northeast China (Fan and Tian 2013), and the North Atlantic Oscillation (Tian and Fan 2015), among other climatic features.

    There have been many variants of YIP, but the fundamental method is that based on Fan, Wang, and Choi (2008).The benefit of YIP is that it involves physical mechanics,while the advantage of NP is that it has robust mathematical dynamical foundations. By combining YIP and NP, we may achieve a better understanding of YIP with respect to its dynamical mechanism. In addition, we can analyze its advantages and disadvantages, and then explore its potential for application to other seasonal events in shortterm climate prediction.

    2. Data and methods

    Monthly precipitation data from 160 stations (1964–2006) in China provided by the China Meteorological Administration are used in this study. Following Chen and Zhao (2000), the mean precipitation of 17 stations during June–August over the middle to lower reaches of the Yangtze River (Nanjing, Hefei, Shanghai, Hangzhou,Anqing, Tunxi, Jiujiang, Hankou, Zhongxiang, Yueyang,Yichang, Changde, Ningbo, Quxian, Guixi, Nanchang, and Changsha) is selected to represent the summer rainfall over this region.

    The present study employs monthly atmospheric variables from the NCEP–NCAR reanalysis data set, with a resolution of 2.5° × 2.5° (Kalnay et al. 1996).

    2.1. The YIP method

    The YR can be predicted on the basis of precursory factors using the YIP model (Fan, Wang, and Choi 2008).

    where ΔYstands for the year-to-year increments of YR, Δfis the year-to-year increments of the normalized indices(also known as DY – the difference of a variable between the current year and the preceding year),ciis the fitting parameter, and the subscript in Δfrepresents the number of the predictor.

    Each Δfis defined as

    whereNis the number of years of historical data. The details of six factors can be found in Fan, Wang, and Choi(2008) (also introduced in Section 3.1 in the present paper).

    2.2. The NP method with external forcing

    The method of using a single-point nonlinear model with driving forces refers to the work of Wang et al. (2011) and Wang, Yang, and Zhou (2013). Assuming a non-stationary process with two series, the former variable is the system state and the latter is the driving force. By selecting a proper parameterτ, we can embed them into a state space (also known as phase space) withm1+m2dimensions, and then obtain the state trajectory

    Figure 1. The wavelet power spectrum of the summer mean precipitation in the middle to lower reaches of the Yangtze River during 1965–2006.

    wherem1and, respectively; andnumber of points in phase space. After reconstructing this trajectory, we can build a prediction model by means of the global approximation method (Casdagli 1989),

    Here,φis supposed to be a second-order polynomial at most.

    The single-point prediction method can be expanded to the spatial time series prediction method, which not only includes the driving forces but also the information from the surrounding four neighboring points. The spatiotemporal series prediction model can be written as

    2.3. Relationship between YIP and NP

    This formula is analogue to the NP model (Equation (4)).This implies that they have some corresponding relationship. Equation (4) only considers one forcing originally, but we can expand it to multiple forcings and one variable system by way of Equation (6):

    Here, ?tis the fitting residual. The model only uses the value of one previous step during prediction, so it can be regarded as an NP model withm= 1 andτ= 1 to predict one step ahead. Therefore, we can conclude that YIP and NP are equivalent when linear fitting is applied andNis large enough.

    From the theoretical analysis, YIP could be considered as a special case of NP, so the YIP method can be applied to nonlinear modeling. YIP emphasizes the effect of quasi-biennial signals; thus, this method has explicit physical meaning compared with the NP method.

    3. Hindcast and result

    To reveal the equivalence of YIP and NP, and compare their performance, we apply the two methods to the following rainfall prediction experiments.

    3.1. Precipitation prediction of YIP

    Figure 1 shows the wavelet analysis of YR. It illustrates that there is a strong 2–5-yr period of YR variations in the period 1965–2006, so we can amplify the anomaly signal of the rainfall via YIP.

    Figure 2. Correlation coefficients between the year-to-year increments of the summer rainfall over the middle to lower reaches of the Yangtze River and meridional wind shear between the 850 hPa and 200 hPa levels in March–May during 1965–1996.

    Figure 3. (a) Correlation coefficients between the year-to-year increments of the summer rainfall over the middle to lower reaches of the Yangtze River and the sea level pressure in December–February (DJF) during 1965–1996. (b) Correlation coefficients between the year-to-year increments of the index for South Pacific sea level pressure in DJF and the sea level pressure in June–August (JJA) during 1965–1996.

    Fan, Wang, and Choi (2008) analyzed the correlation coefficients between the year-to-year increments of YR and the geopotential height field at 500 hPa in spring and found that the Urals high and East Asian trough have a great influence on YR. So they defined two indices: the spring Eurasian circulation index (EUI) and the spring East Asian circulation index (EAI). The EUI is the area-averaged geopotential height at 500 hPa over the region (60°–70°N, 30°–60°E), and the correlation coefficient between the year-to-year increments of YR and EUI is 0.41 during 1965–1996, reaching the 95% confidence level. The EAI is the area-averaged geopotential height at 500 hPa over the region (55°–60°N, 120°–150°E), and the correlation coefficient between the year-to-year increments of YR and the EAI is ?0.44 during 1965–1996, reaching the 95%confidence level.

    Figure 2 depicts the correlation coefficients between the year-to-year increments of YR and meridional wind shear between the 850 hPa and 200 hPa levels in March–May (MAM) (i.e.v850 minusv200). As is shown in Figure 2,there is negative correlation in the region of (20°S–10°N,120°–140°E), which is the place for the interaction of the monsoon and ENSO. Next, we define an index for meridional wind shear around Indo-Australia (WSI) using the area-averaged meridional wind shear over the region(20°S–10°N, 120°–140°E). The correlation coefficient between the year-to-year increments of YR and the WSI is ?0.33 during 1965–1996, reaching the 90% confidence level.

    Figure 3(a) reveals the correlation coefficients between the year-to-year increments of YR and sea level pressure in December–February (DJF). According to Figure 3(a), there is a remarkable negative-correlation area in the South Pacific. Therefore, we define a South Pacific sea level pressure index (SPI) using the area-averaged sea level pressure over the region (40°–30°S, 130°–110°W). The correlation coefficient between the year-to-year increments of YR and the SPI is ?0.49 during 1965–1996, reaching the 99% confi-dence level. Figure 3(b) shows the correlation coefficients between the year-to-year increments of the SPI in DJF and the sea level pressure in JJA. The result indicates that the SPI in winter is linked to the western Pacific subtropical high in summer.

    Figure 4. Time series of observed (black solid line) and simulated (red dashed line) year-to-year increments of summer rainfall over the middle to lower reaches of the Yangtze River during 1965–2006.

    When analyzing the correlation coefficients between the year-to-year increments of YR and vorticity at 850 hPa,obvious positive coefficients are found in the region(30°–35°N, 115°–120°E) from spring to summer. Thus, we consider the vorticity index (VOI), i.e. the 850-hPa vorticity averaged in the above region, as a factor in the prediction of YR year-to-year increments. The correlation coefficient between the year-to-year increments of YR and the VOI is 0.49 during 1965–1996, reaching the 99% confidence level.

    Fan, Wang, and Choi (2008) considered the AAO(Antarctic Oscillation) index as well, but we find that the correlation coefficient of the year-to-year increments of YR and the AAO is relatively small. There is no significant difference in the prediction when we exclude the AAO index. Hence, we do not take the AAO index into account in this paper.

    We build the YIP prediction model based on the year-toyear increments of five factors from 1965 to 1996 in order to predict the YR, and then conduct the hindcast in the following 10 years. The statistical forecast model of YR yearto-year increments through the multi-linear regression is

    Figure 4 illustrates the simulated and observed year-toyear increments of YR from 1965 to 2006. It suggests that the simulated increments from the above five factors resemble the observations quite well. The correlation coefficient between the model result and observation is 0.74 in 1965–1996, and 0.56 in 1997–2006. There is an obvious biennial variation in the year-to-year increments of YR, which features alternately positive and negative anomalies in neighboring years. Most of the years with large positive and negative anomalies during the previous period from 1965 to 1996, such as in 1977, 1978, 1980, and 1981, are simulated by the model successfully. During the hindcast in 1997–2006, the model reproduces the years of extremely high YR increments, such as in 1998 and 2002.Relatively, for the year 2000, which has an extremely negative YR increment, the model does not behave well,but it still produces a negative increment.

    3.2. Precipitation prediction of NP

    When using the NP method to build the prediction model,we utilize the same five factors and the former 32-yr precipitation data to reconstruct the phase trajectory, and then conduct one-step prediction in the latter 10 years to examine the performance. In the model, we choose the embedded dimensions asm= 1 andm= 2, respectively,and the time delay parameter asτ= 1.

    The NP results are consistent with the observed values(Figure 5). In the middle to lower reaches of the Yangtze River, NP can capture the upward trend at the end of the twentieth century, and the downward trend after 2000.For the years with a large amount of precipitation, the predicted values are similar to observed, such as in 1997 and 1983. For the years with a fairly small amount of precipitation, the prediction model also behaves well, such as in 1972 and 1981. Overall, the YIP and NP methods predict similar results.

    Though the correlation coefficient of the NP model(m= 1) in the building stage is smaller than that in YIP(Table 1), the correlation coefficient in the predicting stage is similar to YIP. We also apply the NP model with a higher number of embedded dimensions (m= 2) and find an increased correlation coefficient (Table 1).

    To further evaluate the accuracy of precipitation prediction, we define two quantities: the percentage of relative error of prediction,

    And the average relative RMSE,

    Figure 5. Observed and predicted summer precipitation over the middle to lower reaches of the Yangtze River from 1965 to 2006.

    Table 1. Correlation coefficients between the prediction and observation in different models.

    Table 2. Relative percentage error of prediction (%).

    Here,yis the simulated YR,y0is the observation, andy0is the multi-year average precipitation from 1965 to 1996.

    Table 2 depicts the percentage errors of prediction from 1997 to 2006. Most of the precipitation errors are smaller than 30%, except in 1999 and 2000. This indicates that all three models are efficient in predicting YR. However, these models all still have large prediction errors in 1999 and 2000. Generally, the NP method may obtain similar results to the YIP method. When we compare the results of two cases of the NP method, the precipitation mean-square error is a little lower when the number of embedded dimensions is set to two rather than one. The mean-square errors (1997–2006) of the three models (YIP, NP (m= 1) and NP (m= 2)) are 26.62%, 22.71%, and 22.30%, respectively.

    4. Conclusion

    The YIP method is based on the knowledge that the physical processes of the predictands and the climate variables have the characteristics of quasi-biennial variation.Therefore, we can use the preceding year’s observational information as much as possible to improve the prediction results. Previous research has revealed that the YIP approach may improve the forecast skill (Wang et al. 2012).We analyze the mathematical definition of YIP and obtain its corresponding formula in the NP method. It proves that they are equivalent when the prediction time series is embedded in one-dimensional phase space. This theoretical result suggests that YIP also has robust mathematical and dynamical foundations, besides its physical mechanism.

    We demonstrate the NP model with multiple external driving forces. The model is different from previous NP models in its application of year-to-year increments (Δf)as forcing factors. Hence, the quasi-biennial signals with explicit physical meaning are included, which is better than the NP model with empirically chosen parameters. In a certain sense, the two models are equivalent.Nevertheless, the NP method has more dynamical meaning, as it is based on the classical reconstruction theory. By choosing different embedded dimensions, the NP model can reconstruct the dynamical curve into phase space with a higher number of dimensions than one. In addition, the fitting residual of NP can be set to second-order polynomial precision, which is more convenient than the original linear regression of YIP, indicating the superiority of the NP model over the YIP model. We also notice that YIP and NP have some differences when the sample numberNis not big enough, and these differences can decrease with an increase inN. The numerical results suggest that these differences are acceptable in practical prediction experiments.

    We select the YR to test the prediction skill of the NP models. Five predictors are introduced into the YIP and NP models. Results show that the NP model with yearto-year increments of former signals can obtain similar skill as the YIP model. When we increase the number of embedded dimensions to two, more accurate prediction can be obtained. These results indicate that the NP model has the potential to increase the operational skill in shortterm climate prediction.

    Pengfei WANG acknowledges Prof. Geli WANG for providing the FORTRAN code of the nonlinear time series prediction.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was supported by the National Natural Sciences Foundation of China [41375112], [41530426], [41575058]; the Key Technology Talent Program of the Chinese Academy of Sciences; the Public Science and Technology Research Funds Projects of Ocean [201505013].

    Casdagli, M. 1989. “Nonlinear Prediction of Chaotic Time Series.”Physica D: Nonlinear Phenomena35 (3): 335–356.doi:10.1016/0167-2789(89)90074-2.

    Chen, B. M., L. R. Ji, P. C. Yang, D. M. Zhang, and G. L. Wang. 2003.“An Approach to Improving the Dynamical Extended-range(Monthly Prediction).”Chinese Science Bulletin48 (7): 696–703.doi:10.1007/BF03325658.

    Chen, X. F., and Z. G. Zhao. 2000. “Climatic Analysis of Summer Precipitation.” InThe Investigation of Flood Season Precipitation Prediction in China and its Application [in Chinese], 8–9. Beijing:Meteorological Press.

    Fan, K. 2009. “Predicting Winter Surface Air Temperature in Northeast China.”Atmospheric and Oceanic Science Letters2(1): 14–17. doi:10.1080/16742834.2009.11446770.

    Fan, K., M. J. Lin, and Y. Z. Gao. 2009. “Forecasting the Summer Rainfall in North China Using the Year-to-year Increment Approach.”Science in China Series D: Earth Sciences52 (4):532–539. doi:10.1007/s11430-009-0040-0.

    Fan, K., and B. Q. Tian. 2013. “Prediction of Wintertime Heavy Snow Activity in Northeast China.”Chinese Science Bulletin58(12): 1420–1426. doi:10.1007/s11434-012-5502-7.

    Fan, K., and H. J. Wang. 2009. “A New Approach to Forecasting Typhoon Frequency over the Western North Pacific.”Weather and forecasting24 (4): 974–986. doi:10.1175/2009W AF2222194.1.

    Fan, K., and H. J. Wang. 2010. “Seasonal Prediction of Summer Temperature over Northeast China Using a Year-to-year Incremental Approach.”Acta Meteorologica Sinica24 (3):269–275.

    Fan, K., H. J. Wang, and Y.-J. Choi. 2008. “A Physically-based Statistical Forecast Model for the Middle-lower Reaches of the Yangtze River Valley Summer Rainfall.”Chinese Science Bulletin53 (4): 602–609. doi:10.1007/s11434-008-0083-1.

    Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin,M. Iredell, et al. 1996. “The NCEP/NCAR 40-year Reanalysis Project.”Bulletin of the American Meteorological Society77: 437–470. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Manuca, R., and R. Savit. 1996. “Stationarity and Nonstationarity in Time Series Analysis.”Physica D: Nonlinear Phenomena99(2–3): 134–161. doi:10.1016/S0167-2789(96)00139-X.

    Tian, B., and K. Fan. 2015. “A Skillful Prediction Model for Winter NAO Based on Atlantic Sea Surface Temperature and Eurasian Snow Cover.”Weather and Forecasting30 (1): 197–205. doi:10.1175/WAF-D-14-00100.1.

    Tsonis, A. 1996. “Widespread Increases in Low-frequency Variability of Precipitation over the Past Century.”Nature382(6593): 700–702. doi:10.1038/382700a0.

    Wang, H. J., K. Fan, X. M. Lang, J. Q. Sun, and L. J. Chen. 2012.The New Theory. Method and Technology for the Short-term Climate Prediction in China [in Chinese]. Beijing: Meteorological Press.

    Wang, G. L., P. C. Yang, J. Bian, and X. J. Zhou. 2011. “A Novel Approach in Predicting Non-stationary Time Series by Combining External Forces.”Chinese Science Bulletin56 (z2):3053–3056. doi:10.1007/s11434-011-4638-1.

    Wang, G. L., P. C. Yang, and D. R. Lü. 2004. “On Spatiotemporal Series Analysis and Its Application to Predict the Regional Short Term Climate Process.”Advances in Atmospheric Sciences21 (2): 296–299. doi:10.1007/BF02915717.

    Wang, G. L., P. C. Yang, and X. J. Zhou. 2013. “Nonstationary Time Series Prediction by Incorporating External Forces.”Advances in Atmospheric Sciences30 (6): 1601–1607. doi:10.1007/s00376-013-2134-z.

    Yang, P. C., X. J. Zhou, and J. C. Bian. 2000. “A Nonlinear Regional Prediction Experiment on a Short-range Climatic Process of the Atmospheric Ozone.”Journal of Geophysical Research Atmospheres105 (D10): 12253–12258.doi:10.1029/2000JD900098.

    国语自产精品视频在线第100页| 国产亚洲精品久久久久5区| 中文字幕人成人乱码亚洲影| 身体一侧抽搐| 国产一级毛片七仙女欲春2 | svipshipincom国产片| 亚洲一区中文字幕在线| 亚洲国产欧美一区二区综合| 亚洲人成网站在线播放欧美日韩| www.精华液| 18美女黄网站色大片免费观看| 亚洲无线在线观看| 波多野结衣av一区二区av| 国产99白浆流出| 不卡av一区二区三区| 久久精品国产99精品国产亚洲性色 | 黑人操中国人逼视频| 国产精品久久视频播放| 19禁男女啪啪无遮挡网站| 免费无遮挡裸体视频| 国产在线精品亚洲第一网站| 久久亚洲真实| 精品久久久久久久毛片微露脸| 成人三级黄色视频| 欧美 亚洲 国产 日韩一| 黄色a级毛片大全视频| 99久久精品国产亚洲精品| 黄色视频,在线免费观看| 午夜免费观看网址| 此物有八面人人有两片| 国产亚洲精品久久久久久毛片| 真人做人爱边吃奶动态| 日韩欧美在线二视频| 可以在线观看的亚洲视频| 久久精品成人免费网站| 90打野战视频偷拍视频| 少妇被粗大的猛进出69影院| 久久久久久人人人人人| 久久香蕉精品热| 国产免费男女视频| 日韩一卡2卡3卡4卡2021年| 成人手机av| 欧美日韩亚洲综合一区二区三区_| 日韩欧美一区视频在线观看| 久久欧美精品欧美久久欧美| 亚洲va日本ⅴa欧美va伊人久久| 色尼玛亚洲综合影院| 一区在线观看完整版| av超薄肉色丝袜交足视频| 亚洲精品美女久久久久99蜜臀| 日韩 欧美 亚洲 中文字幕| 久久婷婷成人综合色麻豆| 搡老熟女国产l中国老女人| e午夜精品久久久久久久| 国产精华一区二区三区| 久久人妻福利社区极品人妻图片| 美女高潮喷水抽搐中文字幕| 免费在线观看影片大全网站| 一本大道久久a久久精品| 午夜成年电影在线免费观看| 国产麻豆69| 国产色视频综合| 日本 欧美在线| 视频区欧美日本亚洲| 他把我摸到了高潮在线观看| 成人三级黄色视频| 成人av一区二区三区在线看| 九色亚洲精品在线播放| 亚洲av成人一区二区三| 亚洲精品国产色婷婷电影| 可以在线观看的亚洲视频| 日韩高清综合在线| 亚洲久久久国产精品| 国产一区在线观看成人免费| 国产精品影院久久| 身体一侧抽搐| 亚洲中文字幕一区二区三区有码在线看 | 欧美中文综合在线视频| 久久久精品国产亚洲av高清涩受| 一区二区三区精品91| 男女之事视频高清在线观看| 男女床上黄色一级片免费看| 国产高清激情床上av| 国产高清视频在线播放一区| 日本黄色视频三级网站网址| 757午夜福利合集在线观看| 一级毛片精品| 久久久久精品国产欧美久久久| 亚洲精品国产一区二区精华液| 99久久国产精品久久久| 久久性视频一级片| 免费女性裸体啪啪无遮挡网站| 他把我摸到了高潮在线观看| 午夜影院日韩av| 身体一侧抽搐| 欧美成人午夜精品| 国产精品乱码一区二三区的特点 | 在线十欧美十亚洲十日本专区| 青草久久国产| 男人舔女人的私密视频| 亚洲色图av天堂| 久久久久久久久中文| 亚洲精品国产色婷婷电影| 色尼玛亚洲综合影院| 黄色片一级片一级黄色片| 禁无遮挡网站| 国产色视频综合| www.www免费av| 搡老妇女老女人老熟妇| 国产精品av久久久久免费| 天天添夜夜摸| 琪琪午夜伦伦电影理论片6080| 在线免费观看的www视频| 久久久精品欧美日韩精品| 亚洲无线在线观看| av有码第一页| 亚洲熟妇中文字幕五十中出| 久久天堂一区二区三区四区| 久久国产精品男人的天堂亚洲| 国产精品久久久av美女十八| 欧美av亚洲av综合av国产av| 精品电影一区二区在线| 一区二区三区激情视频| 欧美日韩黄片免| 九色亚洲精品在线播放| 99国产精品一区二区三区| 黑人操中国人逼视频| 窝窝影院91人妻| 亚洲精品av麻豆狂野| √禁漫天堂资源中文www| 99久久综合精品五月天人人| 69av精品久久久久久| 999精品在线视频| av中文乱码字幕在线| 亚洲一区二区三区色噜噜| 99久久久亚洲精品蜜臀av| 精品不卡国产一区二区三区| 黑人巨大精品欧美一区二区mp4| 久久人人精品亚洲av| 亚洲美女黄片视频| 成人三级黄色视频| 日本五十路高清| 亚洲国产高清在线一区二区三 | 精品一品国产午夜福利视频| 免费无遮挡裸体视频| 亚洲 欧美一区二区三区| 日本三级黄在线观看| 欧美中文综合在线视频| 色尼玛亚洲综合影院| 成人18禁高潮啪啪吃奶动态图| 夜夜夜夜夜久久久久| 亚洲第一欧美日韩一区二区三区| 久久久久国产一级毛片高清牌| 国产国语露脸激情在线看| 国产精华一区二区三区| 久久性视频一级片| 亚洲人成电影观看| 一级片免费观看大全| 中文字幕另类日韩欧美亚洲嫩草| 俄罗斯特黄特色一大片| 成在线人永久免费视频| 日韩视频一区二区在线观看| 国产精品一区二区三区四区久久 | 视频区欧美日本亚洲| 婷婷六月久久综合丁香| 亚洲,欧美精品.| 精品乱码久久久久久99久播| 亚洲精品中文字幕一二三四区| 操美女的视频在线观看| 国产人伦9x9x在线观看| 精品国产国语对白av| 丝袜美足系列| 久久 成人 亚洲| 亚洲成人免费电影在线观看| 巨乳人妻的诱惑在线观看| av有码第一页| 亚洲成av人片免费观看| 99久久综合精品五月天人人| 久久久久九九精品影院| 禁无遮挡网站| 女警被强在线播放| 高清在线国产一区| 国产片内射在线| 久久人妻av系列| 亚洲av成人一区二区三| 亚洲专区字幕在线| 中文字幕精品免费在线观看视频| 91九色精品人成在线观看| 美女国产高潮福利片在线看| 欧美激情久久久久久爽电影 | 身体一侧抽搐| 成人特级黄色片久久久久久久| 国产精品亚洲一级av第二区| 18禁国产床啪视频网站| 午夜福利18| 午夜影院日韩av| 97碰自拍视频| 99久久99久久久精品蜜桃| 日本vs欧美在线观看视频| 在线av久久热| 精品国产乱子伦一区二区三区| 99国产精品一区二区三区| 精品国产美女av久久久久小说| or卡值多少钱| 一本久久中文字幕| 人妻久久中文字幕网| 国产亚洲精品综合一区在线观看 | 国产成年人精品一区二区| 欧美日韩乱码在线| x7x7x7水蜜桃| 人妻丰满熟妇av一区二区三区| 麻豆成人av在线观看| avwww免费| 日韩视频一区二区在线观看| 制服诱惑二区| 欧美中文日本在线观看视频| 可以免费在线观看a视频的电影网站| 午夜久久久在线观看| 久久影院123| 精品一区二区三区av网在线观看| 一本综合久久免费| 中文字幕最新亚洲高清| 国产成人免费无遮挡视频| 麻豆一二三区av精品| 搡老熟女国产l中国老女人| 激情在线观看视频在线高清| 9热在线视频观看99| 亚洲人成网站在线播放欧美日韩| 成人av一区二区三区在线看| 伊人久久大香线蕉亚洲五| 搡老岳熟女国产| 男女午夜视频在线观看| 12—13女人毛片做爰片一| 99久久久亚洲精品蜜臀av| 亚洲 国产 在线| 身体一侧抽搐| 黄网站色视频无遮挡免费观看| 一区二区三区激情视频| 在线观看www视频免费| 久久欧美精品欧美久久欧美| 男女床上黄色一级片免费看| 国产精品爽爽va在线观看网站 | 多毛熟女@视频| 国产aⅴ精品一区二区三区波| 久久国产亚洲av麻豆专区| 丁香六月欧美| 亚洲国产日韩欧美精品在线观看 | 一级片免费观看大全| 男女之事视频高清在线观看| 电影成人av| 18美女黄网站色大片免费观看| 久久久久国内视频| 满18在线观看网站| 久久人妻熟女aⅴ| 日韩av在线大香蕉| 中文字幕人妻熟女乱码| 美女高潮喷水抽搐中文字幕| 日韩精品免费视频一区二区三区| 亚洲精品美女久久久久99蜜臀| 国产精品精品国产色婷婷| 国产伦人伦偷精品视频| 亚洲aⅴ乱码一区二区在线播放 | 国产精品久久久久久人妻精品电影| 99riav亚洲国产免费| 女警被强在线播放| 久久精品国产99精品国产亚洲性色 | 18禁国产床啪视频网站| 在线天堂中文资源库| 日日干狠狠操夜夜爽| 久久中文字幕一级| 中国美女看黄片| 夜夜夜夜夜久久久久| 两个人看的免费小视频| 黄色毛片三级朝国网站| 老司机在亚洲福利影院| 午夜视频精品福利| 久久国产乱子伦精品免费另类| 黑人操中国人逼视频| 久久香蕉精品热| 日本黄色视频三级网站网址| 亚洲三区欧美一区| 国产av在哪里看| 亚洲,欧美精品.| 极品教师在线免费播放| a级毛片在线看网站| 别揉我奶头~嗯~啊~动态视频| 亚洲国产中文字幕在线视频| 免费久久久久久久精品成人欧美视频| 国产精品一区二区免费欧美| 国产亚洲精品一区二区www| 日韩中文字幕欧美一区二区| 亚洲中文日韩欧美视频| 韩国av一区二区三区四区| 亚洲一区二区三区不卡视频| 曰老女人黄片| 国产av一区二区精品久久| 久久久久久大精品| 很黄的视频免费| 久久久久久久久免费视频了| 日韩精品青青久久久久久| 91成年电影在线观看| 18美女黄网站色大片免费观看| 国产激情久久老熟女| 色老头精品视频在线观看| 欧美日韩黄片免| 久久久水蜜桃国产精品网| 99久久国产精品久久久| www国产在线视频色| 18禁裸乳无遮挡免费网站照片 | 国产熟女午夜一区二区三区| 久久久久久亚洲精品国产蜜桃av| 级片在线观看| 免费在线观看视频国产中文字幕亚洲| 国产一级毛片七仙女欲春2 | 亚洲熟妇中文字幕五十中出| av有码第一页| 两个人视频免费观看高清| 久久天躁狠狠躁夜夜2o2o| www国产在线视频色| 黄色毛片三级朝国网站| 中文字幕色久视频| 91精品国产国语对白视频| 精品少妇一区二区三区视频日本电影| 亚洲av成人不卡在线观看播放网| 午夜a级毛片| 久久久久久久午夜电影| 久久天躁狠狠躁夜夜2o2o| 亚洲五月婷婷丁香| 国内精品久久久久久久电影| 日韩欧美在线二视频| 亚洲中文日韩欧美视频| 999久久久国产精品视频| 丰满的人妻完整版| 国产av精品麻豆| 99在线视频只有这里精品首页| 亚洲中文日韩欧美视频| 国产精品久久久久久亚洲av鲁大| 香蕉丝袜av| 国产亚洲欧美98| 久久 成人 亚洲| 麻豆成人av在线观看| 在线观看免费视频网站a站| 国产精品精品国产色婷婷| 欧美日韩福利视频一区二区| 伦理电影免费视频| 女性被躁到高潮视频| 成人国产一区最新在线观看| 一a级毛片在线观看| 俄罗斯特黄特色一大片| 亚洲天堂国产精品一区在线| 999精品在线视频| 99热只有精品国产| 69精品国产乱码久久久| 亚洲天堂国产精品一区在线| 一本综合久久免费| 亚洲全国av大片| 长腿黑丝高跟| 一级,二级,三级黄色视频| 女人被狂操c到高潮| 精品久久久久久久人妻蜜臀av | 9191精品国产免费久久| 在线观看免费视频日本深夜| 日本欧美视频一区| 久久人妻熟女aⅴ| 操美女的视频在线观看| 我的亚洲天堂| 麻豆成人av在线观看| 啦啦啦免费观看视频1| 免费高清在线观看日韩| 久久久国产成人免费| 国产一级毛片七仙女欲春2 | 亚洲欧美激情综合另类| 欧美一级毛片孕妇| 热re99久久国产66热| 自线自在国产av| 成人亚洲精品一区在线观看| 午夜老司机福利片| 亚洲精品av麻豆狂野| 黄色 视频免费看| 久久精品国产清高在天天线| 国产成人精品无人区| 大码成人一级视频| 国产精品野战在线观看| 国产精品亚洲一级av第二区| 久久精品国产亚洲av香蕉五月| 成人亚洲精品一区在线观看| 国产精品 国内视频| 日韩欧美国产在线观看| 成人欧美大片| 一边摸一边抽搐一进一出视频| 亚洲国产欧美网| 国产精品久久久久久亚洲av鲁大| 欧美黄色片欧美黄色片| 亚洲五月天丁香| 午夜精品久久久久久毛片777| 午夜福利成人在线免费观看| 波多野结衣巨乳人妻| 美女国产高潮福利片在线看| av在线播放免费不卡| 操出白浆在线播放| 久久精品人人爽人人爽视色| 亚洲国产欧美一区二区综合| 精品午夜福利视频在线观看一区| 国产成人精品久久二区二区免费| 色哟哟哟哟哟哟| 88av欧美| 高清毛片免费观看视频网站| 国产aⅴ精品一区二区三区波| 精品不卡国产一区二区三区| 国产高清激情床上av| 亚洲av第一区精品v没综合| 国内精品久久久久久久电影| av天堂久久9| 色哟哟哟哟哟哟| 久久人人精品亚洲av| 亚洲中文av在线| 亚洲男人天堂网一区| 欧美人与性动交α欧美精品济南到| 十分钟在线观看高清视频www| 色综合婷婷激情| 日韩欧美国产一区二区入口| av有码第一页| 99久久国产精品久久久| 国产成人精品久久二区二区免费| 亚洲少妇的诱惑av| 国产精品二区激情视频| 一边摸一边抽搐一进一小说| 久久精品国产99精品国产亚洲性色 | 搡老岳熟女国产| 日日干狠狠操夜夜爽| 成年女人毛片免费观看观看9| 欧美国产日韩亚洲一区| 曰老女人黄片| 97人妻精品一区二区三区麻豆 | 日本vs欧美在线观看视频| 日日夜夜操网爽| 嫩草影视91久久| 亚洲九九香蕉| 欧美黄色淫秽网站| 亚洲一区二区三区不卡视频| 国产xxxxx性猛交| 精品免费久久久久久久清纯| 两人在一起打扑克的视频| 亚洲情色 制服丝袜| 国产精品乱码一区二三区的特点 | 午夜福利一区二区在线看| 亚洲自拍偷在线| 久久人妻福利社区极品人妻图片| 美女扒开内裤让男人捅视频| 麻豆成人av在线观看| 亚洲久久久国产精品| 99精品久久久久人妻精品| 国产精品电影一区二区三区| 国产av在哪里看| 两个人视频免费观看高清| 美女扒开内裤让男人捅视频| 国产亚洲精品久久久久5区| 成人三级做爰电影| 亚洲欧美精品综合一区二区三区| 99热只有精品国产| 国产国语露脸激情在线看| 搡老熟女国产l中国老女人| 亚洲国产精品sss在线观看| 黑丝袜美女国产一区| 国产亚洲欧美98| 9191精品国产免费久久| 久久精品影院6| 极品人妻少妇av视频| 欧美性长视频在线观看| 两个人免费观看高清视频| 一级,二级,三级黄色视频| 成人18禁高潮啪啪吃奶动态图| 欧美成人午夜精品| 久久精品影院6| 精品国产一区二区久久| 免费无遮挡裸体视频| www.999成人在线观看| 中文字幕人妻熟女乱码| 一本大道久久a久久精品| 国产亚洲精品第一综合不卡| 国产午夜精品久久久久久| 久久影院123| 久久久久亚洲av毛片大全| 国产成人精品久久二区二区91| 一区二区三区国产精品乱码| 午夜福利,免费看| 国产片内射在线| 欧美在线黄色| 国产精品亚洲av一区麻豆| 亚洲全国av大片| 大香蕉久久成人网| 国产精品一区二区精品视频观看| 黄色视频,在线免费观看| 亚洲第一电影网av| 午夜福利高清视频| 真人一进一出gif抽搐免费| 国产成+人综合+亚洲专区| 婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 国产亚洲精品第一综合不卡| 国产精品美女特级片免费视频播放器 | 亚洲熟妇熟女久久| 国产亚洲av嫩草精品影院| 国产亚洲精品av在线| 国产三级在线视频| 丝袜美腿诱惑在线| 多毛熟女@视频| 激情在线观看视频在线高清| 国产欧美日韩一区二区三| 男女下面插进去视频免费观看| 久久人人爽av亚洲精品天堂| 欧美绝顶高潮抽搐喷水| 十八禁网站免费在线| 久久精品国产99精品国产亚洲性色 | 亚洲第一青青草原| 很黄的视频免费| 中文字幕av电影在线播放| 国产成人欧美| 国产一区二区三区在线臀色熟女| 国产激情久久老熟女| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美免费精品| 国产极品粉嫩免费观看在线| 好看av亚洲va欧美ⅴa在| 国产精品久久久人人做人人爽| 久久天堂一区二区三区四区| tocl精华| 日日摸夜夜添夜夜添小说| 日本 av在线| bbb黄色大片| 9热在线视频观看99| 在线天堂中文资源库| 国产麻豆成人av免费视频| 91在线观看av| 久久人人精品亚洲av| 99久久精品国产亚洲精品| 色综合婷婷激情| 久久婷婷人人爽人人干人人爱 | 中文字幕色久视频| 亚洲午夜理论影院| 中文亚洲av片在线观看爽| 国产精品一区二区三区四区久久 | 一个人免费在线观看的高清视频| 欧美色视频一区免费| 欧美大码av| 午夜精品国产一区二区电影| 免费人成视频x8x8入口观看| 亚洲国产精品久久男人天堂| 日韩免费av在线播放| 女性生殖器流出的白浆| 国产精品永久免费网站| 97碰自拍视频| а√天堂www在线а√下载| 国产av又大| 欧美成人免费av一区二区三区| 女性被躁到高潮视频| 日韩欧美免费精品| 亚洲第一欧美日韩一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 女人被狂操c到高潮| 欧美国产精品va在线观看不卡| 国产精品一区二区三区四区久久 | 好看av亚洲va欧美ⅴa在| av视频免费观看在线观看| 如日韩欧美国产精品一区二区三区| 少妇熟女aⅴ在线视频| av有码第一页| 久久影院123| 亚洲 国产 在线| 色播亚洲综合网| 中文字幕久久专区| 成人特级黄色片久久久久久久| 在线观看免费视频网站a站| 亚洲国产精品久久男人天堂| 午夜免费成人在线视频| 亚洲成av人片免费观看| 日韩国内少妇激情av| 国产欧美日韩精品亚洲av| 人妻久久中文字幕网| 大型黄色视频在线免费观看| 国产成人精品久久二区二区91| 啦啦啦观看免费观看视频高清 | 欧美老熟妇乱子伦牲交| 给我免费播放毛片高清在线观看| 淫妇啪啪啪对白视频| 日本欧美视频一区| 国产极品粉嫩免费观看在线| 亚洲欧美日韩另类电影网站| 免费看美女性在线毛片视频| 成人欧美大片| 久久国产乱子伦精品免费另类| 一级作爱视频免费观看| 亚洲五月色婷婷综合| 一边摸一边抽搐一进一小说| 亚洲精品国产区一区二| 久久久精品国产亚洲av高清涩受| 免费看a级黄色片| 精品午夜福利视频在线观看一区| 日本欧美视频一区| 可以在线观看的亚洲视频| 国语自产精品视频在线第100页| 美女高潮喷水抽搐中文字幕| 亚洲第一欧美日韩一区二区三区| 身体一侧抽搐| 一边摸一边抽搐一进一小说| 色婷婷久久久亚洲欧美| 嫩草影院精品99| 天堂影院成人在线观看| 久久精品91蜜桃| 一个人免费在线观看的高清视频| 级片在线观看| 亚洲欧美日韩无卡精品| bbb黄色大片| 成人特级黄色片久久久久久久| 男女下面插进去视频免费观看|