• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of Microphysical Parameterizations with Droplet Relative Dispersion in IAP AGCM 4.1

    2018-01-09 05:35:42XiaoningXIEHeZHANGXiaodongLIUYiranPENGandYangangLIU
    Advances in Atmospheric Sciences 2018年2期
    關(guān)鍵詞:酸乳保加利亞菌斑

    Xiaoning XIE,He ZHANG,Xiaodong LIU,Yiran PENG,and Yangang LIU

    1State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences,Xi’an 710061,China

    2International Center for Climate and Environment Sciences,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    4Ministry of Education Key Laboratory for Earth System Modeling,Center for Earth System Science,and Joint Center for Global Change Studies(JCGCS),Tsinghua University,Beijing 100084,China

    5Environmental and Climate Sciences Department,Brookhaven National Laboratory,Upton,New York 11973-5000,USA

    Role of Microphysical Parameterizations with Droplet Relative Dispersion in IAP AGCM 4.1

    Xiaoning XIE?1,He ZHANG2,Xiaodong LIU1,3,Yiran PENG4,and Yangang LIU5

    1State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences,Xi’an 710061,China

    2International Center for Climate and Environment Sciences,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    4Ministry of Education Key Laboratory for Earth System Modeling,Center for Earth System Science,and Joint Center for Global Change Studies(JCGCS),Tsinghua University,Beijing 100084,China

    5Environmental and Climate Sciences Department,Brookhaven National Laboratory,Upton,New York 11973-5000,USA

    Previous studies have shown that accurate descriptions of the cloud droplet effective radius(Re)and the autoconversion process of cloud droplets to raindrops(Ar)can effectively improve simulated clouds and surface precipitation,and reduce the uncertainty of aerosol indirect effects in GCMs.In this paper,we implement cloud microphysical schemes including two-moment Arand Reconsidering relative dispersion of the cloud droplet size distribution into version 4.1 of the Institute of Atmospheric Physics’s atmospheric GCM(IAP AGCM 4.1),which is the atmospheric component of the Chinese Academy of Sciences’Earth System Model.Analysis of the effects of different schemes shows that the newly implemented schemes can improve both the simulated shortwave and longwave cloud radiative forcings,as compared to the standard scheme,in IAP AGCM 4.1.The new schemes also effectively enhance the large-scale precipitation,especially over low latitudes,although the inf l uences of total precipitation are insignificant for different schemes.Further studies show that similar results can be found with the Community Atmosphere Model,version 5.1.

    relative dispersion,effective radius,autoconversion process,global climate models

    1.Introduction

    GCMs have suffered from large uncertainties in their representation of aerosol indirect effects and tend to overestimate the cooling of aerosol indirect forcing according to IPCC(2007,2013).Reducing this uncertainty and reconciling GCMs with observations remain major and ongoing challenges despite several decades of research(e.g.,Anderson et al.,2003;Quaas et al.,2006;IPCC,2013).Previous studies have shown that accurate descriptions of the cloud droplet effective radius(Re)and the autoconversion process of cloud droplets to raindrops(Ar)can effectively improve simulated clouds and surface precipitation and reduce the uncertainty of aerosol indirect effects in GCMs(Boucher et al.,1995;Lohmann and Feichter,1997;Liu and Daum,2002,2004;Rotstayn and Liu,2003,2005;Liu et al.,2007;Xie and Liu,2009).

    Cloud droplet relative dispersion(ε),defined as the ratio of the standard deviation to the mean droplet radius,increases with an increasing cloud droplet number concentration due to increasing anthropogenic aerosols,because the larger number of small droplets formed in polluted clouds compete for water vapor and broaden the droplet size distribution,as compared with clean clouds having fewer droplets and less competition(Liu and Daum,2002).This enhanced ε reduces the changes induced by aerosols in the Reand the liquid water path,exerts a warming effect,and in turn partly offsets the cooling of aerosol indirect radiative forcing(Liu and Daum,2002;Xie et al.,2017).Hence,parameterizations of Reand Arconsidering the dispersion effect have been proposed to investigate aerosolindirecteffects(Liu and Daum,2002,2004;Peng and Lohmann,2003;Rotstayn and Liu,2003;Liu et al.,2007,2008;Xie and Liu,2009,2013).Liu and Daum(2002)related Reto ε and further parameterized ε in terms of an empirical relationship with clouddropletnumberconcentrationandshowedthatthemagnitude of aerosol indirect radiative forcing can be reduced significantly when considering the dispersion effect.Implementation of this parameterization of Rewith ε into various GCMs,including CSIRO Mk3.0(Rotstayn and Liu,2003)and ECHAM4(Peng and Lohmann,2003),largely confirmed the results reported by Liu and Daum(2002).The Ardetermines the onset of the surface precipitation associated with warm clouds,and its parameterization has always attracted much attention.In recent years,one-moment mass content schemes(e.g.,Planche et al.,2015;Lee and Baik,2017)and two-momentmasscontentanddropletconcentrationschemes(e.g.,Sednev and Menon,2012;Kovaˇceviˇc and′Curi′c,2014;Michibata and Takemura,2015)of autoconversion have been applied to numerical models of different scale.Additionally,Liu and Daum(2004)developed an analytical autoconversion rate for mass content that accounts explicitly for ε using the generalized mean value theorem of integrals into the general collection equation.Extension of this theoretical expression to include the autoconversion threshold and autoconversion rate for cloud droplet number concentration were derived by Liu et al.(2006,2007)and Xie and Liu(2009).The parameterization of Arin mass content with ε has been used in CSIRO Mk3.0(Rotstayn and Liu,2005)and in the Weather Research and Forecasting model(Xie and Liu,2011,2015;Xie et al.,2013).Recently,cloud microphysical schemes with two-moment Arand Rewith ε have been successfully implemented into the Community Atmosphere Model,version 5.1(CAM5.1),significantly reducing the aerosol indirect forcing—especially over the Northern Hemisphere(Xie et al.,2017).

    The latest version(version 4.1)of the IAP’s AGCM(IAP AGCM 4.1),which is also the atmospheric component of the Chinese Academy of Sciences’Earth System Model,is described in Zhang et al.(2013)and Lin et al.(2016).IAP AGCM 4.1 adopts a physical package with a two-moment bulk stratiform cloud microphysics scheme from CAM5.1,as described by Morrison and Gettelman(2008),but has a different dynamical core(Zhang et al.,2009,2013).Although the CAM5.1 microphysics schemes consider the dispersion effect on Rewith different expression from Liu and Daum(2002),they do not include the dispersion effect on the Ar(Xie et al.,2017).Hence,a cloud microphysical scheme including two-moment Arand Reschemes with ε is implemented in IAP AGCM 4.1,following Xie et al.(2017)for CAM5.1.To demonstrate the superiority of the new schemes,we evaluate the performance and improvement of IAP AGCM 4.1 by comparing results with observations and CAM5.1 simulations—in particular,for cloud shortwave and longwave radiative forcings(SWCF and LWCF,respectively)and surface precipitation.

    This paper is an extension to the preliminary study of Xie et al.(2017)and is structured as follows:Section 2 describes the inclusion of the two-moment Arand Rewith ε in the cloud microphysicsofIAPAGCM4.1,alongwiththeconfiguration of the simulation experiments.Section 3 evaluates the simulated cloud fields and surface precipitation in IAP AGCM 4.1 with different cloud schemes against observations and CAM5.1 results.The main conclusions and further discussion are presented in section 4.

    2.Model and simulations

    2.1.Description of IAP AGCM 4.1

    IAP AGCM 4.1 can reproduce the observed climatology in a generally successful manner(Sun et al.,2012;Yan et al.,2014;Lin et al.,2016).It is a global grid-point model using a finite-difference scheme with a terrain-following σ coordinate.Its horizontal resolution is approximately 1.4°×1.4°and it has 30 vertical levels with a model top at 2.2 hPa.The dynamical core of IAP AGCM 4.1 is described in detail by Zhang et al.(2009,2013).The physical processes in IAP AGCM4.1 mostly derive from the CAM5(Neale et al.,2010),including a two-moment bulk stratiform cloud microphysics scheme coupled with a three-mode version of the modal aerosol model,which enables the investigation of aerosol direct and semi-direct effects,as well as indirect effects(Morrison and Gettelman,2008;Ghan et al.,2012;Liu et al.,2012).Parameterizations of all microphysical processes(Morrison and Gettelman,2008)are adopted in this model,including the activation of cloud condensation nuclei or nucleation on ice nuclei to form cloud droplets or cloud ice,condensation/deposition,evaporation/sublimation,autoconversion of cloud droplets and ice to form rain and snow,accretion of cloud droplets and ice by rain,accretion of cloud droplets and ice by snow,heterogeneous freezing of cloud dropletstoformice,homogeneousfreezingofclouddroplets,sedimentation,melting,and convective detrainment.The autoconversion process is parameterized by Khairoutdinov and Kogan(2000),which we refer to as the KK parameterization.

    2.2.Newly implemented parameterizations for Reand Ar

    The Reis parameterized via the following expression based on the assumption of the cloud droplet size distribution following a gamma distribution(Liu and Daum,2002;Xie et al.,2013):

    where Lc(g cm?3)and Nc(cm?3)represent the liquid water mass content and cloud droplet number concentration for clouds,respectively;and ρwis the density of liquid water.The two-moment scheme of Arwith ε can be easily derived from the analytical formulas(Xie and Liu,2009).The number and mass autoconversion rates(PNand PL,respectively)can be written as

    where

    The Gamma function and the incomplete Gamma function can be represented as the following two formulas:Γ(n)=andrespectively.The PNand PLboth increase with Lcand ε,but decrease with Nc(Liu et al.,2007;Xie and Liu,2009).The above cloud microphysical schemes of Reand two-moment Arhave been successfully implemented in CAM5.1(Xie et al.,2017).Here,we implement these cloud schemes into IAP AGCM 4.1,where the Rotstayn–Liu relationship of ε=1?0.7exp(?0.003Nc)is adopted in our model(Rotstayn and Liu,2003)instead of the default relationship of ε=0.0005714Nc+0.271(Morrison and Gettelman,2008).The default relationship is based on a small number of measurements(ε=0.43 for “polluted continent”and ε=0.33 for “clean ocean”),whereas the Rotstayn–Liu relationship is derived from more measurements,as described by Liu and Daum(2002).Note that the KK parameterization is fitted by applying the least-squares method based on the results from a large-eddy simulation,which does not include the ε.However,our autoconversion parameterizations with ε are analytically derived by applying the generalized mean value theorem for integrals to the general collection equation(Xie and Liu,2009).These autoconversion parameterizations used here are more reliable physically,and have been extended from one-moment(Liu and Daum,2004)to twomoment schemes(Xie and Liu,2009).

    2.3.Configuration of simulations

    We run IAP AGCM 4.1 for the years 1979–2005 with historical sea-ice concentrations and SST derived from Hurrell et al.(2008),and with historical greenhouse gases and anthropogenic aerosol emissions(Lamarque et al.,2010).Natural aerosols including sea salt and dust are predicted during this period.To examine the inf l uences of the different cloud microphysical schemes on cloud microphysical fields and surface precipitation,two numerical experiments are performed—one with the standard and one with the new cloud microphysical schemes.The standard experiment(STANDARD)uses the default cloud microphysical scheme of IAP AGCM 4.1;the new experiment(NEW)is conducted by using the complete cloud schemes of Re(1)and two-moment Ar(2)with the Rotstayn–Liu relationship between ε and the cloud droplet concentration.

    3.Results

    Annual simulated global-mean cloud microphysical properties,surface precipitation and aerosol optical depth(AOD)from IAP AGCM 4.1(STANDARD and NEW)and corresponding observations are shown in Table 1,including the vertically integrated cloud droplet number concentration(CDNUMC),liquid water path(LWP),ice water path(IWP),Reatcloudtop(REL),totalcloudamount(CLDTOT),low cloud fraction(CLDLOW),middle cloud fraction(CLDMID),high cloud fraction(CLDHGH),cloud optical thickness(COT),SWCF,LWCF,total precipitation(large-scale+convective precipitation;PRECT),and AOD.The global annual mean values of CDNUMC are 1.24×1010m?2from STANDARD and 1.16×1010m?2from NEW—both significantly smaller than that based on AVHRR satellite observation(4.01×1010m?2)from an area between 50°S and 50°N reportedby Hanetal.(1998).TheunderestimatedCDNUMC can be partly explained by the fact that the CDNUMC in CAM5.1 only includes a contribution from stratiform clouds(Wang et al.,2011).The CDNUMC from NEW is smaller than that from STANDARD because of the larger autoconversion efficiency in the former,especially at low levels over low latitudes,due to higher cloud liquid water content(Fig.1).The simulated LWP from NEW is as 39.03 g m?2,which is much lower than that from STANDARD(50.14 g m?2).This also results from the changes in the autoconversion effi-ciency.STANDARD and NEW share a similar global annual mean IWP(18.62 g m?2and 18.60 g m?2,respectively).The REL in NEW is 12.40μm,falling within the observational range from 11.4μm to 15.7μm(Han et al.,1998;Platnick et al.,2003).The REL is 9.86μm in STANDARD,which is much lower than in NEW and observations.The simulated CLDTOT(66.63%)in NEW is larger than that(63.84%)in STANDARD,which just falls within the observational range from 65%to 75%based on ISCCP,MODIS and HIRS data(Rossow and Schiffer,1999;Platnick et al.,2003;Wylie et al.,2005).The increased CLDTOT in NEW is mainly due to the increased high cloud fraction.This is because that the autoconversion rate in NEW is significantly decreased compared to that in STANDARD at high levels,due to lower cloud water content(Fig.1),resulting in a larger high-cloud fraction.The COT is significantly decreased from 13.34 in STANDARD to 9.28 in NEW,resulting from the decreased LWP in the latter.

    Table 1.Annual global mean cloud microphysical properties,precipitation and aerosol optical properties from IAP AGCM 4.1(STANDARD and NEW)and observations(see the opening paragraph of section 3 for definitions of the various properties).Differences in the properties between NEW and STANDARD(NEW minus STANDARD)are also shown.Values in brackets are the standard deviations of the properties.

    Fig.1.(a)Autoconversion rates from the KK scheme and the new autoconversion parameterizations for a fixed cloud droplet concentration of 100 cm?3.(b)Difference in the autoconversion rates(units:10?9kg kg?1s?1)from STANDARD and NEW(NEW minus STANDARD).

    Observational cloud radiative forcings including SWCF andLWCFarederivedfromtheCERES-EBAFsatelliteproduct from 2000 to 2010,as described by Loeb et al.(2009),and the ERBE data from 1985 to 1989,as described by Barkstrom and Hall(1982).The simulated annual global mean SWCFs are?51.49 W m?2in STANDARD and?48.31 W m?2in NEW,showing that the global mean SWCF in NEW is lower than that in STANDARD.The main reason for this is that lower cloud liquid water exists at low levels over low latitudes in NEW,leading to smaller SWCF.These two values fall within the observational range given by CERES-EBAF(?47.07 W m?2)and ERBE(?54.16 W m?2).The simulated LWCFs are 22.78 W m?2in STANDARD and 23.56 W m?2in NEW,which are lower than the observational values from Loeb et al.(2009)and Barkstrom and Hall(1982).However,the value of LWCF in NEW is much closer to the observational range of 26.48–30.36 W m?2compared to that in STANDARD.The increased LWCF in NEW is due to a larger high-cloud fraction compared to STANDARD.The observational total precipitation rate is derived from GPCP data from 1979 to 2009(Adler et al.,2003)and CMAP data from 1979 to 1998(Xie and Arkin,1997).The simulated annual global mean tota l precipitation rates are similar for STANDARD(2.95 mm d?1)and NEW(2.97 mm d?1),which are larger than that from the observational results(2.67–2.69 mm d?1)taken from the GPCP and CMAP observations.

    高業(yè)成[3]將嗜酸乳桿菌采用傾注的接種方式于36℃分別在24,48,72 h進(jìn)行培養(yǎng),結(jié)果得到嗜酸乳桿菌在培養(yǎng)到72 h時,可以更加容易觀察菌斑,所以嗜酸乳桿菌的最佳觀測期為72 h。閆亞梅[4]研究發(fā)現(xiàn)在選用保加利亞乳桿菌進(jìn)行驗證時,當(dāng)將其培養(yǎng)至48 h時,活菌數(shù)最高且容易觀察。

    The annual global mean AODs derived from STANDARD and NEW are 0.092 and 0.090,respectively(Table 1).Because the same anthropogenic emissions(black carbon,organics and sulfate)from Lamarque et al.(2010)are adopted in the two experiments,non-significant differences exist in the simulated AODs of STANDARD and NEW,likely because of the differences in the meteorological conditions.Both simulated AODs are significantly lower than that from composite satellite remote sensing data(around 0.15)(Kinne et al.,2006),showing that IAP AGCM 4.1 significantly underestimates AOD.The main reason for the underestimation of AOD is that the coverage period of the simulated AODs(1979–2005)differs from that of the satellite observations(2000–present)Additionally,theanthropogenicaerosolemissions derived from Lamarque et al.(2010)are substantially underestimated,especially over South Asia and East Asia(Liu et al.,2012).

    To further explore the differences between the effects of using different cloud microphysical schemes,we further compare the annual and seasonal zonal means and global spatial distributions of SWCF,LWCF and surface precipitation in the following su bsections.

    3.1.SWCF

    Figure 2 shows the zonal means of SWCF from observations(CERES-EBAF and ERBE)and IAP AGCM 4.1(STANDARD and NEW)for the whole year,for summer(June–July–August;JJA),and for winter(December–January–February;DJF).The annual zonal-mean tendencies of SWCF from STANDARD and NEW are in good agreementwithCERES-EBAFandERBE.BothsimulatedSWCFs are greatly overestimated at low latitudes and greatly underestimated at middle and high latitudes(Fig.2a).Over the low-latitude regions,the simulated SWCF of NEW is significantly reduced compared to STANDARD,and is clearly closer to CERES-EBAF and ERBE observations;whereas,STANDARD and NEW show non-significant inf l uences onSWCFoverthemid-andhigh-latituderegions.Ofnoteisthat the autoconversion rate of mass content(2)is a cubic function of cloud liquid water content,whereas it is 2.47 power of cloud liquid water content(Morrison and Gettelman,2008).Hence,the autoconversion rate used here is larger than the autoconversion rate of CAM5.1,especially for larger quantities of cloud water(Fig.1),which leads to less liquid cloud and smaller SWCF over low-latitude regions.Similar to the annual zonal-mean SWCF,the simulated seasonal results in NEW are also significantly reduced at low latitudes,which are in better agreement with the two sets of observational results shown in Figs.2b and c.Also of note is that a significant difference exists in the SWCF between the two sets of observational data in Fig.2a,with the zonal mean value from ERBE being much larger than that from CERES-EBAF.

    Fig.2.The(a)annual,(b)JJA and(c)DJF zonal mean SWCF(positive represents cooling)derived from observations(CERES-EBAF estimates from 2000 to 2010 and ERBE data from 1985 to 1989)and IAP AGCM 4.1(STANDARD and NEW).

    Figure 3 shows the annual mean global spatial distribution of SWCF from CERES-EBAF for the years 2000–10,that of STANDARD and NEW,and SWCF model biases.The simulated annual mean SWCFs from STANDARD(Fig.3b)and NEW(Fig.3c)can both reproduce the spatial distribution of CERES-EBAF(Fig.3a).In Figs.3d and e,over low latitudes,the simulated SWCFs from STANDARD and NEW areconsiderablyoverestimated;andovermiddleandhighlatitudes,the SWCF is greatly underestimated,compared with CERES-EBAF.The model bias in the annual mean SWCF for NEW is significantly reduced over low-latitude regions,where this reduced bias of SWCF is also found for JJA and DJF(not shown).Additionally,Table 2 summarizes some statistical results regarding the global mean SWCF,the difference in global means between observational estimates and model results,spatial pattern correlations,and RMSEs for the whole year,JJA and DJF.The results show that the annual,JJA and DJF global mean SWCF in NEW is much closer to the CERES-EBAF estimates than that of STANDARD.The spatial pattern correlation is slightly increased in the results for the whole year,as well as for JJA and DJF,and the RMSE(12.92,15.26 and 18.20 W m?2for the whole year,JJA and DJF,respectively)all decrease substantially in NEW,compared to that(15.54,18.32 and 20.19 W m?2)in STANDARD.

    These results indicate that,compared to the standard cloud scheme,the new cloud schemes with ε can better simulate the SWCF,which effectively reduces the low-latitude SWCF and is much closer to satellite observations.

    3.2.LWCF

    The annual,JJA and DJF zonal mean LWCF from CERES-EBAF and ERBE,and from IAP AGCM 4.1,are displayed in Fig.4.The results show that,compared to the SWCF,the inf l uence of the new cloud schemes on LWCF is much smaller.The simulated mean LWCF in NEW is slightly enhanced due to an increased high-cloud fraction,and closer to observations at all latitudes,compared to STANDARD,for the whole year(Fig.4a),JJA(Fig.4b)and DJF(Fig.4c).For the annual(Fig.5)and seasonal(not shown)mean global spatial distribution of LWCF,the simulated results can also reproduce the observational spatial distribution.However,notably,the differences in the LWCF spatial distribution between STANDARD and NEW are non-significant.

    Fig.3.Annual mean global spatial distribution of SWCFfrom(a)CERES-EBAF estimates from 2000 to 2010,and(b,c)IAP AGCM 4.1[(b)STANDARD;(c)NEW].(d,e)Model SWCF biases from(d)STANDARD and(e)NEW.

    Table 2.Global means and model(IAP AGCM 4.1;STANDARD and NEW)minus observation(OBS)differences in global means,and the spatial pattern correlations(R)and RMSEs of the model results compared to the observations,for SWCF(W m?2)and LWCF(W m?2)from CERES-EBAF estimates from 2000 to 2010,and PRECT(mm d?1)from GPCP data from 1979 to 2009,for the whole year(ANN),JJA and DJF.

    Fig.4.The(a)annual,(b)JJA and(c)DJF zonal mean LWCF(positive represents warming)from observations(CERESEBAF estimates from 2000 to 2010 and ERBE data from 1985 to 1989)and IAP AGCM 4.1(STANDARD and NEW).

    3.3.Surface precipitation

    Figure 6 presents the annual and seasonal zonal mean total precipitation rates and corresponding large-scale precipitation rates from GPCP and CMAP observations and IAP AGCM 4.1(STANDARD and NEW).Both STANDARD and NEW reproduce the annual and seasonal zonal mean changes in total precipitation from GPCP and CMAP(Figs.6a,6c and e).Furthermore,the simulated mean total precipitation rate in NEW changes non-significantly from that in STANDARD,both on an annual and seasonal(JJA and DJF)basis.The differences in the global spatial distribution of the model biases for annual and seasonal total precipitation between STANDARD and NEW are also marginal(figures not shown).Additionally,Table 2 shows that the model biases in annual and seasonal global mean total precipitation,the spatial pattern correlation,and the RMSE,change non-significantly from STANDARD to NEW.Hence,the results from IAP AGCM 4.1 show that the different cloud microphysical schemes do not affect the total surface precipitation significantly.

    Figures 6b,d and f show that the effect of the cloud schemes on large-scale precipitation is stronger than the effect on total precipitation.The new scheme displays more large-scale precipitation than the standard scheme,for annual and seasonal means alike,especially over low-latitude regions.This is because the autoconversion rate used here is larger than the autoconversion rate of CAM5.1,especially at higher cloud liquid water(Fig.1),leading to considerably more large-scale precipitation over low-latitude regions.These results regarding enhanced large-scale precipitation in NEW are also ref l ected by the information presented in Table 3.Taken together,the results presented in Fig.6 provide further indication that the total precipitation is determined by convective precipitation where no aerosol indirect effects are considered.

    Table 3.Annual(ANN)and seasonal(JJA and DJF)global and tropical(30°S–30°N)large-scale precipitation rate(PRECL;mm d?1),and the ratio of large-scale precipitation to total precipitation,for IAP AGCM 4.1 and CAM5.1 with different cloud parameterizations(STANDARD and NEW).

    Fig.5.Annual mean global spatial distribution of LWCF from(a)CERES-EBAF estimates from 2000 to 2010,and(b,c)IAP AGCM 4.1[(b)STANDARD;(c)NEW].(d,e)Model LWCF biases from(d)STANDARD and(e)NEW.

    3.4.Comparison between IAP AGCM 4.1 and CAM5.1

    Results from IAP AGCM 4.1(Table 2)and CAM5.1(Table 4)show that the simulated SWCFs with the new cloud schemes over low-latitude regions are significantly reduced and are much closer to satellite observations,as compared to the standard cloud scheme,which decreases the model bias in mean SWCF,increases the spatial pattern correlation,and decreases the RMSE,on the global scale.Here,we also compare the simulated SWCF from IAP AGCM 4.1 and CAM5.1 with the new cloud scheme(Tables 2 and 4).IAP AGCM 4.1 with the new scheme shows smaller bias in global mean SWCF for the whole year(?1.23 W m?2),for JJA(?3.24 W m?2),and for DJF(0.79 W m?2),than that(?3.94 W m?2,?7.14 W m?2and ?1.37 W m?2,respectively)in CAM 5.1.This model also has a higher spatial pattern correlation with CERES-EBAF(0.85,0.90,and 0.90 for the whole year,for JJA and for DJF,respectively)than CAM5.1(0.77,0.84 and 0.83).Additionally,the RSMEs for IAP AGCM 4.1(12.92,15.26 and 18.20 W m?2for the whole year,for JJA and for DJF,respectively)are smaller than those of CAM5.1(15.74,20.69 and 21.62 W m?2).Furthermore,IAP AGCM 4.1 with the new schemes improves the simulated LWCF,as discussed in subsection 3.2,but no such improvement is found in CAM5.1 with the new schemes.Although IAP AGCM 4.1 with the new schemes shows a larger global mean LWCF bias,it exhibits higher spatial pattern cor-relations(0.90,0.89 and 0.92 for the whole year,for JJA and for DJF)than CAM5.1(0.88,0.85 and 0.89),and lower RMSEs(6.83,9.00 and 8.29 W m?2for the whole year,for JJA and for DJF,respectively,in IAP AGCM 4.1 versus 7.12,10.45 and 9.38 W m?2in CAM5.1).

    Fig.6.The(a,b)annual,(c,d)JJA and(e,f)DJF zonal mean PRECT and larger-scale PRECL from observations(GPCP,1979–2009;CMAP,1979–98)and IAP AGCM 4.1(STANDARD and NEW).

    Table 4.Global means and model(IAP AGCM 4.1;STANDARD and NEW)minus observation(OBS)differences in global means,and the spatial pattern correlations(R)and RMSEs of the modeling results compared to the observed SWCF(W m?2)and LWCF(W m?2)from CERES-EBAF estimates from 2000 to 2010,and PRECT(mm d?1)from GPCP data from 1979 to 2009 for the whole year(ANN)and for JJA and DJF,in CAM5.1(Xie et al.,2017).Note that NEW here is the same as the New3 with the Rotstayn–Liu relationship in Xie et al.(2017).

    Compared to the standard scheme,the large-scale precipitation and its ratio to total precipitation can be effectively enhanced in the new scheme,for both GCMs(Table 3).Note that,although the ratio of large-scale precipitation to total precipitation from both GCMs in the tropics(30°S–30°N)is much lower than that from TRMM observational estimates(Dai,2006),these two GCMs with the new schemes produce much higher large-scale precipitation,and larger ratios of large-scale precipitation to total precipitation,which is clearly closer to the TRMM observational estimates.Additionally,IAP AGCM 4.1 displays substantially more largescale precipitation and higher ratios of large-scale precipitation to total precipitation than CAM5.1.

    4.Conclusions and discussion

    In this paper,cloud microphysical schemes including two-moment Arand Rewith ε are implemented into IAP AGCM 4.1 by following Xie et al.(2017).It is shown that the new cloud schemes can better simulate both the SWCF and LWCF against satellite observations,as compared to the standard scheme in IAP AGCM 4.1.This GCM with the new scheme can effectively enhance the large-scale precipitation,especially over low latitudes,although the inf l uence of total precipitation is non-significant for the different cloud schemes.Additionally,further results using CAM5.1 show that this model with the new schemes also improves the simulation of SWCF compared to the standard scheme,and enhances the large-scale precipitation and its ratio to total precipitation.

    The dispersion effect on aerosol indirect forcing in CAM5.1 has been reported from differences between simulations with present-day and pre-industrial aerosol emissions in Xie et al.(2017),showing that the corresponding aerosol indirect forcing with the dispersion effect considered can be reduced substantially by a range of 0.10–0.21 W m?2at the global scale,and by a much bigger margin of 0.25–0.39 W m?2for the Northern Hemisphere.The dispersion effect on aerosol indirect forcing in IAP AGCM 4.1 will be reported from present-day and pre-industrial experiments in a future study.Finally,it is noted that the choice of the Rotstayn–Liu relationship of ε?Ncin the cloud microphysical schemes with ε used in this study(Rotstayn and Liu,2003)may have implications.Different empirical formulas have been presented to stand for ε with respect to Nc,since ambient atmospheric factors and aerosol chemical and physical properties may inf l uence the ε significantly(Liu et al.,2008;Xie et al.,2013,2017).The effect of different ε?Ncrelationships on the results from IAP AGCM4.1 will also be examined in future work.

    Acknowledgements.This study was partially supported by the National Key Research and Development Program of China(Grant No.2016YFA0601904)and the National Natural Science Foundation of China(Grant Nos.41690115 and 41572150).He ZHANG is supported by the National Major Research High Performance Computing Program of China(Grant No.2016YFB0200800)and the National Natural Science Foundation of China(Grant No.61432018).Yiran PENG is supported by a“973”project(Grant No.2014CB441302).Yangang LIU is supported by the US Department of Energy’s Atmospheric System Research program.

    Adler,R.F.,and Coauthors,2003:The version-2 global precipitation climatology project(GPCP)monthly precipitation analysis(1979–present).Journal of Hydrometeorology,4(6),1147–1167,https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    Anderson,T.L.,R.J.Charlson,S.E.Schwartz,R.Knutti,O.Boucher,H.Rodhe,and J.Heintzenberg,2003:Climate forcing by aerosols-A hazy picture.Science,300,1103–1104,https://doi.org/10.1126/science.1084777.

    Barkstrom,B.R.,and J.B.Hall,1982:Earth radiation budget experiment(ERBE):An overview.Journal of Energy,6,141–146,https://doi.org/10.2514/3.62584.

    Boucher,O.,H.Le Treut,and M.B.Baker,1995:Precipitation and radiation modeling in a general circulation model:Introduction of cloud microphysical processes.J.Geophys.Res.,100,16 395–16 414,https://doi.org/10.1029/95JD01382.

    Dai,A.G.,2006:Precipitation characteristics in eighteen coupled climate models.J.Climate,19,4605–4630,https://doi.org/10.1175/JCLI3884.1.

    Ghan,S.J.,X.Liu,R.C.Easter,R.Zaveri,P.J.Rasch,J.-H.Yoon,and B.Eaton,2012:Toward a minimal representation of aerosols in climate models:Comparative decomposition of aerosol direct,semidirect,and indirect radiative forcing.J.Climate,25,6461–6476,https://doi.org/10.1175/JCLI-D-11-00650.1.

    Han,Q.Y.,W.B.Rossow,J.Chou,and R.M.Welch,1998:Global variation of column droplet concentration in low-level clouds.Geophys.Res.Lett.,25,1419–1422,https://doi.org/10.1029/98GL01095.

    Hurrell,J.W.,J.J.Hack,D.Shea,J.M.Caron,and J.Rosinski,2008:A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model.J.Climate,21(19),5145–5153,https://doi.org/10.1175/2008JCLI 2292.1.

    IPCC,2007:Climate Change 2007:The physical science basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,S.Solomon et al.,Eds.,Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA,996 pp.

    IPCC,2013:Climate Change 2013:The physical science basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,T.F.Stocker et al.,Eds.,Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA,1535 pp.

    Khairoutdinov,M.,and Y.Kogan,2000:A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus.Mon.Wea.Rev.,128,229–243,https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    Kinne,S.,and Coauthors,2006:An AeroCom initial assessmentoptical properties in aerosol component modules of global models.Atmos.Chem.Phys.,6,1815–1834,https://doi.org/10.5194/acp-6-1815-2006.

    Kovaˇceviˇc,N.,and M.′Curi′c,2014:Sensitivity study of the inf l uence of cloud droplet concentration on hail suppression effectiveness.Meteor.Atmos.Phys.,123,195–207,https://doi.org/10.1007/s00703-013-0296-y.

    Lamarque,J.F.,and Coauthors,2010:Historical(1850-2000)gridded anthropogenic and biomass burning emissions of reactive gases and aerosols:Methodology and application.Atmos.Chem.Phys.,10,7017–7039,https://doi.org/10.5194/acp-10-7017-2010.

    Lee,H.,and J.-J.Baik,2017:A physically based autoconversion parameterization.J.Atmos.Sci.,74,1599–1616,https://doi.org/10.1175/JAS-D-16-0207.1.

    Lin,Z.-H.,Z.Yu,H.Zhang,and C.-L.Wu,2016:Quantifying the attribution of model bias in simulating summer hot days in China with IAP AGCM 4.1.Atmos.Oceanic Sci.Lett.,9(6),436–442,https://doi.org/10.1080/16742834.2016.1232585.

    Liu,X.,and Coauthors,2012:Toward a minimal representation of aerosols in climate models:Description and evaluation in the Community Atmosphere Model CAM5.Geoscientific Model Development,5,709–739,https://doi.org/10.5194/gmd-5-709-2012.

    Liu,Y.G.,and P.H.Daum,2002:Anthropogenic aerosols:Indirect warming effect from dispersion forcing.Nature,419,580–581,https://doi.org/10.1038/419580a.

    Liu,Y.G.,and P.H.Daum,2004:Parameterization of the autoconversion process.Part I:Analytical formulation of the Kesslertype parameterizations.J.Atmos.Sci.,61,1539–1548,https://doi.org/10.1175/1520-0469(2004)061<1539:POTAPI>2.0.CO;2.

    Liu,Y.G.,P.H.Daum,R.McGraw,and M.Miller,2006:Generalized threshold function accounting for effect of relative dispersion on threshold behavior of autoconversion process.Geophys.Res.Lett.,33,L11804,https://doi.org/10.1029/2005GL025500.

    Liu,Y.G.,P.H.Daum,R.L.McGraw,M.A.Miller,and S.J.Niu,2007:Theoretical expression for the autoconversion rate of the cloud droplet number concentration.Geophys.Res.Lett.,34,L16821,https://doi.org/10.1029/2007GL030389.

    Liu,Y.G.,P.H.Daum,H.Guo,and Y.R.Peng,2008:Dispersion bias,dispersion effect,and the aerosol-cloud conundrum.Environ.Res.Lett.,3(4),045021,https://doi.org/10.1088/17489326/3/4/045021.

    Loeb,N.G.,and Coauthors,2009:Toward optimal closure of the earth’s top-of-atmosphere radiation budget.J.Climate,22(3),748–766,https://doi.org/10.1175/2008JCLI2637.1.

    Lohmann,U.,and J.Feichter,1997:Impact of sulfate aerosols on albedo and lifetime of clouds:A sensitivity study with the ECHAM4 GCM.J.Geophys.Res.,102,13 685–13 700,https://doi.org/10.1029/97JD00631.3.

    Michibata,T.,and T.Takemura,2015:Evaluation of autoconversion schemes in a single model framework with satellite observations.J.Geophys.Res.,120,9570–9590,https://doi.org/10.1002/2015JD023818-T.

    Morrison,H.,and A.Gettelman,2008:A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model,Version 3(CAM3).Part I:Description and numerical tests.J.Climate,21,3642–3659,https://doi.org/10.1175/2008JCLI2105.1.

    Neale,R.B.,and Coauthors,2010:Description of the NCAR Community Atmosphere Model(CAM5.0).NCAR Tech.Note NCAR/TN-486+STR,268 pp.

    Peng,Y.R.,and U.Lohmann,2003:Sensitivity study of the spectral dispersion of the cloud droplet size distribution on the indirect aerosol effect.Geophys.Res.Lett.,30,1507,https://doi.org/10.1029/2003GL017192.

    Planche,C.,J.H.Marsham,P.R.Field,K.S.Carslaw,A.A.Hill,G.W.Mann,and B.J.Shipway,2015:Precipitation sensitivity to autoconversion rate in a numerical weatherprediction model.Quart.J.Roy.Meteor.Soc.,141,2032–2044,https://doi.org/10.1002/qj.2497.

    Platnick,S.,M.D.King,S.A.Ackerman,W.P.Menzel,B.A.Baum,J.C.Riedi,and R.A.Frey,2003:The MODIS cloud products:Algorithms and examples from Terra.IEEE Transactions on Geoscience and Remote Sensing,41,459–473,https://doi.org/10.1109/TGRS.2002.808301.

    Quaas,J.,O.Boucher,and U.Lohmann,2006:Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data.Atmos.Chem.Phys.,6,947–955,https://doi.org/10.5194/acp-6-947-2006.

    Rossow,W.B.,and R.A.Schiffer,1999:Advances in understanding clouds from ISCCP.Bull.Amer.Meteor.Soc.,80,2261–2287,https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    Rotstayn,L.D.,and Y.G.Liu,2003:Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration.J.Climate,16,3476–3481,https://doi.org/10.1175/1520-0442(2003)016<3476:SOTFIA>2.0.CO;2.

    Rotstayn,L.D.,and Y.G.Liu,2005:A smaller global estimate of the second indirect aerosol effect.Geophys.Res.Lett.,32,L05708,https://doi.org/10.1029/2004GL021922.

    Sednev,I.,and S.Menon,2012:Analyzing numerics of bulk microphysics schemes in community models:Warm rain processes.Geoscientific Model Development,5,975–987,https://doi.org/10.5194/gmd-5-975-2012.

    Sun,H.C.,G.Q.Zhou,and Q.C.Zeng,2012:Assessments of the climate system model(CAS-ESM-C)Using IAP AGCM4 as its atmospheric component.Chinese Journal of Atmospheric Sciences,36,215–233,https://doi.org/10.3878/j.issn.1006-9895.2011.11062.(in Chinese)

    Wang,M.,S.Ghan,M.Ovchinnikov,X.Liu,R.Easter,E.Kassianov,Y.Qian,and H.Morrison,2011:Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF.Atmos.Chem.Phys.,11,5431–5455,https://doi.org/10.5194/acp-11-5431-2011.

    Wylie,D.,D.L.Jackson,W.P.Menzel,and J.J.Bates,2005:Trends in global cloud cover in two decades of HIRS observations.J.Climate,18,3021–3031,https://doi.org/10.1175/JCLI3461.1.

    Xie,P.P.,and P.A.Arkin,1997:Global precipitation:A 17-year monthly analysis based on gauge observations,satellite estimates,and numerical model outputs.Bull.Amer.Meteor.Soc.,78,2539–2558,https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    Xie,X.N.,and X.D.Liu,2009:Analytical three-moment autoconversion parameterization based on generalized gamma distribution.J.Geophys.Res.,114,D17201,https://doi.org/10.1029/2008JD011633.

    Xie,X.N.,and X.D.Liu,2011:Effects of spectral dispersion on clouds and precipitation in mesoscale convective systems.J.Geophys.Res.,116,D06202,https://doi.org/10.1029/2010 JD014598.

    Xie,X.N.,and X.D.Liu,2013:Analytical studies of the cloud droplet spectral dispersion inf l uence on the first indirect aerosoleffect.Adv.Atmos.Sci.,30(5),1313–1319,https://doi.org/10.1007/s00376-012-2141-5.

    Xie,X.N.,and X.D.Liu,2015:Aerosol-cloud-precipitation interactions in WRF model:sensitivity to autoconversion parame-terization.Journal of Meteorological Research,29(1),72–81,https://doi.org/10.1007/s13351-014-4065-8.

    Xie,X.N.,X.D.Liu,Y.R.Peng,Y.Wang,Z.G.Yue,and X.Z.Li,2013:Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion.Tellus B,65,19054,https://doi.org/10.3402/tellusb.v65i0.19054.

    Xie,X.N.,H.Zhang,X.D.Liu,Y.R.Peng,and Y.G.Liu,2017:Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1:Impacts on aerosol indirect effects.Atmos.Chem.Phys.,17,5877–5892,https://doi.org/10.5194/acp-17-5877-2017.

    Yan,Z.-B.,Z.-H.Lin,and H.Zhang,2014:The Relationship between the East Asian Subtropical Westerly Jet and Summer Precipitation over East Asia as Simulated by the IAP AGCM4.0.Atmospheric and Oceanic Science Letters,7,487–492,https://doi.org/10.3878/AOSL20140048.

    Zhang,H.,Z.H.Lin,and Q.C.Zeng,2009:The computational scheme and the test for dynamical framework of IAP AGCM-4.Chinese Journal of Atmospheric Sciences,33,1267–1285,https://doi.org/10.3878/j.issn.1006-9895.2009.06.13.(in Chinese)

    Zhang,H.,M.H.Zhang,and Q.-C.Zeng,2013:Sensitivity of simulated climate to two atmospheric models:Interpretation of differences between dry models and moist models.Mon.Wea.Rev.,141,1558–1576,https://doi.org/10.1175/MWRD-11-00367.1.

    13 April 2017;revised 7 August 2017;accepted 16 August 2017)

    :Xie,X.N.,H.Zhang,X.D.Liu,Y.R.Peng,and Y.G.Liu,2018:Role of microphysical parameterizations with droplet relative dispersion in IAP AGCM 4.1.Adv.Atmos.Sci.,35(2),248–259,https://doi.org/10.1007/s00376-017-7083-5.

    ?Corresponding author:Xiaoning XIE

    Email:xnxie@ieecas.cn

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag GmbH Germany,part of Springer Nature 2018

    猜你喜歡
    酸乳保加利亞菌斑
    大學(xué)生牙齦炎齦上菌斑的微生物群落
    一種新型含穩(wěn)定亞錫-氟化鈉牙膏的菌斑滲透率和脂多糖中和效率的臨床評價
    酪蛋白磷酸肽-鈣絡(luò)合物對酸乳貯藏特性的影響
    中國釀造(2016年12期)2016-03-01 03:08:23
    缺血性腦卒中患者齦下菌斑中牙周致病菌檢測
    嗜酸乳桿菌NX2-6凍干發(fā)酵劑的研究
    嗜酸乳桿菌細(xì)菌素Lactobacillin XH2分離純化研究
    嗜酸乳桿菌同化吸附降膽固醇作用機理研究
    牙周潔治結(jié)合菌斑顯示劑監(jiān)控對正畸患者治療效果的影響
    保加利亞的政治經(jīng)濟(jì)發(fā)展趨勢
    保加利亞轉(zhuǎn)軌20年評價
    欧美日韩一区二区视频在线观看视频在线| www.av在线官网国产| 国产成人精品无人区| 视频区图区小说| 欧美日韩视频高清一区二区三区二| 精品人妻熟女av久视频| 两个人免费观看高清视频| 久久久久久久久久人人人人人人| 国产一区二区在线观看av| 黄片播放在线免费| 午夜激情福利司机影院| 色5月婷婷丁香| 国产黄色免费在线视频| 久久久精品94久久精品| 99热这里只有是精品在线观看| 亚洲第一av免费看| 亚洲av成人精品一区久久| 国产精品一二三区在线看| 亚洲精品国产av成人精品| 九色成人免费人妻av| 啦啦啦中文免费视频观看日本| 熟女人妻精品中文字幕| 亚洲精品一二三| 成年美女黄网站色视频大全免费 | 国产欧美日韩一区二区三区在线 | 午夜91福利影院| 国产欧美日韩一区二区三区在线 | 夜夜骑夜夜射夜夜干| av线在线观看网站| 在线天堂最新版资源| 日本wwww免费看| 日日爽夜夜爽网站| 精品人妻一区二区三区麻豆| 欧美xxⅹ黑人| 国产精品三级大全| 国产精品国产三级国产专区5o| 久热这里只有精品99| 午夜福利网站1000一区二区三区| 亚洲av免费高清在线观看| 免费观看的影片在线观看| 一级黄片播放器| 久久久久久人妻| 亚洲av成人精品一区久久| 人妻一区二区av| 波野结衣二区三区在线| 美女大奶头黄色视频| 国产极品粉嫩免费观看在线 | 熟女人妻精品中文字幕| 亚洲图色成人| 尾随美女入室| 亚洲第一区二区三区不卡| 国产精品一国产av| xxx大片免费视频| 国产综合精华液| 成年人午夜在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 久久av网站| 成人毛片60女人毛片免费| 免费观看a级毛片全部| 久久午夜综合久久蜜桃| av女优亚洲男人天堂| 免费黄频网站在线观看国产| 国产在线免费精品| 国产精品偷伦视频观看了| 五月伊人婷婷丁香| 毛片一级片免费看久久久久| 一级爰片在线观看| 日韩一本色道免费dvd| 亚洲精品国产色婷婷电影| 最近的中文字幕免费完整| av视频免费观看在线观看| 91午夜精品亚洲一区二区三区| 欧美国产精品一级二级三级| 妹子高潮喷水视频| 欧美最新免费一区二区三区| 爱豆传媒免费全集在线观看| 最近2019中文字幕mv第一页| 精品少妇黑人巨大在线播放| 极品人妻少妇av视频| 能在线免费看毛片的网站| 国产日韩欧美亚洲二区| 91久久精品电影网| 国产成人av激情在线播放 | 制服丝袜香蕉在线| 制服人妻中文乱码| 亚洲精品乱码久久久v下载方式| 黄色一级大片看看| 亚洲精品乱久久久久久| 亚洲欧美日韩另类电影网站| 99国产精品免费福利视频| 3wmmmm亚洲av在线观看| 亚洲综合精品二区| 成人午夜精彩视频在线观看| 久久久午夜欧美精品| 一级二级三级毛片免费看| 在现免费观看毛片| 国产亚洲精品第一综合不卡 | 熟女人妻精品中文字幕| 欧美 亚洲 国产 日韩一| 国产片特级美女逼逼视频| 亚洲精品av麻豆狂野| 亚洲欧洲精品一区二区精品久久久 | 啦啦啦中文免费视频观看日本| 美女视频免费永久观看网站| 在线精品无人区一区二区三| 欧美人与善性xxx| 两个人的视频大全免费| 欧美日韩在线观看h| freevideosex欧美| 亚洲国产av影院在线观看| 亚洲国产精品一区三区| 亚洲婷婷狠狠爱综合网| 免费黄色在线免费观看| 黑人巨大精品欧美一区二区蜜桃 | 日韩成人av中文字幕在线观看| 爱豆传媒免费全集在线观看| 免费大片18禁| 亚洲av免费高清在线观看| 十八禁高潮呻吟视频| 国产成人一区二区在线| 国产成人精品无人区| 国产成人91sexporn| 色哟哟·www| 亚洲欧美中文字幕日韩二区| 亚洲精品国产av蜜桃| a级片在线免费高清观看视频| 亚洲人成网站在线观看播放| 日韩熟女老妇一区二区性免费视频| av.在线天堂| 在线看a的网站| av福利片在线| 免费av中文字幕在线| 一二三四中文在线观看免费高清| 美女福利国产在线| 丝袜脚勾引网站| 中文字幕人妻熟人妻熟丝袜美| 成年女人在线观看亚洲视频| 蜜桃在线观看..| 久久久欧美国产精品| 成人毛片60女人毛片免费| 视频在线观看一区二区三区| 亚洲精品乱久久久久久| 天美传媒精品一区二区| 男男h啪啪无遮挡| 国产精品一二三区在线看| 新久久久久国产一级毛片| 中文字幕久久专区| 22中文网久久字幕| 七月丁香在线播放| 日韩三级伦理在线观看| 亚洲一级一片aⅴ在线观看| 91国产中文字幕| 日韩中文字幕视频在线看片| 国产国拍精品亚洲av在线观看| 久久久久久久精品精品| 男人爽女人下面视频在线观看| 亚洲av综合色区一区| 精品一品国产午夜福利视频| 夫妻性生交免费视频一级片| 免费高清在线观看视频在线观看| 久久99蜜桃精品久久| 欧美人与性动交α欧美精品济南到 | 日韩不卡一区二区三区视频在线| 大码成人一级视频| 欧美精品亚洲一区二区| 国产 精品1| 十八禁高潮呻吟视频| 在线播放无遮挡| 欧美三级亚洲精品| 精品午夜福利在线看| 少妇猛男粗大的猛烈进出视频| 国产一级毛片在线| 欧美成人午夜免费资源| 欧美三级亚洲精品| 亚洲伊人久久精品综合| 国产免费视频播放在线视频| 成年人午夜在线观看视频| 99热6这里只有精品| 久久精品熟女亚洲av麻豆精品| 国产熟女欧美一区二区| 我的老师免费观看完整版| 夜夜看夜夜爽夜夜摸| 肉色欧美久久久久久久蜜桃| 欧美国产精品一级二级三级| 在线观看人妻少妇| 久久久亚洲精品成人影院| av福利片在线| 日韩欧美精品免费久久| 熟女av电影| 亚洲国产av影院在线观看| 熟女人妻精品中文字幕| 国产男女超爽视频在线观看| 免费大片18禁| tube8黄色片| 大香蕉久久成人网| 免费日韩欧美在线观看| 看十八女毛片水多多多| 成人漫画全彩无遮挡| 日日啪夜夜爽| 国产午夜精品久久久久久一区二区三区| 午夜91福利影院| 热99久久久久精品小说推荐| 各种免费的搞黄视频| 国产精品国产三级国产专区5o| 免费高清在线观看日韩| 午夜免费鲁丝| 少妇精品久久久久久久| 免费播放大片免费观看视频在线观看| 久久99热6这里只有精品| 国产有黄有色有爽视频| 最近中文字幕高清免费大全6| 国产一区有黄有色的免费视频| 国产精品成人在线| a 毛片基地| 岛国毛片在线播放| 中国国产av一级| videos熟女内射| 免费人妻精品一区二区三区视频| 欧美日韩国产mv在线观看视频| 日韩在线高清观看一区二区三区| xxx大片免费视频| 亚洲国产欧美日韩在线播放| 汤姆久久久久久久影院中文字幕| 色婷婷久久久亚洲欧美| .国产精品久久| 日韩强制内射视频| 中文字幕久久专区| 桃花免费在线播放| 国产欧美日韩一区二区三区在线 | 麻豆乱淫一区二区| 高清黄色对白视频在线免费看| 国精品久久久久久国模美| 亚洲丝袜综合中文字幕| 精品国产乱码久久久久久小说| 下体分泌物呈黄色| av.在线天堂| 最近中文字幕高清免费大全6| 日韩电影二区| 一本色道久久久久久精品综合| 亚洲av综合色区一区| 满18在线观看网站| 午夜91福利影院| 亚洲久久久国产精品| 大片电影免费在线观看免费| 在线观看人妻少妇| 国产一区二区在线观看av| 国产精品国产三级国产专区5o| 欧美三级亚洲精品| 丰满少妇做爰视频| 女性生殖器流出的白浆| 亚洲精品久久午夜乱码| 秋霞伦理黄片| 精品午夜福利在线看| 午夜精品国产一区二区电影| 午夜av观看不卡| 国产精品久久久久久精品电影小说| 伦理电影大哥的女人| 免费av中文字幕在线| 丁香六月天网| 亚洲国产精品专区欧美| 亚洲人成网站在线播| 亚洲精品亚洲一区二区| 女性被躁到高潮视频| 大香蕉久久网| 天美传媒精品一区二区| 尾随美女入室| av天堂久久9| 黄色欧美视频在线观看| 美女国产视频在线观看| 中文字幕制服av| 国产黄色免费在线视频| 日本欧美国产在线视频| 国产有黄有色有爽视频| 国模一区二区三区四区视频| 久久精品人人爽人人爽视色| 一二三四中文在线观看免费高清| 日韩,欧美,国产一区二区三区| 丰满乱子伦码专区| 亚洲丝袜综合中文字幕| 99久久中文字幕三级久久日本| 晚上一个人看的免费电影| 亚洲精品日韩在线中文字幕| 最近2019中文字幕mv第一页| 精品熟女少妇av免费看| 插阴视频在线观看视频| 九草在线视频观看| 欧美性感艳星| 国产精品不卡视频一区二区| 欧美少妇被猛烈插入视频| 久久久a久久爽久久v久久| 免费播放大片免费观看视频在线观看| 纯流量卡能插随身wifi吗| 欧美亚洲 丝袜 人妻 在线| 老司机亚洲免费影院| 免费高清在线观看日韩| 99久久综合免费| 亚洲精品美女久久av网站| 久久影院123| 国产淫语在线视频| 高清av免费在线| 午夜福利视频在线观看免费| 国产成人免费观看mmmm| 自线自在国产av| 久久久久久久久久久丰满| 国产不卡av网站在线观看| 欧美人与性动交α欧美精品济南到 | 久久久久精品性色| 色5月婷婷丁香| 久久久久久久久大av| 亚洲精品日本国产第一区| kizo精华| 亚洲国产av新网站| 老司机影院成人| 蜜桃在线观看..| 国产精品秋霞免费鲁丝片| a级毛片黄视频| 黄色一级大片看看| 一级片'在线观看视频| 国产一级毛片在线| 三级国产精品欧美在线观看| 欧美日韩视频高清一区二区三区二| 91成人精品电影| 91国产中文字幕| 日本欧美国产在线视频| 国产探花极品一区二区| 精品久久蜜臀av无| 蜜桃国产av成人99| 亚洲欧美一区二区三区黑人 | 少妇被粗大猛烈的视频| 特大巨黑吊av在线直播| av福利片在线| 久久久久久人妻| 美女主播在线视频| 晚上一个人看的免费电影| 亚洲美女黄色视频免费看| 少妇熟女欧美另类| 日本与韩国留学比较| 在线免费观看不下载黄p国产| 我的老师免费观看完整版| 国产精品熟女久久久久浪| 欧美激情高清一区二区三区| 高清欧美精品videossex| 99国产综合亚洲精品| 午夜日韩欧美国产| 国产在线免费精品| 国产成人精品久久二区二区免费| 天天添夜夜摸| netflix在线观看网站| 国产精品.久久久| 啦啦啦在线免费观看视频4| 国产在线视频一区二区| 国产免费视频播放在线视频| 免费高清在线观看日韩| 久久精品亚洲精品国产色婷小说| 免费观看人在逋| 又黄又粗又硬又大视频| 国产福利在线免费观看视频| 97人妻天天添夜夜摸| av网站免费在线观看视频| 成年人午夜在线观看视频| 国产福利在线免费观看视频| 国产精品一区二区精品视频观看| 亚洲精华国产精华精| av免费在线观看网站| 亚洲黑人精品在线| 少妇 在线观看| 最近最新免费中文字幕在线| 建设人人有责人人尽责人人享有的| a在线观看视频网站| 亚洲中文字幕日韩| 欧美成狂野欧美在线观看| 不卡一级毛片| 国产国语露脸激情在线看| 久久人人97超碰香蕉20202| 国产成人av教育| av线在线观看网站| 在线av久久热| 99re在线观看精品视频| 丰满人妻熟妇乱又伦精品不卡| 另类亚洲欧美激情| 两个人看的免费小视频| 啦啦啦 在线观看视频| xxxhd国产人妻xxx| 色94色欧美一区二区| 亚洲午夜理论影院| 狠狠婷婷综合久久久久久88av| 精品高清国产在线一区| 91av网站免费观看| 下体分泌物呈黄色| 高清毛片免费观看视频网站 | 怎么达到女性高潮| 色94色欧美一区二区| netflix在线观看网站| 国产精品av久久久久免费| 国产成+人综合+亚洲专区| 亚洲av第一区精品v没综合| 欧美精品啪啪一区二区三区| 久久天躁狠狠躁夜夜2o2o| 麻豆乱淫一区二区| 69精品国产乱码久久久| 韩国精品一区二区三区| 亚洲成国产人片在线观看| 欧美在线黄色| 欧美精品av麻豆av| 久久久水蜜桃国产精品网| 啦啦啦视频在线资源免费观看| 成人免费观看视频高清| 日韩免费高清中文字幕av| 久久人妻熟女aⅴ| 老司机亚洲免费影院| 久久亚洲真实| 超碰97精品在线观看| 亚洲人成电影免费在线| 男女午夜视频在线观看| 高清av免费在线| 他把我摸到了高潮在线观看 | 俄罗斯特黄特色一大片| 一边摸一边抽搐一进一出视频| 欧美精品人与动牲交sv欧美| 精品一区二区三区视频在线观看免费 | 老熟女久久久| 亚洲国产欧美在线一区| 另类亚洲欧美激情| 看免费av毛片| 天天添夜夜摸| 手机成人av网站| 十八禁人妻一区二区| 老汉色∧v一级毛片| 精品国产乱码久久久久久小说| 亚洲伊人色综图| 可以免费在线观看a视频的电影网站| avwww免费| 搡老乐熟女国产| 精品少妇黑人巨大在线播放| 99久久99久久久精品蜜桃| 18禁美女被吸乳视频| av免费在线观看网站| 国产精品成人在线| 老熟女久久久| av网站在线播放免费| 蜜桃在线观看..| 脱女人内裤的视频| 亚洲九九香蕉| 在线观看66精品国产| 香蕉国产在线看| 韩国精品一区二区三区| 成人三级做爰电影| 欧美激情 高清一区二区三区| 99精品在免费线老司机午夜| 中文字幕另类日韩欧美亚洲嫩草| 亚洲专区国产一区二区| 99精品久久久久人妻精品| 免费看a级黄色片| 免费久久久久久久精品成人欧美视频| 他把我摸到了高潮在线观看 | 黄频高清免费视频| 欧美成人午夜精品| 一进一出抽搐动态| 国产成人系列免费观看| 久久久久精品国产欧美久久久| 国产精品二区激情视频| 女人爽到高潮嗷嗷叫在线视频| 男女下面插进去视频免费观看| 亚洲熟女毛片儿| 美女主播在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久精品国产欧美久久久| 成年人黄色毛片网站| 不卡一级毛片| 老司机午夜十八禁免费视频| av欧美777| svipshipincom国产片| 亚洲精品美女久久久久99蜜臀| 亚洲中文日韩欧美视频| 久久久久久久精品吃奶| 天堂俺去俺来也www色官网| 无人区码免费观看不卡 | 成人18禁高潮啪啪吃奶动态图| 亚洲精品粉嫩美女一区| 中文字幕精品免费在线观看视频| 亚洲人成电影观看| 久久人人97超碰香蕉20202| 日韩中文字幕视频在线看片| 免费在线观看完整版高清| 啦啦啦视频在线资源免费观看| 黄频高清免费视频| 天堂俺去俺来也www色官网| 国产精品秋霞免费鲁丝片| av在线播放免费不卡| 淫妇啪啪啪对白视频| 黄色视频,在线免费观看| 亚洲色图av天堂| 久9热在线精品视频| tube8黄色片| 久久午夜综合久久蜜桃| 老司机影院毛片| 九色亚洲精品在线播放| 中国美女看黄片| 久久久久久久国产电影| 高清av免费在线| 国产欧美日韩精品亚洲av| 精品久久久精品久久久| 啪啪无遮挡十八禁网站| 国产高清视频在线播放一区| 午夜激情久久久久久久| 精品人妻熟女毛片av久久网站| 搡老熟女国产l中国老女人| 麻豆av在线久日| 久久人人97超碰香蕉20202| 2018国产大陆天天弄谢| 国产欧美亚洲国产| a级毛片黄视频| 国产熟女午夜一区二区三区| 搡老岳熟女国产| 91老司机精品| 黄频高清免费视频| 亚洲精品中文字幕在线视频| 欧美黄色淫秽网站| 美女高潮喷水抽搐中文字幕| 一本大道久久a久久精品| 黄片大片在线免费观看| 无遮挡黄片免费观看| 丰满迷人的少妇在线观看| 俄罗斯特黄特色一大片| 日本黄色视频三级网站网址 | 欧美 亚洲 国产 日韩一| 亚洲五月婷婷丁香| 午夜福利视频在线观看免费| 国产在线精品亚洲第一网站| 免费女性裸体啪啪无遮挡网站| 精品国产亚洲在线| 最新在线观看一区二区三区| 一本一本久久a久久精品综合妖精| 亚洲欧美一区二区三区久久| 欧美日韩成人在线一区二区| 一个人免费看片子| 黄色怎么调成土黄色| 国产免费福利视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产激情久久老熟女| 99re6热这里在线精品视频| 中文字幕精品免费在线观看视频| 香蕉国产在线看| 在线观看一区二区三区激情| 天堂8中文在线网| 日本a在线网址| 成人av一区二区三区在线看| 国产成人啪精品午夜网站| 久久久国产精品麻豆| 国产精品1区2区在线观看. | 亚洲欧洲日产国产| 人人妻人人澡人人爽人人夜夜| 国产精品98久久久久久宅男小说| 久久这里只有精品19| 国产不卡av网站在线观看| 一区二区三区乱码不卡18| 黄片大片在线免费观看| 国产一区有黄有色的免费视频| 精品少妇久久久久久888优播| 久久99一区二区三区| 成人av一区二区三区在线看| 午夜成年电影在线免费观看| 久久国产精品大桥未久av| 黄网站色视频无遮挡免费观看| 18禁裸乳无遮挡动漫免费视频| 亚洲精品美女久久久久99蜜臀| 色老头精品视频在线观看| 18禁黄网站禁片午夜丰满| 在线永久观看黄色视频| 精品久久久精品久久久| tocl精华| 久久亚洲精品不卡| 99九九在线精品视频| 成人手机av| 国产又爽黄色视频| 国产免费视频播放在线视频| 国产黄色免费在线视频| 一个人免费看片子| 国精品久久久久久国模美| 男女边摸边吃奶| 亚洲成人免费av在线播放| 看免费av毛片| 亚洲精华国产精华精| 男女午夜视频在线观看| 一级毛片女人18水好多| 久久久久久久久久久久大奶| 极品少妇高潮喷水抽搐| 日本av手机在线免费观看| 一级片免费观看大全| 女人高潮潮喷娇喘18禁视频| 精品国产乱子伦一区二区三区| av网站免费在线观看视频| 十八禁高潮呻吟视频| 高潮久久久久久久久久久不卡| 欧美精品人与动牲交sv欧美| 新久久久久国产一级毛片| 精品国产乱子伦一区二区三区| 久久久久久久久久久久大奶| 男女午夜视频在线观看| 国产99久久九九免费精品| 亚洲一区二区三区欧美精品| 国产一区有黄有色的免费视频| 久久 成人 亚洲| 这个男人来自地球电影免费观看| 国产精品麻豆人妻色哟哟久久| 日日爽夜夜爽网站| 汤姆久久久久久久影院中文字幕| 久久国产精品男人的天堂亚洲| 亚洲成人手机| 欧美精品一区二区免费开放| 欧美黑人精品巨大| 搡老熟女国产l中国老女人| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品国产av在线观看| 国产精品久久久久成人av|