• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cloud Condensation Nuclei over the Bay of Bengal during the Indian Summer Monsoon

    2018-01-09 05:35:38CHATEWAGHMAREJENAGOPALAKRISHNANMURUGAVELSachinGHUDERachanaKULKARNIandDEVARA
    Advances in Atmospheric Sciences 2018年2期

    D.M.CHATE,R.T.WAGHMARE,C.K.JENA,V.GOPALAKRISHNAN,P.MURUGAVEL,Sachin D.GHUDE,Rachana KULKARNI,and P.C.S.DEVARA

    1Indian Institute of Tropical Meteorology,Pune 411008,India

    2Marine,Earth and Atmospheric Science,North Carolina State University,Raleigh,NC 27695,USA

    3Amity Centre for Ocean-Atmospheric Science and Technology(ACOAST)&Amity Centre for Environmental Science and HeaLSTh(ACESH),Amity University Haryana,Gurgaon-Manesar 122 413,India

    Cloud Condensation Nuclei over the Bay of Bengal during the Indian Summer Monsoon

    D.M.CHATE?1,R.T.WAGHMARE1,C.K.JENA2,V.GOPALAKRISHNAN1,P.MURUGAVEL1,Sachin D.GHUDE1,Rachana KULKARNI1,and P.C.S.DEVARA3

    1Indian Institute of Tropical Meteorology,Pune 411008,India

    2Marine,Earth and Atmospheric Science,North Carolina State University,Raleigh,NC 27695,USA

    3Amity Centre for Ocean-Atmospheric Science and Technology(ACOAST)&Amity Centre for Environmental Science and HeaLSTh(ACESH),Amity University Haryana,Gurgaon-Manesar 122 413,India

    The first measurements of cloud condensation nuclei(CCN)at five supersaturations were carried out onboard the research vessel“Sagar Kanya”(cruise SK-296)from the south to the head-bay of the Bay of Bengal as part of the Continental Tropical Convergence Zone(CTCZ)Project during the Indian summer monsoon of 2012.In this paper,we assess the diurnal variation in CCN distributions at supersaturations from 0.2%to 1%(in steps of 0.2%)and the power-law fit at supersaturation of 1%.The diurnal pattern shows peaks in CCN concentration(NCCN)at supersaturations from 0.2%to 1%between 0600 and 0700 LST(local standard time,UTC+0530),with relatively low concentrations between 1200 and 1400 LST,followed by a peak at around 1800 LST.The power-law fit for the CCN distribution at different supersaturation levels relates the empirical exponent(k)of supersaturation(%)and the NCCNat a supersaturation of 1%.The NCCNat a supersaturation of 0.4%is observed to vary from 702 cm?3to 1289 cm?3,with a mean of 961±161 cm?3(95%confidence interval),representing the CCN activity of marine air masses.Whereas,the mean NCCNof 1628±193 cm?3at a supersaturation of 1%is higher than anticipated for the marine background.When the number of CCN spectra is 1293,the value of k is 0.57±0.03(99%confidence interval)and its probability distribution shows cumulative counts significant at k≈0.55±0.25.The results are found to be better at representing the features of the marine environment(103cm?3and k≈0.5)and useful for validating CCN closure studies for Indian sea regions.

    CTCZ,Bay of Bengal,monsoon,CCN,supersaturation,power-law relationship

    1.Introduction

    Cloud condensation nuclei(CCN)are fractions of atmospheric aerosols that grow to the size of cloud droplets at a specified supersaturation level in marine,continental and in-cloud environments.Low and high CCN concentrations(NCCN)are generally observed in the marine background and polluted regions,respectively(Petters and Kreidenweis,2007;Andreae,2009;Bougiatioti et al.,2011;Leena et al.,2016).Field observation campaigns(e.g.Andreae and Rosenfeld,2008)have improved our understanding of CCN activity(Ervens et al.,2010).CCN formation is an important phenomenon in cloud physics(Fitzgerald,1973,1991)and the activation of hygroscopic aerosols to the size of CCN largely depends on the size,source,chemical composition and mixing state of particles that nucleate as CCN and grow into droplets(Su et al.,2010;Asmi et al.,2012).The aerosol hygroscopicity in CCN formation depends on the air mass that prevails over the regions of observation(Pruppacher and Klett,2010).Though the chemical composition of nuclei that activate into CCN distributions is difficult to measure in real time(Murugavel and Chate,2011;Kr¨uger et al.,2014),a power-law fit for CCN distributions,as a function of supersaturation with the exponent(k)of supersaturation and C(the NCCNin cm?3at a supersaturation of 1%),represents the hygroscopicity of particles that nucleate to CCN size(Mc-Figgans et al.,2006;Hegg et al.,2009).For inland stations in India,the CCN distributions along with power-law fits are reported as a function of specified supersaturation over short time scales(order of seconds)using commercially available CCN-100 counters(Leena et al.,2016;Varghese et al.,2015).Similar measurements of CCN distributions at various supersaturation values over Indian sea regions during the south-west summer monsoon can result in a better power-law formulation with C and k.Atmospheric measurements of CCN distributions at a wide range of supersaturation levels from the south to the head-bay region of the Bay of Bengal(BoB)have largely been neglected(CTCZ-Scientific Steering Committee,2011),except shipborne observations reported by Ramana and Devi(2016)for the southernmost tail-bay region of the BoB.

    The present work focuses on an analysis of the in-situ measurements of CCN distributions at a wide range of supersaturation over the barely explored region of the BoB from the south to the head-bay region using CCN-100 counters deployed onboard the research vessel“Sagar Kanya”(cruise SK-296)during the Indian summer monsoon of 2012.During this season,the prevailing air mass maintained a symmetrical supply of moisture over the BoB.Therefore,the measured CCN distributions at a wide range of supersaturation in the study region motivated us to quantify the power-law parameters for southwesterly clean air masses,and to compare them with other marine environments.Also,this work aims toshowcasethefirstobservationsofCCNdistributionsatvarious levels of supersaturation carried out in the marine sector spread over an area from the south to the head-bay region of the BoB during the monsoon season,and to investigate the power-law fit for the empirical parameters C and k for the monsoonal air mass.Moreover,the results from the CCN distribution measurements at a wide range of supersaturation levels are expected to improve our understanding of the CCN activity for monsoonal clouds over Indian sea regions.

    2.Instrumentation

    AtmosphericparticlesthattransformintoCCNweremeasured with a CCN counter(model:CCN-100).This instrument is a continuous fl ow thermal gradient CCN counter proposed and designed by Roberts and Nenes(2005)and manufactured by Droplet Measurement Technologies.The working principle of this CCN counter is to expose the aerosol to a fixed supersaturation at a certain time and to measure the number of activated particles with an inbuilt optical particle counter.Aerosols continuously fl ow through the center part of a cylinder with a wetted wall.Between the aerosol fl ow and the wall there is a particle-free sheath fl ow.By controlling the temperature of the wall as well as keeping it wet(ensuring that the relative humidity is 100%just outside the cylinder wall),the movement of heat and water vapor towards the middle of the cylinder and the supersaturation value can be maintained.The supersaturation values are altered in a cycle for measurement of the activated NCCN.The working principle(thermophoresis)of the instrument depends on the water molecules that diffuse towards the center faster than the heat added across the wall(water molecules diffuse mainly via heavier nitrogen and oxygen molecules,hence giving saturation ratios above 100%).Details on the measurement uncertainties and operational error are discussed elsewhere(Rose et al.,2008;Kru¨ger et al.,2014).Full details on the operation,maintenance and calibration procedure of the CCN-100 counter can be found at http://www.dropletmeasurement.com.Also,Ramana and Devi(2016)described the deployment of CCN-100 onboard the research vessel“Sagar Nidhi”during a cruise over the BoB.

    3.Study region

    Figures 1a and b show the ORV Sagarkanya-296 track positions along with wind-rose diagrams,based on observed winds over the BoB during the cruise period from 10 July to 8 August 2012.As seen in Fig.1a,since the departure of SK-296 from Chennai port on 10 July 2012,it sailed till 13 July 2012 almost parallel to the entire coastline of the Indian peninsula and reached the head-bay region of the BoB on 19 July 2012.The research vessel“Sagar Kanya”remained stationary in the head-bay region from 19 July to 2 August 2012(Fig.1a)and thereafter started its return expedition on 2 August 2012 towards the south of the bay,parallel but relatively far away from the Indian coastline,and arrived at Chennai port on 8 August 2012.The Indian summer monsoon season generally extends from June to September when the ITCZ shifts its position over India,maintaining monsoonal cloud cover and moisture supply over the entire country.The dominant circulation pattern is southwesterly clean air masses from June to September,with strong near-surface winds over the Ocean.CCN distributions were continuously monitored at a wide range of supersaturation levels over a period that included the expedition of the SK-296 cruise from the south to the head-bay region of the BoB(10 July to 8 August 2012).A very high total NCCN(~ 7500 cm?3)was recorded on 17 July 2012 when SK-296 was at Paradeep port in the BoB,and also on 5 August 2012(due to rain).The prevailing southwesterly air mass maintains the symmetric moisture supply over the BoB,as evident from the wind-rose diagram(Fig.1b).Several rain showers were encountered during the campaign period,while typical monsoonal clouds passed over the SK-296 track positions across the BoB.The prevailing weather conditions in the marine environment of the BoB during July to August 2012 are described in Ramana and Devi(2016).Over the south to the head-bay region of the BoB,the sampling period(10 July to 7 August 2012)of the SK-296 cruise was long enough to represent the monsoonal pattern of CCN distributions at various supersaturation levels.

    Fig.1.(a)SK-296 track positions.(b)Wind-rose diagram(black shadings mark the southwest and south-southwest winds).(c)Frequency distribution of winds.

    The CCN distributions at supersaturations of 0.2%,0.4%,0.6%,0.8%and 1%(covering typical range of supersaturation of the marine to the in-cloud environment)were monitored over the region from the south to the head-bay region of the BoB,round the clock,during 10 July to 7 August 2012.The activated NCCNis given with a temporal resolution of one second and,since it takes a few minutes for the system to come to equilibrium state with the supersaturation,a measurement cycle of 30 minutes is considered for the aforementioned levels of supersaturation(Kr¨uger et al.,2014).The data obtained for CCN distributions as a function of supersaturation have been averaged on an hourly basis for the entire period of the SK-296 cruise campaign to showcase the results on the diurnal scale for the Indian summer monsoon of 2012.Figure 2 shows the diurnal pattern of the CCN distribution for the measurement period from 10 July to 7 August 2012 at each level of supersaturation from 0.2%to 1%(in steps of 0.2%).The diurnal cycle includes the peaks in CCN distributions between 0600 and 0700 LST(local standard time,UTC+0530)of about 634,1122,1425,1619 and 1857 cm?3,followed by lower concentrations of about 543,736,874,1100 and 1428 cm?3between 1200 and 1400 LST and subsequent peaks at 1800 LST of 784,1262,1587,1754 and 2027 cm?3,for supersaturations of 0.2%,0.4%,0.6%,0.8%and 1%,respectively(Fig.2).The diurnal cycle for CCN distributions at different values of supersaturation are believed to follow the monsoonal pattern of ventilation coefficients(product of mixing height and wind speed),which diurnally modulates the nucleating particle concentrations over Indian sea regions(Murugavel and Chate,2011),including the southernmost tail-bay region of the BoB(Ramana and Devi,2016).Information on the composition of the aerosol population fraction is embedded in the empirical parameter k,which can be extracted from the power-law fit of CCN distributions at various supersaturation levels(SK-296 cruise)over the south to the head-bay region of the BoB.

    The power-law NCCN,S=CSkof CCN distributions at different values of supersaturation describes the CCN activation,where NCCN,Sis the concentration of CCN at a speci fied supersaturation S,C is the CCN concentration at a supersaturation of 1%,and k is the slope of the power-law fit curve.The diurnal variation of k is plotted in Fig.2b,and shows a firstpeakataround 0600LST,alowat1200LST,andanother peak at 2000 LST.Thus,the diurnal pattern of k is purely due to ventilation conditions.

    Fig.2.Diurnal patterns of(a)the CCN distributions at each supersaturation level from 0.2%to 1%(in steps of 0.2%)and(b)k,for the measurement period from 10 July to 7 August 2012.

    The variations in the CCN distribution along with the standard deviation(Fig.3)show an increase in NCCNwith the level of supersaturation from 0.2%to 1%.The variations in the slope(k)in Fig.3 seem to be synchronous with C,where k contains information about the source and mixing state of particles analogous to that of the hygroscopicity of nucleated particles.The results suggest that,during the monsoon season,there is a dominance of hygroscopic particles over the BoB.Furthermore,the average values of C and k in Fig.3areC=1659±29cm?3(atasupersaturationof1%)and k=0.57±0.03(R2=0.99)for the entire dataset(number of CCN distribution spectra≈1300).For NCCNmeasured along and offthe central Californian coast during August 2007,Hegg et al.(2009)reported the power-law fit parameters as C≈328±10 cm?3and k≈0.72±0.06(R2=0.99).For the present dataset for the SK-296 observation period between 10 July and 7 August 2012,the mean NCCNof 1628±193 cm?3(at a supersaturation of 1%)appears to be higher than the anticipatedvalueforthemarinebackground,forwhichC values are more typically of the order of a few hundred CCN cm?3and k≈0.5,as suggested by Hegg and Hobbs(1992)and Hegg et al.(2008).Many observational studies(Dinger et al.,1970;Gras,1990;Pruppacher and Klett,2010)have reported a value of k≈0.5 for the maritime environment.Hegg et al.(1991)suggested a value of k>0.5 for NCCNduring monsoon.For the marine region,offthe central Californian coast,Hudson et al.(2000)measured background C and k values of about 450 cm?3and 0.65,respectively;while in June and late July,Hudson(2007)reported a value of C≈103cm?3.Thus,our LSTCCN distribution results from the SK-296 expedition corroborate reasonably well with the C and k values reported for marine environments.

    Ramana and Devi(2016)reported NCCNat a supersaturation of 0.4%of about 1245–2225 cm?3(mean NCCN≈1801±486 cm?3),191–938 cm?3(mean NCCN≈ 418±161 cm?3)and 64–1420 cm?3(mean NCCN≈ 291±209 cm?3)for coastal(21 July 2012),clean marine(23 July to 11 August 2012)and shipping lane ranges(13–16 August 2012),respectively,in the southernmost tail-bay region of the BoB.Furthermore,for the sampling period from 21 July to 16 August 2012,they reported the NCCNas 837±285 cm?3at a supersaturation of 0.4%which is a mean of 1801,418 and 291 cm?3.Similarly,for the entire dataset of the SK-296 expedition(10 July to 7 August 2012),NCCNat a supersaturation of 0.4%variedfrom702to1289cm?3,withameanof961±151 cm?3.The mean NCCN(837±285 cm?3)at a supersaturation of 0.4%from the southernmost tail-bay region of the BoB reported by Ramana and Devi(2016)was lower,by about 15%,than the mean NCCNof the present study(961±151 cm?3at a supersaturation of 0.4%)for the south to the head-bay region of the BoB over the sampling period from 10 July to 7 August 2012 during the SK-296 cruise.

    Fig.3.Variations in CCN distribution along with standard deviations as a function of supersaturation(%)for the power-law fit on the entire dataset for the period 10 July to 7 August 2012.

    Fig.4.Probability distributions of k(a)cumulative counts and(b)counts.

    Figures 4a and b illustrate the probability distribution of k,with its cumulative counts in percent,for the period of observations from 10 July to 7 August 2012.Figure 4a shows the cumulative counts increase with k for the entire dataset(number of CCN distribution spectra=1293)obtained during the SK-296 cruise campaign.It is evident from Fig.4a that the probability counts are significant at k≈0.55±0.25.A clear inf l uence of marine-type air masses on the CCN distributions and power-law fit parameters C and k can be seen from the aforementioned analyses of the entire dataset obtained during the SK-296 cruise campaign.This is likely linked to increased natural sources of CCN in the south to the head-bay region of the BoB over the sampling period from 10 July to 7 August 2012(SK-296)due to enhanced marinederived aerosols in southwesterly air masses.The parameters C and k with a power-law fit on the entire dataset of the SK-296 cruise,and also from the probability distributions,show the best estimates for a typical marine environment in the tropics,and hence may be applicable to most cloud microphysical studies,including CCN closure studies.

    5.Summary and conclusions

    As part of the CTCZ programme,CCN distributions at supersaturations from 0.2%to 1%(in steps of 0.2%)were continuously monitored onboard the research vessel“Sagar Kanya”(SK-296 expedition)during the Indian summer monsoon of 2012.The results of the hourly mean CCN distributions at supersaturations of 0.2%to 1%for the entire dataset on the diurnal scale,and the power-law fit with empirical constants C and k,are discussed in a comparative analysis.The peaks in NCCNappear during morning and evening hours,with lower NCCNduring noon hours,at supersaturations of 0.2%,0.4%,0.6%,0.8%and 1%.For the entire dataset from the SK-296 cruise campaign(number of CCN distribution spectra=1293),the mean CCN concentrations are 1628±193 cm?3and 961±151 cm?3at supersaturations of 1%and 0.4%,respectively;while from the powerlaw fit,k=0.57±0.03(R2=0.99),and probability distributions,cumulative and probability counts show significance at k=0.55±0.25.Though the mean NCCNat a supersaturation of 1%is higher than expected for the marine background,the mean NCCNat a supersaturation of 0.4%,as well as theC and k,broadly corroborate the results of marine environments.Knowledge of the parameter k is routinely considered to be sufficient for many cloud microphysical applications,while for the SK-296 dataset,k≈0.57±0.03 represents the CCN distributions in the marine environments of Indian sea regions.The values of C and k in the present study suggest that the track positions of SK-296 may be impacted by sources other than the sea surface in the case of a few events during the campaign.The quantitative evaluation of the contributing sources to the CCN distributions for Indian sea regions is beyond the scope of this study and can be addressed separately.Also,no significant trend in the monthly(July and August)arithmetic mean NCCNwas found for the sampling period,and the conclusion is that more shipborne CCN distribution data are expected to enable a more robust analysis of possible trends.The availability of shipborne data should facilitate an increase in our understanding of the processes linking NCCN,aerosol concentrations and cloud droplet number concentrations(and cloud albedo)for the BoB region.

    Acknowledgements.The Indian Institute of Tropical Meteorology(IITM),Pune,is supported by the Ministry of Earth Sciences,Government of India,New Delhi.The authors thank Prof.Ravi S.NANJUNDIAH,Director,IITM.Special thanks go to Prof.G.S.BHAT,a CTCZ science expert,for his guidance and encouragement as well as providing us the onboard SK-296 weather data.Also,the authors thank Dr.R.HATWAR and Dr.A.ALMEIDA for their support in conducting the SK-296 cruise campaign.The authors would like to acknowledge the crew members of“Sagar Kanya”(SK-296)for their cooperation and support during the field campaign.One of the authors(PCSD)would also like to thank the authorities at Amity University Gurgaon for their support.

    Andreae,M.O.,and D.Rosenfeld,2008: Aerosol-cloudprecipitation interactions.Part 1.The nature and sources of cloud-active aerosols.Earth-Science Reviews,89,13–41,doi:10.1016/j.earscirev.2008.03.001.

    Andreae,M.O.,2009:Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions.Atmos.Chem.Phys.9,543–556,doi:10.5194/acp-9-543-2009.

    Asmi,E.,E.Freney,M.Hervo,D.Picard,C.Rose,A.Colomb,and K.Sellegri,2012:Aerosol cloud activation in summer and winter at puy-de-Do?me high aLSTitude site in France.Atmos.Chem.Phys.,12,11 589–11 607,doi:10.5194/acp-12115892012.

    Bougiatioti,A.,A.Nenes,C.Fountoukis,N.Kalivitis,S.N.Pandis,and N.Mihalopoulos,2011:Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol.Atmos.Chem.Phys,11,8791–8808,10.5194/acp-11-8791-2011.

    CTCZ-Scienti fic Steering Committee,2011:Proposal for Continental Tropical Convergence Zone(CTCZ)programme.CTCZ-Scienti fic Steering Committee,66 pp.

    Dinger,J.E.,H.B.Howell,and T.A.Wojciechowski,1970:On the source and composition of cloud nuclei in a subsident air massovertheNorthAtlantic.J.Atmos.Sci.,27,791–797,doi:10.1175/1520-0469(1970)027<0791:OTSACO>2.0.CO;2.

    Ervens,B.,and Coauthors,2010:CCN predictions using simplified assumptions of organic aerosol composition and mixing state:A synthesis from six different locations.Atmos.Chem.Phys.,10,4795–4807,doi:10.5194/acp-1047952010.

    Fitzgerald,J.W.,1973:Dependence of the supersaturation spectrum of CCN on aerosol size distribution and composition.J.Atmos.Sci.,30(4),628–634,doi:10.1175/1520-0469(1973)030<0628:DOTSSO>2.0.CO;2.

    Fitzgerald,J.W.,1991:Marine aerosols:A review.Atmospheric Environment.Part A.General Topics,25(3–4),533–545,doi:10.1016/0960-1686(91)90050-H.

    Gras,J.L.,1990:Cloud condensation nuclei over the Southern Ocean.Geophys.Res.Lett.,17,1565–1567,doi:10.1029/GL017i010p01565.

    Hegg,D.A.,and P.V.Hobbs,1992:Cloud condensation nuclei in the marine atmosphere:A Review,Proceedings of the Thirteenth International Conference on Nucleation and Atmospheric Aerosols,Hampton,VA,Deepak Publishing,181–192.

    Hegg,D.A.,D.S.Covert,andH.H.Jonsson,2008:Measurements of size-resolved hygroscopicity in the California coastal zone.Atmos.Chem.Phys.,8,7193–7203,doi:10.5194/acp-8-7193-2008.

    Hegg,D.A.,D.S.Covert,D.S.,H.H.Jonsson,H.H.,and R.Woods,R.,2009:Differentiating natural and anthropogenic cloud condensation nuclei in the California coastal zone.Tellus,61B,669–676,http://dx.doi.org/10.1111/j.1600-0889.2009.00435.x.

    Hegg,D.A.,L.F.Radke,L.F.,and P.V.Hobbs,1991:Measurements of Aitken nuclei and cloud condensation nuclei in the marine atmosphere and their relation to the DMS-cloudclimate hypothesis.J.Geophys.Res.,96,18 727–18 733,doi:10.1029/91JD01870.

    Hudson,J.G.,2007:Variability of the relationship between particle size and cloud-nucleating ability.Geophys.Res.Lett.,34,L08801,doi:10.1029/2006GL028850.

    Hudson,J.G.,T.J.Garrett,P.V.Hobbs,S.R.Strader,Y.H.Xie,and S.S.Yum,2000:Cloud condensation nuclei and ship tracks.J.Atmos.Sci.,57,2696–2706,doi:10.1175/1520-0469(2000)057<2696:CCNAST>2.0.CO;2.

    Kr¨uger,M.L.,and Coauthors,2014:Assessment of cloud supersaturation by size-resolved aerosol particle and cloud condensation nuclei(CCN)measurements.Atmospheric Measurement Techniques,7,2615–2629,doi:10.5194/amt-7-2615-2014.

    Leena,P.P.,G.Pandithurai,V.Anilkumar,P.Murugavel,S.M.Sonbawne,and K.K.Dani,2016:Seasonal variability in aerosol,CCN and their relationship observed at a high aLSTitude site in Western Ghats.Meteor.Atmos.Phys.,128,143–153,doi:10.1007/s00703-015-0406-0-.

    McFiggans,G.,and Coauthors,LST2006:The effect of physical and chemical aerosol properties on warm cloud droplet activation.Atmos.Chem.Phys.,6,2593–2649,doi:10.5194/acp-62593-2006.

    Murugavel,P.,and D.M.Chate,2011:Volatile properties of atmospheric aerosols during nucleation events at Pune,India.Journal of Earth System Science,120,1–17,doi:10.1007/s12040-011-0072-7.

    Petters,M.D.,and S.M.Kreidenweis,2007:A single parameter representation of hygroscopic growth and cloud condensation nucleus activity.Atmos.Chem.Phys.,7,1961–1971,doi:10.5194/acp-7-1961-2007.

    Pruppacher,H.R.,and J.D.Klett,2010:Microphysics of Clouds and Precipitation:Atmospheric and Oceanographic Sciences Library.Springer,954 pp.

    Ramana,M.V.,and A.Devi,2016:CCN concentrations and BC warming inf l uenced by maritime ship emitted aerosol plumes over southern Bay of Bengal.Sci.Rep.,6,30416,doi:10.1038/srep30416.

    Roberts,G.C.,and A.Nenes,2005:A continuous-f l ow streamwise thermal-gradient CCN chamber for atmospheric measurements.Aerosol Science and Technology,39,206–221,doi:10.1080/027868290913988.

    Rose,D.,S.S.Gunthe,E.Mikhailov,G.P.Frank,U.Dusek,M.O.Andreae,and U.P¨oschl,2008:Calibration and measurement uncertainties of a continuous-f l ow cloud condensation nuclei counter(DMT-CCNC):CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment.Atmos.Chem.Phys.,8,1153–1179,doi:10.5194/acp-8-1153-2008.

    Su,H.,and Coauthors,2010:Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation.Atmos.Chem.Phys.,10,7489–7503,doi:10.5194/acp-10-7489-2010.

    Varghese,M.,and Coauthors,2015:Airborne and ground based CCN spectral characteristics:Inferences from CAIPEEX-2011.Atmos.Environ.,125,324–336,doi:10.1016/j.atmosenv.2015.06.041.

    28 December 2016;revised 30 March 2017;accepted 10 April 2017)

    :Chate,D.M.,and Coauthors,2018:Cloud condensation nuclei over the Bay of Bengal during the Indian summer monsoon.Adv.Atmos.Sci.,35(2),218–223,https://doi.org/10.1007/s00376-017-6331-z.

    ?Corresponding author:D.M.CHATE

    Email:chate@tropmet.res.in

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag GmbH Germany,part of Springer Nature 2018

    久久人人爽人人爽人人片va| 国产美女午夜福利| 少妇人妻精品综合一区二区 | 国产精品久久视频播放| 给我免费播放毛片高清在线观看| 亚洲国产色片| 久久久国产成人精品二区| 欧美成人免费av一区二区三区| 午夜久久久久精精品| 国产av麻豆久久久久久久| 国产片特级美女逼逼视频| 久久精品夜色国产| 极品教师在线视频| 乱码一卡2卡4卡精品| 国产精品野战在线观看| 不卡视频在线观看欧美| 在线观看免费视频日本深夜| 久久久久久九九精品二区国产| 国产午夜精品久久久久久一区二区三区 | 亚洲精品成人久久久久久| 国产伦精品一区二区三区视频9| 国产亚洲91精品色在线| 日韩成人av中文字幕在线观看 | 国内精品一区二区在线观看| av在线亚洲专区| 变态另类成人亚洲欧美熟女| 国产爱豆传媒在线观看| 精品久久久久久久久亚洲| 亚洲18禁久久av| 欧美性感艳星| 最后的刺客免费高清国语| 欧美色视频一区免费| 久久久国产成人精品二区| 十八禁国产超污无遮挡网站| 在线播放无遮挡| 国产精品亚洲一级av第二区| 亚洲精品日韩在线中文字幕 | 国产男人的电影天堂91| 国产一区二区激情短视频| 校园人妻丝袜中文字幕| 99久国产av精品国产电影| 99热这里只有是精品在线观看| 欧美国产日韩亚洲一区| 国产伦精品一区二区三区四那| 99久久九九国产精品国产免费| 国产精品一区二区性色av| 国产一区二区三区av在线 | 黄色视频,在线免费观看| 日韩欧美精品免费久久| 99热全是精品| 日韩欧美国产在线观看| 免费人成在线观看视频色| 人人妻人人看人人澡| 又黄又爽又免费观看的视频| 身体一侧抽搐| 精华霜和精华液先用哪个| 久久精品影院6| 国产高清有码在线观看视频| 成人性生交大片免费视频hd| 成熟少妇高潮喷水视频| 可以在线观看毛片的网站| 久久久久国产精品人妻aⅴ院| 国产精品一区二区性色av| 一a级毛片在线观看| 男女边吃奶边做爰视频| av卡一久久| 精品无人区乱码1区二区| 亚洲国产精品国产精品| 99热这里只有是精品50| 淫妇啪啪啪对白视频| 国产精品永久免费网站| 精品一区二区三区av网在线观看| 又爽又黄a免费视频| 亚洲国产日韩欧美精品在线观看| 国产精品久久久久久久电影| 亚洲自拍偷在线| 国产男人的电影天堂91| 男女视频在线观看网站免费| 99热全是精品| 精品久久久噜噜| 免费无遮挡裸体视频| 久久欧美精品欧美久久欧美| 我的女老师完整版在线观看| 最近中文字幕高清免费大全6| 99在线视频只有这里精品首页| 亚洲人成网站在线播| 波多野结衣巨乳人妻| 亚洲精品一卡2卡三卡4卡5卡| 国产成人精品久久久久久| 成人三级黄色视频| 床上黄色一级片| 18禁在线无遮挡免费观看视频 | 欧美日韩在线观看h| 亚洲国产欧洲综合997久久,| 女人十人毛片免费观看3o分钟| 久99久视频精品免费| 亚洲图色成人| 欧美+日韩+精品| 国产女主播在线喷水免费视频网站 | 免费av毛片视频| 免费看美女性在线毛片视频| 简卡轻食公司| 99热这里只有精品一区| 18+在线观看网站| 日本黄色视频三级网站网址| 少妇被粗大猛烈的视频| 国产一区二区三区在线臀色熟女| 国内精品宾馆在线| 内地一区二区视频在线| 色5月婷婷丁香| 成人av一区二区三区在线看| 国产伦精品一区二区三区视频9| 一级毛片久久久久久久久女| 亚洲成人久久爱视频| 午夜久久久久精精品| 黄色一级大片看看| 色在线成人网| 色综合站精品国产| 国产91av在线免费观看| 中文字幕av在线有码专区| 成年女人看的毛片在线观看| 日本 av在线| 久久综合国产亚洲精品| 精品人妻熟女av久视频| 又黄又爽又刺激的免费视频.| 老熟妇乱子伦视频在线观看| 欧美日本亚洲视频在线播放| 精品久久久久久久久av| 一级毛片我不卡| 老司机福利观看| 日日摸夜夜添夜夜添av毛片| 老熟妇仑乱视频hdxx| 亚洲精品色激情综合| 99久久无色码亚洲精品果冻| 麻豆乱淫一区二区| 午夜久久久久精精品| 欧美不卡视频在线免费观看| 亚洲自拍偷在线| 91久久精品国产一区二区三区| 亚洲四区av| 国产又黄又爽又无遮挡在线| 三级经典国产精品| 欧美bdsm另类| 免费看美女性在线毛片视频| 中文字幕精品亚洲无线码一区| 免费观看精品视频网站| 成年女人看的毛片在线观看| 久久精品国产清高在天天线| 99久久无色码亚洲精品果冻| 如何舔出高潮| 国产精品99久久久久久久久| 日韩一本色道免费dvd| 国产蜜桃级精品一区二区三区| 精品免费久久久久久久清纯| 99热这里只有是精品在线观看| 午夜视频国产福利| 亚洲成人久久性| av免费在线看不卡| 午夜福利在线观看吧| 一卡2卡三卡四卡精品乱码亚洲| 搡老熟女国产l中国老女人| 成人毛片a级毛片在线播放| 免费不卡的大黄色大毛片视频在线观看 | 亚洲婷婷狠狠爱综合网| 中出人妻视频一区二区| 色5月婷婷丁香| 日产精品乱码卡一卡2卡三| 亚洲av免费在线观看| 91久久精品国产一区二区成人| 亚洲精品456在线播放app| 看片在线看免费视频| 寂寞人妻少妇视频99o| 国内久久婷婷六月综合欲色啪| 日韩成人伦理影院| av中文乱码字幕在线| 亚州av有码| 欧美在线一区亚洲| 精品人妻一区二区三区麻豆 | 丰满人妻一区二区三区视频av| 日韩高清综合在线| 中文资源天堂在线| 91在线观看av| 男人舔女人下体高潮全视频| 国产黄色小视频在线观看| 老司机福利观看| 中文亚洲av片在线观看爽| 日日撸夜夜添| 精品人妻熟女av久视频| 国语自产精品视频在线第100页| 97超视频在线观看视频| 成人二区视频| 国产免费一级a男人的天堂| 我要看日韩黄色一级片| 最近最新中文字幕大全电影3| ponron亚洲| 天堂动漫精品| 国产成人a∨麻豆精品| 在线看三级毛片| 亚洲无线观看免费| 日韩三级伦理在线观看| 中出人妻视频一区二区| 91久久精品电影网| 99久久无色码亚洲精品果冻| 人人妻人人看人人澡| 精品久久久久久久久亚洲| 亚洲精品国产av成人精品 | 两个人视频免费观看高清| 欧美国产日韩亚洲一区| 2021天堂中文幕一二区在线观| 久久韩国三级中文字幕| 18+在线观看网站| 午夜a级毛片| 日韩亚洲欧美综合| h日本视频在线播放| 免费高清视频大片| 九九爱精品视频在线观看| 国内精品美女久久久久久| 偷拍熟女少妇极品色| 尤物成人国产欧美一区二区三区| 人人妻人人澡欧美一区二区| 在现免费观看毛片| 欧美激情久久久久久爽电影| 久久精品综合一区二区三区| 午夜久久久久精精品| 日韩精品青青久久久久久| 69av精品久久久久久| 欧美一级a爱片免费观看看| 亚洲精品在线观看二区| 亚洲精品国产av成人精品 | 一级毛片我不卡| 成人精品一区二区免费| 高清日韩中文字幕在线| 中出人妻视频一区二区| 欧美又色又爽又黄视频| 搡老妇女老女人老熟妇| 午夜激情福利司机影院| 国产大屁股一区二区在线视频| 男女那种视频在线观看| 免费av观看视频| 波野结衣二区三区在线| 亚洲av中文av极速乱| 我的女老师完整版在线观看| 国产黄色小视频在线观看| 成人性生交大片免费视频hd| 亚洲国产精品久久男人天堂| 亚洲,欧美,日韩| av.在线天堂| 欧美bdsm另类| 亚洲av成人av| 精品久久久久久久末码| 久久草成人影院| 国产精品不卡视频一区二区| 又粗又爽又猛毛片免费看| 天堂动漫精品| 一本精品99久久精品77| 日韩中字成人| 国产精品一二三区在线看| 你懂的网址亚洲精品在线观看 | 天堂动漫精品| 又爽又黄a免费视频| 日本五十路高清| 亚洲va在线va天堂va国产| av在线亚洲专区| 亚洲av免费在线观看| 91精品国产九色| 日韩一本色道免费dvd| 亚洲高清免费不卡视频| 成人高潮视频无遮挡免费网站| 少妇的逼好多水| 免费黄网站久久成人精品| 亚洲激情五月婷婷啪啪| 国产精品嫩草影院av在线观看| 天天一区二区日本电影三级| 国产精品爽爽va在线观看网站| 十八禁国产超污无遮挡网站| 搡女人真爽免费视频火全软件 | 亚洲欧美精品自产自拍| 国产精品久久视频播放| 看免费成人av毛片| 99九九线精品视频在线观看视频| 国产精品野战在线观看| 国产精品人妻久久久影院| 成人亚洲精品av一区二区| 久久精品人妻少妇| 好男人在线观看高清免费视频| 大香蕉久久网| 日本免费a在线| 成人一区二区视频在线观看| 99热只有精品国产| 亚洲国产精品国产精品| 3wmmmm亚洲av在线观看| 免费看av在线观看网站| 日日啪夜夜撸| 一级黄片播放器| 国产午夜福利久久久久久| 日日摸夜夜添夜夜爱| 在线国产一区二区在线| 99在线人妻在线中文字幕| 亚洲图色成人| 国产精品av视频在线免费观看| 麻豆成人午夜福利视频| 天堂av国产一区二区熟女人妻| 国产高清视频在线播放一区| 色综合亚洲欧美另类图片| 深夜精品福利| 亚洲最大成人手机在线| 国内精品久久久久精免费| 日本黄大片高清| 五月玫瑰六月丁香| 久久九九热精品免费| 日本一本二区三区精品| 色哟哟哟哟哟哟| 少妇被粗大猛烈的视频| 一个人免费在线观看电影| 精品日产1卡2卡| 又黄又爽又免费观看的视频| 久久久久久久久大av| 午夜精品国产一区二区电影 | 精品一区二区免费观看| 免费黄网站久久成人精品| 国产三级在线视频| aaaaa片日本免费| 91久久精品电影网| 国产美女午夜福利| 国产高清视频在线播放一区| 可以在线观看的亚洲视频| 色哟哟哟哟哟哟| 男插女下体视频免费在线播放| 大香蕉久久网| 日本a在线网址| 久久亚洲国产成人精品v| 亚洲精品粉嫩美女一区| 99精品在免费线老司机午夜| 免费高清视频大片| 可以在线观看毛片的网站| 97超视频在线观看视频| 国产aⅴ精品一区二区三区波| avwww免费| 久久精品国产99精品国产亚洲性色| 97碰自拍视频| 99热6这里只有精品| 亚洲成人久久性| 男插女下体视频免费在线播放| 一级黄色大片毛片| 性插视频无遮挡在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲七黄色美女视频| 日韩国内少妇激情av| 日韩欧美免费精品| 国产精品亚洲美女久久久| 亚洲性夜色夜夜综合| 免费观看精品视频网站| 亚洲av免费在线观看| 国产又黄又爽又无遮挡在线| 国产伦精品一区二区三区视频9| 如何舔出高潮| 欧美日韩精品成人综合77777| 成年女人毛片免费观看观看9| 蜜臀久久99精品久久宅男| 简卡轻食公司| 国产乱人视频| 最近的中文字幕免费完整| 91久久精品电影网| 午夜激情欧美在线| 国产三级在线视频| 欧美成人精品欧美一级黄| 亚洲自拍偷在线| 久久99热6这里只有精品| 欧美日本亚洲视频在线播放| 国产69精品久久久久777片| 波多野结衣高清无吗| 国产黄色视频一区二区在线观看 | 亚洲人成网站在线播放欧美日韩| 美女cb高潮喷水在线观看| 欧美区成人在线视频| 日韩高清综合在线| 日本黄大片高清| 久久久国产成人免费| av在线蜜桃| 在现免费观看毛片| 天天躁夜夜躁狠狠久久av| 成人av在线播放网站| 永久网站在线| 国产精品嫩草影院av在线观看| 国产免费一级a男人的天堂| 国产真实乱freesex| 午夜福利高清视频| 少妇熟女欧美另类| 亚洲美女黄片视频| 国产v大片淫在线免费观看| 亚洲国产精品sss在线观看| 男人狂女人下面高潮的视频| avwww免费| 久久精品国产鲁丝片午夜精品| 亚洲美女视频黄频| 日韩欧美国产在线观看| 精华霜和精华液先用哪个| 久久午夜亚洲精品久久| 天堂av国产一区二区熟女人妻| 在线观看av片永久免费下载| 免费搜索国产男女视频| av天堂中文字幕网| 国产精华一区二区三区| 久久热精品热| 麻豆精品久久久久久蜜桃| 国产男靠女视频免费网站| 少妇人妻精品综合一区二区 | 3wmmmm亚洲av在线观看| 尤物成人国产欧美一区二区三区| 国产高清视频在线观看网站| 国产精品野战在线观看| 日韩欧美免费精品| 亚洲经典国产精华液单| 亚洲精品国产av成人精品 | 又爽又黄无遮挡网站| 久久国产乱子免费精品| 国产精品久久电影中文字幕| 97人妻精品一区二区三区麻豆| 黄色视频,在线免费观看| 免费人成在线观看视频色| 看非洲黑人一级黄片| 乱系列少妇在线播放| 大型黄色视频在线免费观看| 夜夜夜夜夜久久久久| 亚洲成人精品中文字幕电影| 欧美极品一区二区三区四区| 国产精品久久久久久精品电影| 欧美国产日韩亚洲一区| 国产欧美日韩精品亚洲av| 美女被艹到高潮喷水动态| 欧美性猛交黑人性爽| 成人永久免费在线观看视频| 欧美在线一区亚洲| 亚洲国产高清在线一区二区三| 亚洲av免费高清在线观看| 国产高清视频在线播放一区| 国产69精品久久久久777片| 欧美bdsm另类| 国产精品一区二区免费欧美| 亚洲国产欧美人成| 国产精品亚洲美女久久久| 免费人成视频x8x8入口观看| 国产极品精品免费视频能看的| 亚洲国产色片| 国产三级在线视频| 欧美国产日韩亚洲一区| 亚洲熟妇熟女久久| 国产精品不卡视频一区二区| 99久久无色码亚洲精品果冻| 色哟哟哟哟哟哟| 99热全是精品| 婷婷色综合大香蕉| 天堂影院成人在线观看| АⅤ资源中文在线天堂| 国产精品不卡视频一区二区| 97超视频在线观看视频| 国产色婷婷99| 狂野欧美激情性xxxx在线观看| 亚洲性久久影院| 免费搜索国产男女视频| 1000部很黄的大片| 性欧美人与动物交配| 成人国产麻豆网| 国产aⅴ精品一区二区三区波| 国产一区二区在线av高清观看| 亚洲中文日韩欧美视频| 国产精品女同一区二区软件| 三级男女做爰猛烈吃奶摸视频| 夜夜爽天天搞| 国产亚洲精品av在线| 精品一区二区免费观看| 午夜精品国产一区二区电影 | 日日干狠狠操夜夜爽| 国产伦一二天堂av在线观看| 久久精品影院6| 久久精品国产亚洲av天美| 久久国产乱子免费精品| 51国产日韩欧美| 熟女电影av网| 国产精品久久视频播放| 99久久九九国产精品国产免费| 18禁黄网站禁片免费观看直播| 给我免费播放毛片高清在线观看| 看十八女毛片水多多多| 嫩草影院新地址| 亚洲性久久影院| 91久久精品国产一区二区三区| 欧美最黄视频在线播放免费| 香蕉av资源在线| 欧美国产日韩亚洲一区| 国产精品av视频在线免费观看| 精品99又大又爽又粗少妇毛片| 看非洲黑人一级黄片| 国产v大片淫在线免费观看| 亚洲成人精品中文字幕电影| 国产亚洲欧美98| 国产精品福利在线免费观看| 美女 人体艺术 gogo| 又粗又爽又猛毛片免费看| 日韩 亚洲 欧美在线| 身体一侧抽搐| 给我免费播放毛片高清在线观看| 亚洲国产高清在线一区二区三| 禁无遮挡网站| 在线观看免费视频日本深夜| 女人十人毛片免费观看3o分钟| 亚洲无线观看免费| 美女xxoo啪啪120秒动态图| 可以在线观看毛片的网站| 天堂√8在线中文| 男女那种视频在线观看| 国产伦精品一区二区三区视频9| 美女高潮的动态| 此物有八面人人有两片| 一级毛片我不卡| .国产精品久久| 国产成人a∨麻豆精品| 天天一区二区日本电影三级| 少妇裸体淫交视频免费看高清| 91在线观看av| 91久久精品国产一区二区三区| 真实男女啪啪啪动态图| av免费在线看不卡| 色尼玛亚洲综合影院| 精品久久久久久久久亚洲| 一级av片app| 国产午夜精品久久久久久一区二区三区 | 国产午夜福利久久久久久| 97热精品久久久久久| 成人亚洲欧美一区二区av| 嫩草影院入口| 亚洲av五月六月丁香网| 观看美女的网站| 特级一级黄色大片| 日日干狠狠操夜夜爽| 精品福利观看| 美女内射精品一级片tv| 在线观看66精品国产| 性色avwww在线观看| 日本-黄色视频高清免费观看| 禁无遮挡网站| 97人妻精品一区二区三区麻豆| 久久久精品大字幕| 午夜亚洲福利在线播放| 1000部很黄的大片| 国产91av在线免费观看| 久久久久久久午夜电影| 国产高清不卡午夜福利| 夜夜夜夜夜久久久久| 亚州av有码| 日韩国内少妇激情av| 最近在线观看免费完整版| 国产不卡一卡二| 啦啦啦韩国在线观看视频| 91在线精品国自产拍蜜月| 国产成人精品久久久久久| 欧美3d第一页| 长腿黑丝高跟| 看免费成人av毛片| 日韩 亚洲 欧美在线| 色综合亚洲欧美另类图片| 日韩成人伦理影院| 亚洲最大成人手机在线| 少妇被粗大猛烈的视频| 成人精品一区二区免费| 午夜老司机福利剧场| 婷婷精品国产亚洲av在线| 精品人妻一区二区三区麻豆 | 晚上一个人看的免费电影| 少妇丰满av| 亚洲第一电影网av| 精品国产三级普通话版| 高清毛片免费看| 九九久久精品国产亚洲av麻豆| 一本精品99久久精品77| 亚洲av成人av| 尾随美女入室| а√天堂www在线а√下载| 在线观看66精品国产| 男人和女人高潮做爰伦理| 久久精品人妻少妇| 中出人妻视频一区二区| 日韩欧美一区二区三区在线观看| 亚洲在线观看片| 丰满乱子伦码专区| 成人永久免费在线观看视频| av卡一久久| 国产精品一区二区性色av| 国产麻豆成人av免费视频| 97人妻精品一区二区三区麻豆| 久久精品国产鲁丝片午夜精品| 精品熟女少妇av免费看| 久久精品夜色国产| 婷婷色综合大香蕉| 国产又黄又爽又无遮挡在线| 国产精品三级大全| 亚洲精品一卡2卡三卡4卡5卡| 韩国av在线不卡| 日本精品一区二区三区蜜桃| 白带黄色成豆腐渣| 国产视频内射| 国产一区亚洲一区在线观看| 少妇高潮的动态图| 日本撒尿小便嘘嘘汇集6| 亚洲av美国av| 免费看光身美女| 乱系列少妇在线播放| 免费电影在线观看免费观看| 亚洲国产精品合色在线| 亚洲人与动物交配视频| 日韩欧美三级三区| 久久久久国产网址| 最近2019中文字幕mv第一页| 99热只有精品国产| 精品福利观看|