• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cloud Condensation Nuclei over the Bay of Bengal during the Indian Summer Monsoon

    2018-01-09 05:35:38CHATEWAGHMAREJENAGOPALAKRISHNANMURUGAVELSachinGHUDERachanaKULKARNIandDEVARA
    Advances in Atmospheric Sciences 2018年2期

    D.M.CHATE,R.T.WAGHMARE,C.K.JENA,V.GOPALAKRISHNAN,P.MURUGAVEL,Sachin D.GHUDE,Rachana KULKARNI,and P.C.S.DEVARA

    1Indian Institute of Tropical Meteorology,Pune 411008,India

    2Marine,Earth and Atmospheric Science,North Carolina State University,Raleigh,NC 27695,USA

    3Amity Centre for Ocean-Atmospheric Science and Technology(ACOAST)&Amity Centre for Environmental Science and HeaLSTh(ACESH),Amity University Haryana,Gurgaon-Manesar 122 413,India

    Cloud Condensation Nuclei over the Bay of Bengal during the Indian Summer Monsoon

    D.M.CHATE?1,R.T.WAGHMARE1,C.K.JENA2,V.GOPALAKRISHNAN1,P.MURUGAVEL1,Sachin D.GHUDE1,Rachana KULKARNI1,and P.C.S.DEVARA3

    1Indian Institute of Tropical Meteorology,Pune 411008,India

    2Marine,Earth and Atmospheric Science,North Carolina State University,Raleigh,NC 27695,USA

    3Amity Centre for Ocean-Atmospheric Science and Technology(ACOAST)&Amity Centre for Environmental Science and HeaLSTh(ACESH),Amity University Haryana,Gurgaon-Manesar 122 413,India

    The first measurements of cloud condensation nuclei(CCN)at five supersaturations were carried out onboard the research vessel“Sagar Kanya”(cruise SK-296)from the south to the head-bay of the Bay of Bengal as part of the Continental Tropical Convergence Zone(CTCZ)Project during the Indian summer monsoon of 2012.In this paper,we assess the diurnal variation in CCN distributions at supersaturations from 0.2%to 1%(in steps of 0.2%)and the power-law fit at supersaturation of 1%.The diurnal pattern shows peaks in CCN concentration(NCCN)at supersaturations from 0.2%to 1%between 0600 and 0700 LST(local standard time,UTC+0530),with relatively low concentrations between 1200 and 1400 LST,followed by a peak at around 1800 LST.The power-law fit for the CCN distribution at different supersaturation levels relates the empirical exponent(k)of supersaturation(%)and the NCCNat a supersaturation of 1%.The NCCNat a supersaturation of 0.4%is observed to vary from 702 cm?3to 1289 cm?3,with a mean of 961±161 cm?3(95%confidence interval),representing the CCN activity of marine air masses.Whereas,the mean NCCNof 1628±193 cm?3at a supersaturation of 1%is higher than anticipated for the marine background.When the number of CCN spectra is 1293,the value of k is 0.57±0.03(99%confidence interval)and its probability distribution shows cumulative counts significant at k≈0.55±0.25.The results are found to be better at representing the features of the marine environment(103cm?3and k≈0.5)and useful for validating CCN closure studies for Indian sea regions.

    CTCZ,Bay of Bengal,monsoon,CCN,supersaturation,power-law relationship

    1.Introduction

    Cloud condensation nuclei(CCN)are fractions of atmospheric aerosols that grow to the size of cloud droplets at a specified supersaturation level in marine,continental and in-cloud environments.Low and high CCN concentrations(NCCN)are generally observed in the marine background and polluted regions,respectively(Petters and Kreidenweis,2007;Andreae,2009;Bougiatioti et al.,2011;Leena et al.,2016).Field observation campaigns(e.g.Andreae and Rosenfeld,2008)have improved our understanding of CCN activity(Ervens et al.,2010).CCN formation is an important phenomenon in cloud physics(Fitzgerald,1973,1991)and the activation of hygroscopic aerosols to the size of CCN largely depends on the size,source,chemical composition and mixing state of particles that nucleate as CCN and grow into droplets(Su et al.,2010;Asmi et al.,2012).The aerosol hygroscopicity in CCN formation depends on the air mass that prevails over the regions of observation(Pruppacher and Klett,2010).Though the chemical composition of nuclei that activate into CCN distributions is difficult to measure in real time(Murugavel and Chate,2011;Kr¨uger et al.,2014),a power-law fit for CCN distributions,as a function of supersaturation with the exponent(k)of supersaturation and C(the NCCNin cm?3at a supersaturation of 1%),represents the hygroscopicity of particles that nucleate to CCN size(Mc-Figgans et al.,2006;Hegg et al.,2009).For inland stations in India,the CCN distributions along with power-law fits are reported as a function of specified supersaturation over short time scales(order of seconds)using commercially available CCN-100 counters(Leena et al.,2016;Varghese et al.,2015).Similar measurements of CCN distributions at various supersaturation values over Indian sea regions during the south-west summer monsoon can result in a better power-law formulation with C and k.Atmospheric measurements of CCN distributions at a wide range of supersaturation levels from the south to the head-bay region of the Bay of Bengal(BoB)have largely been neglected(CTCZ-Scientific Steering Committee,2011),except shipborne observations reported by Ramana and Devi(2016)for the southernmost tail-bay region of the BoB.

    The present work focuses on an analysis of the in-situ measurements of CCN distributions at a wide range of supersaturation over the barely explored region of the BoB from the south to the head-bay region using CCN-100 counters deployed onboard the research vessel“Sagar Kanya”(cruise SK-296)during the Indian summer monsoon of 2012.During this season,the prevailing air mass maintained a symmetrical supply of moisture over the BoB.Therefore,the measured CCN distributions at a wide range of supersaturation in the study region motivated us to quantify the power-law parameters for southwesterly clean air masses,and to compare them with other marine environments.Also,this work aims toshowcasethefirstobservationsofCCNdistributionsatvarious levels of supersaturation carried out in the marine sector spread over an area from the south to the head-bay region of the BoB during the monsoon season,and to investigate the power-law fit for the empirical parameters C and k for the monsoonal air mass.Moreover,the results from the CCN distribution measurements at a wide range of supersaturation levels are expected to improve our understanding of the CCN activity for monsoonal clouds over Indian sea regions.

    2.Instrumentation

    AtmosphericparticlesthattransformintoCCNweremeasured with a CCN counter(model:CCN-100).This instrument is a continuous fl ow thermal gradient CCN counter proposed and designed by Roberts and Nenes(2005)and manufactured by Droplet Measurement Technologies.The working principle of this CCN counter is to expose the aerosol to a fixed supersaturation at a certain time and to measure the number of activated particles with an inbuilt optical particle counter.Aerosols continuously fl ow through the center part of a cylinder with a wetted wall.Between the aerosol fl ow and the wall there is a particle-free sheath fl ow.By controlling the temperature of the wall as well as keeping it wet(ensuring that the relative humidity is 100%just outside the cylinder wall),the movement of heat and water vapor towards the middle of the cylinder and the supersaturation value can be maintained.The supersaturation values are altered in a cycle for measurement of the activated NCCN.The working principle(thermophoresis)of the instrument depends on the water molecules that diffuse towards the center faster than the heat added across the wall(water molecules diffuse mainly via heavier nitrogen and oxygen molecules,hence giving saturation ratios above 100%).Details on the measurement uncertainties and operational error are discussed elsewhere(Rose et al.,2008;Kru¨ger et al.,2014).Full details on the operation,maintenance and calibration procedure of the CCN-100 counter can be found at http://www.dropletmeasurement.com.Also,Ramana and Devi(2016)described the deployment of CCN-100 onboard the research vessel“Sagar Nidhi”during a cruise over the BoB.

    3.Study region

    Figures 1a and b show the ORV Sagarkanya-296 track positions along with wind-rose diagrams,based on observed winds over the BoB during the cruise period from 10 July to 8 August 2012.As seen in Fig.1a,since the departure of SK-296 from Chennai port on 10 July 2012,it sailed till 13 July 2012 almost parallel to the entire coastline of the Indian peninsula and reached the head-bay region of the BoB on 19 July 2012.The research vessel“Sagar Kanya”remained stationary in the head-bay region from 19 July to 2 August 2012(Fig.1a)and thereafter started its return expedition on 2 August 2012 towards the south of the bay,parallel but relatively far away from the Indian coastline,and arrived at Chennai port on 8 August 2012.The Indian summer monsoon season generally extends from June to September when the ITCZ shifts its position over India,maintaining monsoonal cloud cover and moisture supply over the entire country.The dominant circulation pattern is southwesterly clean air masses from June to September,with strong near-surface winds over the Ocean.CCN distributions were continuously monitored at a wide range of supersaturation levels over a period that included the expedition of the SK-296 cruise from the south to the head-bay region of the BoB(10 July to 8 August 2012).A very high total NCCN(~ 7500 cm?3)was recorded on 17 July 2012 when SK-296 was at Paradeep port in the BoB,and also on 5 August 2012(due to rain).The prevailing southwesterly air mass maintains the symmetric moisture supply over the BoB,as evident from the wind-rose diagram(Fig.1b).Several rain showers were encountered during the campaign period,while typical monsoonal clouds passed over the SK-296 track positions across the BoB.The prevailing weather conditions in the marine environment of the BoB during July to August 2012 are described in Ramana and Devi(2016).Over the south to the head-bay region of the BoB,the sampling period(10 July to 7 August 2012)of the SK-296 cruise was long enough to represent the monsoonal pattern of CCN distributions at various supersaturation levels.

    Fig.1.(a)SK-296 track positions.(b)Wind-rose diagram(black shadings mark the southwest and south-southwest winds).(c)Frequency distribution of winds.

    The CCN distributions at supersaturations of 0.2%,0.4%,0.6%,0.8%and 1%(covering typical range of supersaturation of the marine to the in-cloud environment)were monitored over the region from the south to the head-bay region of the BoB,round the clock,during 10 July to 7 August 2012.The activated NCCNis given with a temporal resolution of one second and,since it takes a few minutes for the system to come to equilibrium state with the supersaturation,a measurement cycle of 30 minutes is considered for the aforementioned levels of supersaturation(Kr¨uger et al.,2014).The data obtained for CCN distributions as a function of supersaturation have been averaged on an hourly basis for the entire period of the SK-296 cruise campaign to showcase the results on the diurnal scale for the Indian summer monsoon of 2012.Figure 2 shows the diurnal pattern of the CCN distribution for the measurement period from 10 July to 7 August 2012 at each level of supersaturation from 0.2%to 1%(in steps of 0.2%).The diurnal cycle includes the peaks in CCN distributions between 0600 and 0700 LST(local standard time,UTC+0530)of about 634,1122,1425,1619 and 1857 cm?3,followed by lower concentrations of about 543,736,874,1100 and 1428 cm?3between 1200 and 1400 LST and subsequent peaks at 1800 LST of 784,1262,1587,1754 and 2027 cm?3,for supersaturations of 0.2%,0.4%,0.6%,0.8%and 1%,respectively(Fig.2).The diurnal cycle for CCN distributions at different values of supersaturation are believed to follow the monsoonal pattern of ventilation coefficients(product of mixing height and wind speed),which diurnally modulates the nucleating particle concentrations over Indian sea regions(Murugavel and Chate,2011),including the southernmost tail-bay region of the BoB(Ramana and Devi,2016).Information on the composition of the aerosol population fraction is embedded in the empirical parameter k,which can be extracted from the power-law fit of CCN distributions at various supersaturation levels(SK-296 cruise)over the south to the head-bay region of the BoB.

    The power-law NCCN,S=CSkof CCN distributions at different values of supersaturation describes the CCN activation,where NCCN,Sis the concentration of CCN at a speci fied supersaturation S,C is the CCN concentration at a supersaturation of 1%,and k is the slope of the power-law fit curve.The diurnal variation of k is plotted in Fig.2b,and shows a firstpeakataround 0600LST,alowat1200LST,andanother peak at 2000 LST.Thus,the diurnal pattern of k is purely due to ventilation conditions.

    Fig.2.Diurnal patterns of(a)the CCN distributions at each supersaturation level from 0.2%to 1%(in steps of 0.2%)and(b)k,for the measurement period from 10 July to 7 August 2012.

    The variations in the CCN distribution along with the standard deviation(Fig.3)show an increase in NCCNwith the level of supersaturation from 0.2%to 1%.The variations in the slope(k)in Fig.3 seem to be synchronous with C,where k contains information about the source and mixing state of particles analogous to that of the hygroscopicity of nucleated particles.The results suggest that,during the monsoon season,there is a dominance of hygroscopic particles over the BoB.Furthermore,the average values of C and k in Fig.3areC=1659±29cm?3(atasupersaturationof1%)and k=0.57±0.03(R2=0.99)for the entire dataset(number of CCN distribution spectra≈1300).For NCCNmeasured along and offthe central Californian coast during August 2007,Hegg et al.(2009)reported the power-law fit parameters as C≈328±10 cm?3and k≈0.72±0.06(R2=0.99).For the present dataset for the SK-296 observation period between 10 July and 7 August 2012,the mean NCCNof 1628±193 cm?3(at a supersaturation of 1%)appears to be higher than the anticipatedvalueforthemarinebackground,forwhichC values are more typically of the order of a few hundred CCN cm?3and k≈0.5,as suggested by Hegg and Hobbs(1992)and Hegg et al.(2008).Many observational studies(Dinger et al.,1970;Gras,1990;Pruppacher and Klett,2010)have reported a value of k≈0.5 for the maritime environment.Hegg et al.(1991)suggested a value of k>0.5 for NCCNduring monsoon.For the marine region,offthe central Californian coast,Hudson et al.(2000)measured background C and k values of about 450 cm?3and 0.65,respectively;while in June and late July,Hudson(2007)reported a value of C≈103cm?3.Thus,our LSTCCN distribution results from the SK-296 expedition corroborate reasonably well with the C and k values reported for marine environments.

    Ramana and Devi(2016)reported NCCNat a supersaturation of 0.4%of about 1245–2225 cm?3(mean NCCN≈1801±486 cm?3),191–938 cm?3(mean NCCN≈ 418±161 cm?3)and 64–1420 cm?3(mean NCCN≈ 291±209 cm?3)for coastal(21 July 2012),clean marine(23 July to 11 August 2012)and shipping lane ranges(13–16 August 2012),respectively,in the southernmost tail-bay region of the BoB.Furthermore,for the sampling period from 21 July to 16 August 2012,they reported the NCCNas 837±285 cm?3at a supersaturation of 0.4%which is a mean of 1801,418 and 291 cm?3.Similarly,for the entire dataset of the SK-296 expedition(10 July to 7 August 2012),NCCNat a supersaturation of 0.4%variedfrom702to1289cm?3,withameanof961±151 cm?3.The mean NCCN(837±285 cm?3)at a supersaturation of 0.4%from the southernmost tail-bay region of the BoB reported by Ramana and Devi(2016)was lower,by about 15%,than the mean NCCNof the present study(961±151 cm?3at a supersaturation of 0.4%)for the south to the head-bay region of the BoB over the sampling period from 10 July to 7 August 2012 during the SK-296 cruise.

    Fig.3.Variations in CCN distribution along with standard deviations as a function of supersaturation(%)for the power-law fit on the entire dataset for the period 10 July to 7 August 2012.

    Fig.4.Probability distributions of k(a)cumulative counts and(b)counts.

    Figures 4a and b illustrate the probability distribution of k,with its cumulative counts in percent,for the period of observations from 10 July to 7 August 2012.Figure 4a shows the cumulative counts increase with k for the entire dataset(number of CCN distribution spectra=1293)obtained during the SK-296 cruise campaign.It is evident from Fig.4a that the probability counts are significant at k≈0.55±0.25.A clear inf l uence of marine-type air masses on the CCN distributions and power-law fit parameters C and k can be seen from the aforementioned analyses of the entire dataset obtained during the SK-296 cruise campaign.This is likely linked to increased natural sources of CCN in the south to the head-bay region of the BoB over the sampling period from 10 July to 7 August 2012(SK-296)due to enhanced marinederived aerosols in southwesterly air masses.The parameters C and k with a power-law fit on the entire dataset of the SK-296 cruise,and also from the probability distributions,show the best estimates for a typical marine environment in the tropics,and hence may be applicable to most cloud microphysical studies,including CCN closure studies.

    5.Summary and conclusions

    As part of the CTCZ programme,CCN distributions at supersaturations from 0.2%to 1%(in steps of 0.2%)were continuously monitored onboard the research vessel“Sagar Kanya”(SK-296 expedition)during the Indian summer monsoon of 2012.The results of the hourly mean CCN distributions at supersaturations of 0.2%to 1%for the entire dataset on the diurnal scale,and the power-law fit with empirical constants C and k,are discussed in a comparative analysis.The peaks in NCCNappear during morning and evening hours,with lower NCCNduring noon hours,at supersaturations of 0.2%,0.4%,0.6%,0.8%and 1%.For the entire dataset from the SK-296 cruise campaign(number of CCN distribution spectra=1293),the mean CCN concentrations are 1628±193 cm?3and 961±151 cm?3at supersaturations of 1%and 0.4%,respectively;while from the powerlaw fit,k=0.57±0.03(R2=0.99),and probability distributions,cumulative and probability counts show significance at k=0.55±0.25.Though the mean NCCNat a supersaturation of 1%is higher than expected for the marine background,the mean NCCNat a supersaturation of 0.4%,as well as theC and k,broadly corroborate the results of marine environments.Knowledge of the parameter k is routinely considered to be sufficient for many cloud microphysical applications,while for the SK-296 dataset,k≈0.57±0.03 represents the CCN distributions in the marine environments of Indian sea regions.The values of C and k in the present study suggest that the track positions of SK-296 may be impacted by sources other than the sea surface in the case of a few events during the campaign.The quantitative evaluation of the contributing sources to the CCN distributions for Indian sea regions is beyond the scope of this study and can be addressed separately.Also,no significant trend in the monthly(July and August)arithmetic mean NCCNwas found for the sampling period,and the conclusion is that more shipborne CCN distribution data are expected to enable a more robust analysis of possible trends.The availability of shipborne data should facilitate an increase in our understanding of the processes linking NCCN,aerosol concentrations and cloud droplet number concentrations(and cloud albedo)for the BoB region.

    Acknowledgements.The Indian Institute of Tropical Meteorology(IITM),Pune,is supported by the Ministry of Earth Sciences,Government of India,New Delhi.The authors thank Prof.Ravi S.NANJUNDIAH,Director,IITM.Special thanks go to Prof.G.S.BHAT,a CTCZ science expert,for his guidance and encouragement as well as providing us the onboard SK-296 weather data.Also,the authors thank Dr.R.HATWAR and Dr.A.ALMEIDA for their support in conducting the SK-296 cruise campaign.The authors would like to acknowledge the crew members of“Sagar Kanya”(SK-296)for their cooperation and support during the field campaign.One of the authors(PCSD)would also like to thank the authorities at Amity University Gurgaon for their support.

    Andreae,M.O.,and D.Rosenfeld,2008: Aerosol-cloudprecipitation interactions.Part 1.The nature and sources of cloud-active aerosols.Earth-Science Reviews,89,13–41,doi:10.1016/j.earscirev.2008.03.001.

    Andreae,M.O.,2009:Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions.Atmos.Chem.Phys.9,543–556,doi:10.5194/acp-9-543-2009.

    Asmi,E.,E.Freney,M.Hervo,D.Picard,C.Rose,A.Colomb,and K.Sellegri,2012:Aerosol cloud activation in summer and winter at puy-de-Do?me high aLSTitude site in France.Atmos.Chem.Phys.,12,11 589–11 607,doi:10.5194/acp-12115892012.

    Bougiatioti,A.,A.Nenes,C.Fountoukis,N.Kalivitis,S.N.Pandis,and N.Mihalopoulos,2011:Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol.Atmos.Chem.Phys,11,8791–8808,10.5194/acp-11-8791-2011.

    CTCZ-Scienti fic Steering Committee,2011:Proposal for Continental Tropical Convergence Zone(CTCZ)programme.CTCZ-Scienti fic Steering Committee,66 pp.

    Dinger,J.E.,H.B.Howell,and T.A.Wojciechowski,1970:On the source and composition of cloud nuclei in a subsident air massovertheNorthAtlantic.J.Atmos.Sci.,27,791–797,doi:10.1175/1520-0469(1970)027<0791:OTSACO>2.0.CO;2.

    Ervens,B.,and Coauthors,2010:CCN predictions using simplified assumptions of organic aerosol composition and mixing state:A synthesis from six different locations.Atmos.Chem.Phys.,10,4795–4807,doi:10.5194/acp-1047952010.

    Fitzgerald,J.W.,1973:Dependence of the supersaturation spectrum of CCN on aerosol size distribution and composition.J.Atmos.Sci.,30(4),628–634,doi:10.1175/1520-0469(1973)030<0628:DOTSSO>2.0.CO;2.

    Fitzgerald,J.W.,1991:Marine aerosols:A review.Atmospheric Environment.Part A.General Topics,25(3–4),533–545,doi:10.1016/0960-1686(91)90050-H.

    Gras,J.L.,1990:Cloud condensation nuclei over the Southern Ocean.Geophys.Res.Lett.,17,1565–1567,doi:10.1029/GL017i010p01565.

    Hegg,D.A.,and P.V.Hobbs,1992:Cloud condensation nuclei in the marine atmosphere:A Review,Proceedings of the Thirteenth International Conference on Nucleation and Atmospheric Aerosols,Hampton,VA,Deepak Publishing,181–192.

    Hegg,D.A.,D.S.Covert,andH.H.Jonsson,2008:Measurements of size-resolved hygroscopicity in the California coastal zone.Atmos.Chem.Phys.,8,7193–7203,doi:10.5194/acp-8-7193-2008.

    Hegg,D.A.,D.S.Covert,D.S.,H.H.Jonsson,H.H.,and R.Woods,R.,2009:Differentiating natural and anthropogenic cloud condensation nuclei in the California coastal zone.Tellus,61B,669–676,http://dx.doi.org/10.1111/j.1600-0889.2009.00435.x.

    Hegg,D.A.,L.F.Radke,L.F.,and P.V.Hobbs,1991:Measurements of Aitken nuclei and cloud condensation nuclei in the marine atmosphere and their relation to the DMS-cloudclimate hypothesis.J.Geophys.Res.,96,18 727–18 733,doi:10.1029/91JD01870.

    Hudson,J.G.,2007:Variability of the relationship between particle size and cloud-nucleating ability.Geophys.Res.Lett.,34,L08801,doi:10.1029/2006GL028850.

    Hudson,J.G.,T.J.Garrett,P.V.Hobbs,S.R.Strader,Y.H.Xie,and S.S.Yum,2000:Cloud condensation nuclei and ship tracks.J.Atmos.Sci.,57,2696–2706,doi:10.1175/1520-0469(2000)057<2696:CCNAST>2.0.CO;2.

    Kr¨uger,M.L.,and Coauthors,2014:Assessment of cloud supersaturation by size-resolved aerosol particle and cloud condensation nuclei(CCN)measurements.Atmospheric Measurement Techniques,7,2615–2629,doi:10.5194/amt-7-2615-2014.

    Leena,P.P.,G.Pandithurai,V.Anilkumar,P.Murugavel,S.M.Sonbawne,and K.K.Dani,2016:Seasonal variability in aerosol,CCN and their relationship observed at a high aLSTitude site in Western Ghats.Meteor.Atmos.Phys.,128,143–153,doi:10.1007/s00703-015-0406-0-.

    McFiggans,G.,and Coauthors,LST2006:The effect of physical and chemical aerosol properties on warm cloud droplet activation.Atmos.Chem.Phys.,6,2593–2649,doi:10.5194/acp-62593-2006.

    Murugavel,P.,and D.M.Chate,2011:Volatile properties of atmospheric aerosols during nucleation events at Pune,India.Journal of Earth System Science,120,1–17,doi:10.1007/s12040-011-0072-7.

    Petters,M.D.,and S.M.Kreidenweis,2007:A single parameter representation of hygroscopic growth and cloud condensation nucleus activity.Atmos.Chem.Phys.,7,1961–1971,doi:10.5194/acp-7-1961-2007.

    Pruppacher,H.R.,and J.D.Klett,2010:Microphysics of Clouds and Precipitation:Atmospheric and Oceanographic Sciences Library.Springer,954 pp.

    Ramana,M.V.,and A.Devi,2016:CCN concentrations and BC warming inf l uenced by maritime ship emitted aerosol plumes over southern Bay of Bengal.Sci.Rep.,6,30416,doi:10.1038/srep30416.

    Roberts,G.C.,and A.Nenes,2005:A continuous-f l ow streamwise thermal-gradient CCN chamber for atmospheric measurements.Aerosol Science and Technology,39,206–221,doi:10.1080/027868290913988.

    Rose,D.,S.S.Gunthe,E.Mikhailov,G.P.Frank,U.Dusek,M.O.Andreae,and U.P¨oschl,2008:Calibration and measurement uncertainties of a continuous-f l ow cloud condensation nuclei counter(DMT-CCNC):CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment.Atmos.Chem.Phys.,8,1153–1179,doi:10.5194/acp-8-1153-2008.

    Su,H.,and Coauthors,2010:Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation.Atmos.Chem.Phys.,10,7489–7503,doi:10.5194/acp-10-7489-2010.

    Varghese,M.,and Coauthors,2015:Airborne and ground based CCN spectral characteristics:Inferences from CAIPEEX-2011.Atmos.Environ.,125,324–336,doi:10.1016/j.atmosenv.2015.06.041.

    28 December 2016;revised 30 March 2017;accepted 10 April 2017)

    :Chate,D.M.,and Coauthors,2018:Cloud condensation nuclei over the Bay of Bengal during the Indian summer monsoon.Adv.Atmos.Sci.,35(2),218–223,https://doi.org/10.1007/s00376-017-6331-z.

    ?Corresponding author:D.M.CHATE

    Email:chate@tropmet.res.in

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag GmbH Germany,part of Springer Nature 2018

    午夜福利影视在线免费观看| 久久免费观看电影| 免费人成在线观看视频色| 国国产精品蜜臀av免费| 免费大片黄手机在线观看| 少妇 在线观看| 多毛熟女@视频| 国产精品一国产av| 久久久精品免费免费高清| 99九九在线精品视频| av免费在线看不卡| 永久网站在线| 80岁老熟妇乱子伦牲交| 国产视频内射| 毛片一级片免费看久久久久| 国产一区亚洲一区在线观看| 夫妻性生交免费视频一级片| 国产高清三级在线| 日韩 亚洲 欧美在线| 精品久久国产蜜桃| 日韩人妻高清精品专区| 精品酒店卫生间| 亚洲精品久久成人aⅴ小说 | 国产综合精华液| 26uuu在线亚洲综合色| 国产成人freesex在线| 欧美成人午夜免费资源| 人妻人人澡人人爽人人| 亚洲美女视频黄频| 国产熟女欧美一区二区| 成人免费观看视频高清| 日韩 亚洲 欧美在线| 亚洲色图综合在线观看| 亚洲欧美色中文字幕在线| 日本欧美视频一区| 国产伦精品一区二区三区视频9| 男女啪啪激烈高潮av片| 亚洲国产精品国产精品| 在线 av 中文字幕| 日日摸夜夜添夜夜爱| 最近最新中文字幕免费大全7| 一级,二级,三级黄色视频| 国产精品麻豆人妻色哟哟久久| 亚洲综合精品二区| 精品久久国产蜜桃| 日本色播在线视频| 人体艺术视频欧美日本| 99久久精品一区二区三区| 免费看av在线观看网站| 黄色毛片三级朝国网站| 日韩中文字幕视频在线看片| 街头女战士在线观看网站| 精品熟女少妇av免费看| 久久鲁丝午夜福利片| 欧美97在线视频| 丰满饥渴人妻一区二区三| 最后的刺客免费高清国语| 在线观看国产h片| 国产欧美日韩综合在线一区二区| 国产白丝娇喘喷水9色精品| 国产色爽女视频免费观看| 国语对白做爰xxxⅹ性视频网站| 亚洲欧洲国产日韩| 三级国产精品欧美在线观看| 免费看光身美女| 黄色欧美视频在线观看| 国产无遮挡羞羞视频在线观看| 天堂8中文在线网| 成人亚洲精品一区在线观看| 国产亚洲精品第一综合不卡 | 国产 一区精品| 五月开心婷婷网| 久久久a久久爽久久v久久| 成人漫画全彩无遮挡| 一区二区av电影网| 亚洲第一区二区三区不卡| 久久av网站| 亚洲图色成人| 狂野欧美激情性bbbbbb| 亚洲精品av麻豆狂野| 最近最新中文字幕免费大全7| 国产精品国产三级专区第一集| 国产精品一区二区在线观看99| 国产一区有黄有色的免费视频| 亚洲精品456在线播放app| 国产免费一区二区三区四区乱码| 国产一区亚洲一区在线观看| 婷婷色综合大香蕉| 天天躁夜夜躁狠狠久久av| 女性生殖器流出的白浆| 两个人免费观看高清视频| 国产日韩欧美亚洲二区| 在线亚洲精品国产二区图片欧美 | 精品人妻熟女毛片av久久网站| 涩涩av久久男人的天堂| 妹子高潮喷水视频| 欧美精品亚洲一区二区| 亚洲精品日本国产第一区| 99九九在线精品视频| 一二三四中文在线观看免费高清| 日韩免费高清中文字幕av| 一级a做视频免费观看| 成人黄色视频免费在线看| 大香蕉久久成人网| 精品酒店卫生间| 热99久久久久精品小说推荐| 91成人精品电影| 亚洲精品成人av观看孕妇| 青青草视频在线视频观看| 黑人高潮一二区| 亚洲怡红院男人天堂| 久久久午夜欧美精品| 成人亚洲欧美一区二区av| 考比视频在线观看| 18禁观看日本| 婷婷成人精品国产| 精品一区二区三区视频在线| av卡一久久| 91久久精品电影网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 三级国产精品片| 女性被躁到高潮视频| 欧美日韩国产mv在线观看视频| 免费观看性生交大片5| 一级片'在线观看视频| 99久久中文字幕三级久久日本| 又黄又爽又刺激的免费视频.| 亚洲精品av麻豆狂野| 又粗又硬又长又爽又黄的视频| 又大又黄又爽视频免费| 男女边摸边吃奶| 成人毛片a级毛片在线播放| 麻豆成人av视频| 国产精品国产av在线观看| 高清在线视频一区二区三区| 妹子高潮喷水视频| av不卡在线播放| 91久久精品国产一区二区成人| 一边亲一边摸免费视频| 极品人妻少妇av视频| 91aial.com中文字幕在线观看| 蜜臀久久99精品久久宅男| 亚洲精品aⅴ在线观看| 黑丝袜美女国产一区| 国产精品一区二区在线观看99| 热99久久久久精品小说推荐| 免费人成在线观看视频色| 亚洲av成人精品一区久久| 老女人水多毛片| 日本欧美视频一区| 极品少妇高潮喷水抽搐| 自线自在国产av| 精品亚洲乱码少妇综合久久| 人妻系列 视频| 日韩免费高清中文字幕av| 久久午夜福利片| 久久久国产一区二区| 免费高清在线观看视频在线观看| 久久女婷五月综合色啪小说| 80岁老熟妇乱子伦牲交| 亚洲欧美成人精品一区二区| 国产又色又爽无遮挡免| 国产午夜精品一二区理论片| 少妇被粗大的猛进出69影院 | 91在线精品国自产拍蜜月| 黄色怎么调成土黄色| 国产高清有码在线观看视频| 99久久综合免费| 免费日韩欧美在线观看| 国产精品熟女久久久久浪| 狂野欧美白嫩少妇大欣赏| 少妇人妻精品综合一区二区| 久久精品夜色国产| a级毛色黄片| 18禁动态无遮挡网站| 乱人伦中国视频| 丁香六月天网| 国产精品麻豆人妻色哟哟久久| 日韩精品免费视频一区二区三区 | 久久韩国三级中文字幕| 日韩欧美精品免费久久| 老司机影院成人| 国产精品国产三级国产专区5o| 国产一级毛片在线| 狠狠精品人妻久久久久久综合| av线在线观看网站| 久久精品国产鲁丝片午夜精品| 伊人久久国产一区二区| 91精品三级在线观看| 少妇高潮的动态图| 精品人妻熟女毛片av久久网站| 久久久久久久久久人人人人人人| 成人毛片60女人毛片免费| 免费高清在线观看视频在线观看| 少妇丰满av| xxx大片免费视频| 久久久精品94久久精品| 久久综合国产亚洲精品| 日韩成人av中文字幕在线观看| 少妇猛男粗大的猛烈进出视频| 人人妻人人添人人爽欧美一区卜| 欧美日韩视频高清一区二区三区二| 一级毛片电影观看| 亚洲情色 制服丝袜| 国产片内射在线| 国产成人av激情在线播放 | 嫩草影院入口| 性色avwww在线观看| 久久精品夜色国产| 久久久国产精品麻豆| 亚洲性久久影院| 成人免费观看视频高清| 国产高清不卡午夜福利| 亚洲av欧美aⅴ国产| 亚洲熟女精品中文字幕| 成人黄色视频免费在线看| 欧美日韩精品成人综合77777| 少妇人妻 视频| 亚洲av男天堂| 午夜久久久在线观看| 午夜久久久在线观看| 青春草亚洲视频在线观看| 日日摸夜夜添夜夜爱| 人妻人人澡人人爽人人| 精品一区二区三区视频在线| 久久久久精品性色| 少妇 在线观看| 国产视频内射| 中文字幕亚洲精品专区| 亚洲图色成人| 亚洲第一av免费看| 亚洲精品美女久久av网站| 肉色欧美久久久久久久蜜桃| 亚洲激情五月婷婷啪啪| 69精品国产乱码久久久| 日韩制服骚丝袜av| 久久人人爽人人爽人人片va| 免费观看性生交大片5| 亚洲欧美日韩卡通动漫| 日韩大片免费观看网站| 午夜免费男女啪啪视频观看| 精品久久久久久久久av| 美女视频免费永久观看网站| 午夜激情久久久久久久| 夫妻午夜视频| 国产成人av激情在线播放 | 亚洲精品日本国产第一区| 日韩一区二区三区影片| 18禁观看日本| 韩国av在线不卡| 嘟嘟电影网在线观看| 欧美精品高潮呻吟av久久| 亚洲在久久综合| 大话2 男鬼变身卡| av播播在线观看一区| 一级毛片 在线播放| 激情五月婷婷亚洲| 精品少妇内射三级| 国产乱来视频区| 久久久a久久爽久久v久久| 一个人看视频在线观看www免费| 国产熟女欧美一区二区| 国产黄频视频在线观看| 九九久久精品国产亚洲av麻豆| 狂野欧美激情性xxxx在线观看| av电影中文网址| 特大巨黑吊av在线直播| 男女无遮挡免费网站观看| 国产成人freesex在线| 成人毛片a级毛片在线播放| 亚洲欧美成人综合另类久久久| 日韩强制内射视频| 亚洲精品国产av成人精品| 晚上一个人看的免费电影| 大又大粗又爽又黄少妇毛片口| 国产精品.久久久| 在线观看免费日韩欧美大片 | 久久久精品区二区三区| 日日啪夜夜爽| 久久久久久久久久成人| 欧美精品一区二区大全| 精品久久久久久久久亚洲| 久久久久久伊人网av| av国产精品久久久久影院| av女优亚洲男人天堂| av线在线观看网站| 中国美白少妇内射xxxbb| 成人亚洲精品一区在线观看| 成人毛片60女人毛片免费| 亚洲怡红院男人天堂| 成人漫画全彩无遮挡| 在线 av 中文字幕| 精品一品国产午夜福利视频| 91午夜精品亚洲一区二区三区| 一区二区av电影网| 男女国产视频网站| 夜夜骑夜夜射夜夜干| 午夜精品国产一区二区电影| 久久毛片免费看一区二区三区| 大陆偷拍与自拍| 一区在线观看完整版| 午夜久久久在线观看| 亚洲欧美日韩卡通动漫| 亚洲五月色婷婷综合| 丝袜喷水一区| 亚洲成色77777| 哪个播放器可以免费观看大片| 丰满乱子伦码专区| 最近手机中文字幕大全| 嘟嘟电影网在线观看| 国产精品不卡视频一区二区| videosex国产| 在线观看免费日韩欧美大片 | 狠狠精品人妻久久久久久综合| 午夜福利,免费看| 亚洲av中文av极速乱| 国产亚洲午夜精品一区二区久久| 男女高潮啪啪啪动态图| 中文字幕精品免费在线观看视频 | 国产精品久久久久久精品古装| 亚洲欧美成人精品一区二区| 成人毛片a级毛片在线播放| 国产成人免费观看mmmm| 一区二区三区免费毛片| 99热这里只有精品一区| 日本黄色日本黄色录像| 街头女战士在线观看网站| 多毛熟女@视频| 亚洲国产精品成人久久小说| 午夜福利视频在线观看免费| 国产成人freesex在线| 久久99蜜桃精品久久| 91久久精品国产一区二区三区| 日韩免费高清中文字幕av| 91精品国产九色| 麻豆成人av视频| 国产永久视频网站| 亚洲内射少妇av| 夜夜骑夜夜射夜夜干| 国产乱人偷精品视频| 国产男女超爽视频在线观看| 一区二区三区精品91| 亚洲内射少妇av| av不卡在线播放| 一个人免费看片子| 国产男女超爽视频在线观看| 精品久久久久久久久亚洲| 一级二级三级毛片免费看| 99久国产av精品国产电影| 91成人精品电影| 午夜福利在线观看免费完整高清在| 日日撸夜夜添| 一二三四中文在线观看免费高清| 国产69精品久久久久777片| 亚洲精品一二三| 亚洲精品久久久久久婷婷小说| 国国产精品蜜臀av免费| 国产黄色视频一区二区在线观看| 午夜福利视频在线观看免费| 成人免费观看视频高清| 日韩不卡一区二区三区视频在线| 国精品久久久久久国模美| 亚洲精品国产av蜜桃| 久久鲁丝午夜福利片| 国产国语露脸激情在线看| 精品国产国语对白av| 熟妇人妻不卡中文字幕| 欧美激情极品国产一区二区三区 | 天天躁夜夜躁狠狠久久av| 在线观看免费日韩欧美大片 | 亚洲国产精品国产精品| 免费高清在线观看日韩| freevideosex欧美| 亚洲精品乱久久久久久| 一区二区三区乱码不卡18| 国产视频内射| 热99久久久久精品小说推荐| 男女边摸边吃奶| 久久ye,这里只有精品| 亚洲欧美一区二区三区国产| 少妇的逼水好多| 这个男人来自地球电影免费观看 | 看非洲黑人一级黄片| 综合色丁香网| 国产69精品久久久久777片| 欧美激情国产日韩精品一区| 超色免费av| 男女边吃奶边做爰视频| 国产老妇伦熟女老妇高清| 国产免费又黄又爽又色| 午夜福利网站1000一区二区三区| 又粗又硬又长又爽又黄的视频| 一本久久精品| 国产高清三级在线| 男的添女的下面高潮视频| 亚洲精品色激情综合| 久久国内精品自在自线图片| 日本91视频免费播放| 夜夜看夜夜爽夜夜摸| 日韩三级伦理在线观看| 一区二区三区免费毛片| 亚洲精品乱码久久久v下载方式| 久久女婷五月综合色啪小说| 七月丁香在线播放| 女性被躁到高潮视频| 80岁老熟妇乱子伦牲交| 日韩人妻高清精品专区| 伦理电影免费视频| 久久精品国产亚洲网站| 国产淫语在线视频| 伊人亚洲综合成人网| 久久久精品94久久精品| 久久精品国产亚洲网站| 久久av网站| 日韩三级伦理在线观看| 最近2019中文字幕mv第一页| 国产午夜精品一二区理论片| 最新的欧美精品一区二区| 国产精品女同一区二区软件| 如何舔出高潮| 夫妻性生交免费视频一级片| 十分钟在线观看高清视频www| 性色avwww在线观看| 亚洲av成人精品一区久久| 男的添女的下面高潮视频| 欧美另类一区| 999精品在线视频| 大香蕉久久网| 爱豆传媒免费全集在线观看| 精品一区二区三区视频在线| 热99久久久久精品小说推荐| 男女边摸边吃奶| 天美传媒精品一区二区| 久久久久久人妻| 欧美三级亚洲精品| 国国产精品蜜臀av免费| 国产精品一二三区在线看| 国产成人一区二区在线| 成人黄色视频免费在线看| 中文字幕av电影在线播放| 国产在线一区二区三区精| 日本黄大片高清| 久久久久人妻精品一区果冻| 激情五月婷婷亚洲| 国模一区二区三区四区视频| 一级爰片在线观看| 满18在线观看网站| 国产高清国产精品国产三级| 香蕉精品网在线| 国国产精品蜜臀av免费| 2021少妇久久久久久久久久久| 亚洲丝袜综合中文字幕| 欧美人与性动交α欧美精品济南到 | 大香蕉久久成人网| 久久午夜福利片| 午夜视频国产福利| 国产极品粉嫩免费观看在线 | 国产深夜福利视频在线观看| 国产成人精品无人区| av在线播放精品| 亚洲第一av免费看| 男人操女人黄网站| 老司机影院成人| 亚洲在久久综合| 国产精品人妻久久久影院| 三级国产精品片| 国产熟女欧美一区二区| av天堂久久9| 国产亚洲精品第一综合不卡 | 交换朋友夫妻互换小说| 天美传媒精品一区二区| 黄色欧美视频在线观看| 免费观看a级毛片全部| 女性被躁到高潮视频| 日本黄色日本黄色录像| av又黄又爽大尺度在线免费看| 国产精品一二三区在线看| 狠狠婷婷综合久久久久久88av| 久久人人爽av亚洲精品天堂| 乱码一卡2卡4卡精品| 街头女战士在线观看网站| 婷婷色综合www| 亚洲久久久国产精品| 久久人人爽人人爽人人片va| 午夜精品国产一区二区电影| 91午夜精品亚洲一区二区三区| 男男h啪啪无遮挡| kizo精华| 婷婷色综合大香蕉| av国产精品久久久久影院| 精品视频人人做人人爽| 菩萨蛮人人尽说江南好唐韦庄| 亚洲人与动物交配视频| 最近中文字幕2019免费版| 欧美日韩视频高清一区二区三区二| 国产一区有黄有色的免费视频| 国产熟女午夜一区二区三区 | 最近中文字幕2019免费版| 久久99热这里只频精品6学生| 男人添女人高潮全过程视频| 日韩精品有码人妻一区| 亚洲欧美日韩另类电影网站| 国产有黄有色有爽视频| xxxhd国产人妻xxx| 另类亚洲欧美激情| 各种免费的搞黄视频| 久久久久久久国产电影| 免费高清在线观看视频在线观看| 大香蕉97超碰在线| 色94色欧美一区二区| 欧美日韩视频高清一区二区三区二| 成人综合一区亚洲| 亚洲怡红院男人天堂| 婷婷色av中文字幕| 久久久亚洲精品成人影院| 99久久精品国产国产毛片| 女人久久www免费人成看片| 黑人欧美特级aaaaaa片| 秋霞伦理黄片| 国产欧美另类精品又又久久亚洲欧美| 内地一区二区视频在线| 午夜av观看不卡| 韩国av在线不卡| 伊人亚洲综合成人网| 免费观看的影片在线观看| 欧美日本中文国产一区发布| 日韩av免费高清视频| 建设人人有责人人尽责人人享有的| 五月开心婷婷网| 免费不卡的大黄色大毛片视频在线观看| 黄色视频在线播放观看不卡| 我的老师免费观看完整版| 一本一本综合久久| 边亲边吃奶的免费视频| 黄色视频在线播放观看不卡| 亚洲av二区三区四区| 多毛熟女@视频| 九九爱精品视频在线观看| 大话2 男鬼变身卡| 亚洲欧洲日产国产| 性色av一级| 你懂的网址亚洲精品在线观看| 美女xxoo啪啪120秒动态图| 久热这里只有精品99| 成人国产av品久久久| 亚洲精品亚洲一区二区| 最近手机中文字幕大全| 波野结衣二区三区在线| 啦啦啦中文免费视频观看日本| 91精品一卡2卡3卡4卡| 男女高潮啪啪啪动态图| 国产色婷婷99| 久久久久久久久大av| 国产精品蜜桃在线观看| 蜜臀久久99精品久久宅男| 国产精品99久久99久久久不卡 | 国产成人精品久久久久久| 午夜91福利影院| 国产欧美亚洲国产| 18禁在线播放成人免费| 99久久精品一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲图色成人| 99热国产这里只有精品6| 国产欧美日韩一区二区三区在线 | 欧美xxxx性猛交bbbb| 两个人的视频大全免费| 日韩免费高清中文字幕av| 国产男女超爽视频在线观看| 熟女av电影| 18禁裸乳无遮挡动漫免费视频| 亚洲图色成人| 草草在线视频免费看| 人人妻人人添人人爽欧美一区卜| 成人综合一区亚洲| 国产男人的电影天堂91| 国产一区有黄有色的免费视频| 亚洲综合色网址| 精品视频人人做人人爽| 777米奇影视久久| 黄色欧美视频在线观看| 国产成人精品婷婷| 免费人成在线观看视频色| 男女边吃奶边做爰视频| 欧美变态另类bdsm刘玥| 国产片内射在线| 日韩成人伦理影院| 丰满迷人的少妇在线观看| 欧美人与善性xxx| 最近中文字幕高清免费大全6| 国产成人一区二区在线| 久久青草综合色| 久久久久久久久久久免费av| 国产免费一区二区三区四区乱码| .国产精品久久| 亚洲欧美清纯卡通| 成年美女黄网站色视频大全免费 | www.av在线官网国产| av国产精品久久久久影院| 精品酒店卫生间| 精品少妇内射三级| 最近中文字幕2019免费版| 一本大道久久a久久精品| 插逼视频在线观看| 一本一本综合久久| 两个人的视频大全免费| 亚洲欧美一区二区三区国产| av在线观看视频网站免费| 国产精品一二三区在线看| 五月伊人婷婷丁香| 久久久久久人妻| 一级毛片 在线播放| 亚洲三级黄色毛片| 久久ye,这里只有精品| 国产精品99久久久久久久久|