• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of Aerosol Direct and Indirect Effects and Auto-conversion Processes over the West African Monsoon Region Using a Regional Climate Model

    2018-01-09 05:35:31ZeinabSALAHAhmedSHALABYAllisonSTEINERAshrafZAKEYRiteshGAUTAMandMohamedABDELWAHAB
    Advances in Atmospheric Sciences 2018年2期

    Zeinab SALAH,Ahmed SHALABY,Allison L.STEINER,Ashraf S.ZAKEY,Ritesh GAUTAM,and Mohamed M.ABDEL WAHAB

    1The Egyptian Meteorological Authority,Cairo 11784,Egypt

    2University of Michigan,Department of Climate and Space Sciences and Engineering,Ann Arbor,MI 48109-2143,USA

    3Centre of Studies in Resources Engineering and Interdisciplinary Program in Climate Studies,Indian Institute of Technology Bombay,Bombay 400076,India

    4Cairo University,Department of Astronomy,Space Science and Meteorology,Giza 12613,Egypt

    5Environmental Defense Fund,Washington DC 20009,USA

    Study of Aerosol Direct and Indirect Effects and Auto-conversion Processes over the West African Monsoon Region Using a Regional Climate Model

    Zeinab SALAH?1,Ahmed SHALABY1,Allison L.STEINER2,Ashraf S.ZAKEY1,Ritesh GAUTAM3,5,and Mohamed M.ABDEL WAHAB4

    1The Egyptian Meteorological Authority,Cairo 11784,Egypt

    2University of Michigan,Department of Climate and Space Sciences and Engineering,Ann Arbor,MI 48109-2143,USA

    3Centre of Studies in Resources Engineering and Interdisciplinary Program in Climate Studies,Indian Institute of Technology Bombay,Bombay 400076,India

    4Cairo University,Department of Astronomy,Space Science and Meteorology,Giza 12613,Egypt

    5Environmental Defense Fund,Washington DC 20009,USA

    This study assesses the direct and indirect effects of natural and anthropogenic aerosols(e.g.,black carbon and sulfate)over West and Central Africa during the West African monsoon(WAM)period(June–July–August).We investigate the impacts of aerosols on the amount of cloudiness,the inf l uences on the precipitation efficiency of clouds,and the associated radiative forcing(direct and indirect).Our study includes the implementation of three new formulations of auto-conversion parameterization[namely,the Beheng(BH),Tripoli and Cotton(TC)and Liu and Daum(R6)schemes]in RegCM4.4.1,besides the default model’s auto-conversion scheme(Kessler).Among the new schemes,BH reduces the precipitation wet bias by more than 50%over West Africa and achieves a bias reduction of around 25%over Central Africa.Results from detailed sensitivity experiments suggest a significant path forward in terms of addressing the long-standing issue of the characteristic wet bias in RegCM.In terms of aerosol-induced radiative forcing,the impact of the various schemes is found to vary considerably(ranging from?5 to?25 W m?2).

    aerosol,cloud,West African monsoon,auto-conversion,RegCM

    1.Introduction

    Thelarge uncertainty in the assessment of aerosol–cloud–radiation interactions poses a significant challenge toward better constraining climate sensitivity(IPCC,2013).An improved quantification of these interactions is necessary for a better understanding of past and future climate change.Changes in the concentrations and properties of aerosols alter the Earth’s climate,since aerosols scatter and/or absorb sunlight and directly affect the climate by modifying the radiant energy distribution in the surface–atmosphere system.Furthermore,through their critical role as cloud condensation nuclei and ice nuclei,aerosols can indirectly modify cloud properties(e.g.,Costantino and Br′eon,2013;Fan et al.,2016).Increasing aerosol concentrations due to anthropogenic activities can lead to enhanced cloud droplet number concentrations with smaller radii,enhancing the cloud albedo(first indirect or cloud albedo effect)(Twomey,1977).As the cloud droplets become smaller,the precipitation effi-ciency decreases,consequently increasing cloud lifetime and fractional cloud cover(second indirect or cloud lifetime effect)(Albrecht,1989).In addition,absorbing aerosols such as black carbon(BC)and some organic aerosols can induce radiativeheating,leadingtomodificationsofatmosphericstability,cloud cover,and convection strength,i.e.,the so called semi-direct effect(Gu et al.,2006,2012).The simulations of these different effects of aerosols in climate models strongly depend on their emission,mass,composition and size distribution(Seinfeld and Pandis,2006),as well as the mixing state of the particles(internal or external mixtures),and the parameterization of nucleation processes in the models(Kodros et al.,2015).

    The sign and magnitude of different aerosol effects have strong regional dependence(Kodros et al.,2015).Aerosol effects in the West Africa region are complex due to the large diversity of aerosol composition(and sources),including naturally occurring desert dust,marine aerosols,anthropogenic aerosols from urban areas,as well as biomass burning.Mineral dust from the Sahara and biomass-burning particles from Equatorial and Central Africa are frequently transported to the West African monsoon(WAM)region(Chiapello et al.,2005),which ranges from 5°N to 20°N and 10°W to 20°E.Therefore,it is critical toward an improved representation of the complexity of aerosols in this region to carry out in-depth studies of the effects of the various aerosol types,especially in an effort to improve their representation and role in regional aerosol–chemistry–climate model simulations.

    Using satellite observations of aerosol and cloud properties from simultaneous MODIS and CALIOP measurements,Costantino and Br′eon(2013)showed that aerosols affect cloud microphysics by decreasing the cloud droplet radius and cloud liquid water path(CLWP).They hypothesized that the observed reduction in CLWP is a consequence of dry air entrainment near the cloud top.Using MODIS aerosol products and TRMM precipitation data,Huang et al.(2009)studied the relationship/feedbacks between African aerosols and precipitation during the WAM.They suggested that both dust and smoke contribute to precipitation suppression,with the dust effect evident over the Gulf of Guinea and the smoke effect evident over both land and ocean.

    The relative roles of direct and indirect effects of aerosols on the WAM are still poorly characterized;therefore,highresolution studies,such as regional climate model simulations,can be useful for understanding the processes that drive cloud–aerosol interactions in the region.For example,using RegCM,several studies have used parameterized aerosol indirect effects to understand these processes over eastern Asia(Qian and Giorgi,1999;Huang,2005;and Huang et al.,2007),involving different auto-conversion parameterizations.While these simulations did not use a full cloud microphysical treatment,the auto-conversion parameterization was a computationally efficient way to represent the formation of raindrops by collision and coalescence of cloud drops.

    As discussed in the aforementioned studies,the direct radiative effect of aerosols could potentially contribute to the suppression of precipitation in the WAM region;however,from the microphysical point of view,the semi-direct and indirect effects have been suggested to play a dominant role toward precipitation suppression(Huang et al.,2009).Therefore,in the present study,we implement different parameterizations of the aerosol indirect effects within RegCM4.4.1 to investigate their impacts on cloud microphysics and precipitation over tropical Africa during the WAM season.In addition,RegCM suffers from a long-standing wet bias problem(relative to CRU,ERA-Interim and TRMM data),as documented in multiple studies of the West Africa and Sahel regions(Sylla et al.,2010;Giorgi et al.,2012;Ji et al.,2016).The overarching aim of our study is to determine the extent to which the implementation of a new auto-conversion scheme,involving the first and second indirect effects,might reduce this wet bias in RegCM.

    A description of RegCM4.4.1 and the simulation experiments is provided in section 2.Section 3 discusses the direct effect,as well as the first and second indirect aerosol effects,using three different auto-conversion parameterizations,over the western and central parts of the African domain.In section 4,we present a summary of the results and draw some conclusions from the key findings.

    2.Model description and experimental design

    The regionalclimate modelused in thiswork(RegCM4.4.1)is a hydrostatic model with sigma vertical levels that can be used to simulate long-term climate(Giorgi et al.,2012).The radiative transfer processes are parameterized using CCM3(Kiehl et al.,1996).The representation of cloud optical/microphysical properties in RegCM depends on three parameters of cloud:(1)CLWP,which is prognostically calculated by RegCM;(2)cloud cover fraction,which is calculated diagnostically as a function of relative humidity;and(3)cloud droplet effective radius(re),defined as the ratio of the third to the second moment of the size spectrum.For convective precipitation,the Grell(1993)scheme is used in the implementation of Giorgi et al.(1993)with Fritsch–Chappell closure(Fritsch and Chappell,1980).Nonconvective clouds and precipitation are based on the Subgrid Explicit Moisture Scheme(SUBEX)(Pal et al.,2000).The Biosphere–Atmosphere Transfer Scheme(Dickinson et al.,1993)is used for land surface processes,and the scheme of Holtslag(Holtslag et al.,1990)represents boundary layer processes.

    The simulations presented here use the RegCM aerosol scheme based on a simplified treatment of sulfur dioxide(SO2),sulfate,organic carbon(OC)and BC,which exist as hydrophobic and hydrophilic components,and are treated as externally mixed.The emission f l uxes of SO2,BC and OC are fed directly into the model from the global emissions inventories.The wet deposition of the aerosols is based on the parameterizations of large-scale(Giorgi,1989)and convective precipitation(Giorgi and Chameides,1986);in this scheme,the aerosols are not released by evaporation of raindrops.The dry removal depends on fixed dry deposition velocities for each tracer over land and ocean.The scattering and absorption of solar radiation are included based on the aerosol optical properties as described in Solmon et al.(2006).

    2.1.First indirect effect in RegCM4.4

    In RegCM4.4.1,all aerosols have only direct effects on the climate,except,which has direct and first indirect effects.The optical properties of the clouds depend on the re,which is calculated as a function of temperature and the type of liquid-phase cloud(e.g.,maritime versus continental)(Giorgi et al.,2012).To represent the first indirect effect,re(μm)is represented as a function of cloud droplet number concentration(Nc;cm?3),as in the formula of Martin et al.(1994)[Eq.(1)],which is related to the total mass mixing ra-tio ofusing the empirical relationship derived by Hegg(1994)[Eq.(2)]:

    where ρa(bǔ)and ρware the densities of air and water,respectively(kg m?3);xtotis the mass mixing ratio of total aerosols(kg kg?1);wLis liquid water content(kg m?3);and k=0.80 for maritime air masses and 0.67 for continental air masses.Although the above parameterization is foraerosol,we assume it is equally applicable to hydrophilic BC and OC as well.This parameterization has been tested in RegCM previously by Qian and Giorgi(1999)and Huang et al.(2007).

    2.2.Implementation of the second indirect effect in RegCM4.4.1

    To represent the aerosol second indirect effect in RegCM4.4.1,the parameterization of cloud microphysics in the model is altered so that the rate of precipitation is affected by the aerosol concentration.In RegCM4.4.1,SUBEX(Pal et al.,2000)calculates the cloud cover fraction based on the relative humidity.In the cloud fraction,a Kesslertype bulk formulation(Kessler,1969)is used to parameterize the auto-conversion and accretion processes.The Kesslertype formula(“KS”scheme)assumes that precipitation is formed at any model level when the cloud water mixing ratio(qL=wL/ρa(bǔ))exceeds the threshold value(qL,th),as in the following relation:

    where P is the rain drop formation rate(kg kg?1s?1),1/Cpptis the characteristic time for which cloud droplets are converted into raindrops,and fcis the cloud fraction.The threshold value is obtained as a function of temperature according to the following relation derived by Gultepe and Isaac(1997):

    where T is temperature in°C,and Cacsis the auto-conversion scale factor.Also,in SUBEX(Pal et al.,2000),the amount of accreted cloud water(Pacc)and evaporated precipitation(Pevap)are expressed as follows:

    where Caccis the accretion rate coefficient,Psumis the accumulated precipitation from above falling through the cloud,and Cevapis the evaporation rate coefficient.

    Several prior studies have found that the second indirect effect is very sensitive to the parameterizations of autoconversion and cloud cover in models(Lohmann and Feichter,1997;and Huang et al.,2007).Here,we implement three different auto-conversion schemes in RegCM4.4.1:

    The first parameterization depends on Beheng(1994)(referred to as the“BH”scheme),which is based on Lohmann and Feichter(1997):

    where γ1=150 is a tunable parameter,and n=10 is the width parameter of the initial cloud droplet spectrum.All parameters are in SI units.

    The second parameterization depends on Tripoli and Cotton(1980)(referred to as the“TC”scheme):

    where g is gravity,Ec=0.55 is the collision/collection effi-ciency of cloud droplets,μ =1.83×10?5kg m?1s?1is the dynamic viscosity of the air,and H is the Heaviside function.Since cloud droplets convert to rain drops when the Ncof larger than 20 μm in radius(Nc20)is more than the 103m?3(Rogers and Yau,1989),where

    Nc20is calculated assuming a gamma cloud droplet size distribution according to the Khrgian and Mazin distribution(Pruppacher and Klett,1997).

    The third parameterization of auto-conversion(referred to as the“R6”scheme),based on Liu et al.(2004),accounts for the dispersion effect of cloud droplets(Liu et al.,2004,2007):

    where R6is the mean radius of the sixth moment of the droplet size distributions in Rotstayn and Liu(2005),k2=1.9×1011cm?3s?1is a constant describing the increase in thecollectionefficiencyofclouddropletswithincreasingcollector drop size,β6represents the dispersion effect of cloud droplets assuming a gamma distribution for the cloud-droplet spectrum,

    and R6cis the critical radius inμm,

    where∈=1?0.7exp(?αNc),is the relative dispersion of the droplet size distribution,α=0.003(Rotstayn and Liu,2005),wLis in g m?3,Ncis in cm?3,and βcon=1.15 × 1023s?1is the mean value of the condensation rate constant.

    These three auto-conversion schemes differ in their dependence on the total aerosol mixing ratio(xtot),which relates to the reand wL,as shown in the following proportionalities.These are derived by eliminating Ncwith xtotand reusing Eqs.(1)and(2)in the raindrop formation rate(P)for the BH[Eq.(7)],TC[Eq.(8)]and R6[Eq.(10)]schemes:

    The precipitation rates simulated by the KS,BH,TC and R6 auto-conversion schemes,with different values of reand qLare shown in Figs.1a and b for re=10 and 7.5μm,which represent large and small cloud droplets,respectively.Because the auto-conversion rates depend on the fcin KS and BH,we show the range of values for two fcvalues(fc=1 and fc=0.5;Figs.1a and b).The cloud fractional cover has an effective inf l uence on the KS auto-conversion rate at low in-cloud liquid water(qL≤ 0.6 g kg?1),where the lower fc(fc=0.5)increases the auto-conversion rate faster than the one(fc=1)(Figs.1a and b).For larger droplets(re=10μm),the auto-conversion rate is enhanced by the BH scheme with more efficiency than TC,R6 and KS,respectively.On the other hand,with smaller cloud droplets(re=7.5μm),the auto-conversion in the BH scheme is faster than in the R6 scheme only at extremely low qL(≤ 0.2 g kg?1),whereas the precipitation rate produced by TC is more than that of BH at qL≥0.1 g kg?1.

    Fig.1.Auto-conversion rates(P)(units:106kg kg?1s?1)as a function of liquid water mixing ratio(qL)(units:g kg?1)for the different auto-conversion schemes of KS,BH,TC and R6.The calculations assume an reof(a)10μm and(b)7.5μm.Note that for the purpose of these figures,the calculations of the KS and BH schemes assume a cloud fraction cover of fc=1 and fc=0.5;KS is unaffected by changing the re,and its calculation for these figures assumes qL,th=0.2 g kg?1in Eq.(3).

    2.3.Experimental design

    The simulations in this study are conducted over a region extending from tropical Africa to northern Africa and the Mediterranean,as shown in Fig.2.This domain has a complex mixture of aerosols from various origins,such as desert dust,urban pollution and biomass-burning/smoke aerosol.The model domain is centered at(19.0°N,12.0°E),with a grid of 84×116 points at a horizontal grid spacing of 60 km,and 18 vertical sigma levels with the model top at 10 hPa.For our analysis,the region extending from the equator to 15°N is divided into two sub-regions,referred to as the western region(Domain1)and the central region(Domain2),as shown in Fig.2a.In all simulations,the global data of NCEP-2 provide the meteorological initial and lateral boundary conditions.For the SST,OISSTv2 weekly data are used.For the chemical boundary conditions,we use the global output from the Model for Ozone and Related Chemical Tracers(Emmons et al.,2010).We conduct a one-year simulation(1 October 2005 to 1 December 2006)with the first two months used as model spin-up,and focus on the season of the WAM(June–July–August;JJA).

    We simulate online aerosols for the chemical species ofand hydrophobic and hydrophilic BC and OC to investigate the effects of the aerosols from biomass and anthropogenic sources.Aerosol emissions are based on the Emission Database for Global Atmospheric Research(EDGAR)(Olivier et al.,2001)for anthropogenic and biomass-burning BC and OC and biogenic SO2,and the Reanalysis of the Tropospheric Chemical Composition Inventory(RETRO)(Schultz et al.,2007)for anthropogenic SO2.Figures 2a–c show the spatial distributions of emissions during summer for SO2,derived from the anthropogenic emissions of RETRO and biomass-burning emissions of EDGAR,and the BC and OC derived from the anthropogenic and biomassburning emissions of EDGAR.Figure 2a shows that the total emission rates of SO2are concentrated around the Mediterranean basin,especially in the large cities due to anthropogenic activities,with emission rates of up to 4×10?10kg m?2s?1.Emissions are also high in West Africa near the Gulf of Guinea,due to biomass burning and anthropogenic activities.The spatial distributions of the total BC emission rates are similar to those of SO2,as shown in Fig.2b;the emissions rate reaches 3×10?13kg m?2s?1over the large cities in the Mediterranean and Arabian Peninsula.The emissions of OC(Fig.2c)follow the same patterns as BC.

    To validate and intercompare the simulations,we use gridded(0.5°×0.5°)observations from the CRU(Mitchell and Jones,2005)for the monthly surface air temperature and precipitation data over land.The Level-3(version 5)globalgridded 1°×1°data product retrieved from MODIS onboard Terraisusedtoevaluatethetotalcloudcoverdistributionover the entire simulation domain.The Level-3 Terra/MODIS AOD,retrieved using the Dark-Target(Levy et al.,2007)and Deep Blue(Hsu et al.,2006)aerosol algorithms,is used to evaluate the simulated regional AOD.

    Fig.2.Emissionsrate(units:kgm?2s?1)of(a)SO2×10?10derived from the EDGAR and RETRO emissions inventories,and(b)BC×10?13and(c)OC×10?13derived from EDGAR only.The two selected domains are outlined by the dashed black lines in(a):Domain1 is West Africa and Domain2 Central Africa.

    We conduct nine sensitivity simulations with varying treatments of the aerosol indirect effect.Four control runs(CTRL,CTRL_BH,CTRL_TCandCTRL-R6)areperformed with the different auto-conversion schemes of KS,BH,TC and R6,respectively.In the control simulations,the reis constant(at 10 μm)and no aerosol effects are considered.The simulation called “DIRECT”includes the direct effect of all types of aerosols in RegCM4.4.1,hydrophobic and hydrophilic OC and BC)with re=10μm.The first indirect effect of,hydrophilic OC and BC,and the direct effect of all aerosols,are evaluated with the simulation called “INDIR1”,in which the size of cloud droplets changes according to the aerosol mass concentration.The effect of the auto-conversion scheme is discussed in section 3.4,and the combined effects of the aerosols(direct, first and second indirect)are included in the runs of“ALL_BH”,“ALL-TC”and“ALL-R6”with different auto-conversion schemes.A description of all sensitivity experiments is provided in Table 1.

    Here,we focus on the indirect effects of aerosols on the regional climate by changing only the parameterization of the large-scale precipitation processes without changing the convective precipitation parameterizations,because the convective parameterizations implemented in RegCM4.4.1 do not include cloud microphysics that can be directly connected with cloud condensation nuclei and hence aerosols.In addition,we only consider warm cloud processes,as we do not explicitly permit aerosols to act as ice nuclei in these simulations.However,it is possible that the properties of ice cloud can be affected through interaction processes between liquid and ice phases.

    3.Results and discussion

    3.1.Control simulations with different auto-conversion parameterizations

    Figures 3a and b show the spatial distributions of the total cloud cover from MODIS and total precipitation from CRU,respectively,over the studied domain during JJA 2006.It can be seen that the cloud and rainfall concentrated in the region south of 15°N,especially in West Africa,are associated with a cloud fraction greater than 80%,and precipitation rates exceeding 200 mm month?1in several regions across Central and West Africa.

    Fig.3.Spatial distribution of(a)total fractional cloud cover from MODIS/Terra,(b)total precipitation(units:mm month?1)from CRU,and(c)AOD at 550 nm from MODIS/Terra,during JJA 2006.

    First,we examine the inf l uence of changing the autoconversion scheme on the mean cloud cover and precipitation in the control runs without including the effects of aerosols.The area-averaged values of CLWP,cloud cover(low,medium,high and total),and total precipitation,as well as the ratio of convective to total precipitation,simulated by different control runs with different auto-conversion schemes,are described in Table 2.These mean values are calculated over West Africa(Domain1)and Central Africa(Domain2)over land only.The CLWP of TC and R6 is greater than that of KS by about 18%and 43%,respectively.This enhancement in cloud liquid water content results in higher values of different cloud types[low(LCLD),medium(MCLD),high(HCLD)]and total cloud,by 18%and 21%for TC and R6,respectively.The surface air temperature(T)averaged over Domain1 with CTRL_R6 and CTRL-TC decreases by approximately 1°C compared to CTRL and CTRL-BH.The CTRL R6 run produces higher total precipitation(Tprecip)than CTRL_by about 16%.In addition,the ratio of the precipitation produced by convection processes(Cprecip/Tprecip)is over 80%of the total precipitation in all simulations.

    In Domain2,the CLWP maximum is produced by the R6 parameterization(CTRL_R6)and the minimum is simulated by the BH parameterization(CTRL_BH).The R6 scheme simulates a larger cloud fraction for all cloud types(LCLD,MCLD,HCLD),and total cloud cover,than the other schemes,with CTRL_R6 resulting in a 25%increase in total cloud with respect to the reference control run(CTRL)(Table 2).Again,CTRL R6 and CTRL_TC produce lower surface air temperature than CTRL_BH and CTRL.This reduction can be attributed to the increased LCLD in these experiments.These enhancements of CLWP and cloud cover simulated by R6 result in a 10%increase in total precipitation compared to CTRL.It is worth noting here that using different auto-conversion parameterization schemes for large-scale precipitation generally increases the percentage of convective to total precipitation over the two domains compared to the KS scheme.The exception to this is the BH scheme,which reduced this ratio over Domain1,which may be attributable to the enhancement in liquid water content in cloud with the different schemes.

    Figure 4a illustrates that,over Domain1,the CTRL,CTRL BH and CTRL TC simulations underestimate the total cloud cover compared to MODIS by over 15%with CTRL BH,whileCTRL-R6overestimatesthecloudcoverby less than 1%.In addition,over Domain2,the simulations of CTRL,CTRL-BH and CTRL-TC show negative bias(greater than Domain1)compared to MODIS,whereas CTRL-R6 results in lower positive bias than in Domain1.

    By comparing the simulated total precipitation based on the control runs with CRU data as shown in Fig.4b,we find that all the runs result in overestimations,ranging between 30%and 80%with CTRL BH and CTRLR6,respectively,over Domain1,and>50%and>100%with CTRL-BH and CTRL R6,respectively,over Domain2.

    3.2.AOD

    The spatial distribution of the AOD over the studied domain during JJA 2006 observed from Terra/MODIS(Dark Target and Deep Blue combined data)at the mid-visible wavelength(550 nm)is shown in Fig.3c.Here,the AOD from Dark Target and Deep Blue is averaged using the method of Gautam et al.(2011).Higher values of AOD,mainly due to dust,are noted in Central Africa extending to the west.Figure 4c shows the bias in AOD simulated by the five different model sensitivity tests(DIRECT,INDIR1,ALL_BH,ALL_TC,ALL-R6),relative to that detected from Terra/MODIS.We note that these simulations do not include dust emissions;however,these large differences in AOD arereduced significantly with the inclusion of the combination of all aerosol effects,especially with using the auto-conversion schemes of R6 and TC,respectively.

    Table 1.List of the experiments performed in this study.

    Table 2.Mean CLWP(units:g m?2),LCLD,MCLD,HCLD,total cloud cover(TCLD),surface air temperature(T;units: °C),total precipitation(Tprecip;units:mm month?1),and percentage of convective to total precipitation(Cprecip/Tprecip),over the West and Central Africa regions(over land only),during JJA 2006,simulated by different control runs(CTRL,CTRL_BH,CTRL_TC,and CTRLR6)using the different auto-conversion schemes of KS,BH,TC and R6,respectively.

    3.3.Aerosol direct and first indirect effects

    Here,we discuss the changes in cloud cover and precipitation due to the aerosol direct and first indirect effects,based on the differences between DIRECT and INDIR1 from the CTRL simulation during JJA 2006.Note that all these three simulations use the same KS auto-conversion scheme,so the differences in the simulations are due primarily to the treatment of the aerosol direct(DIRECT)and first indirect effect(INDIR1).

    By focusing on the aerosol effects over Domain1 and Domain2,the results(Table 3)show that,over Domain1,the aerosol direct effect can be linked to a slight suppression in the CLWP.Furthermore,by adding the first indirect effect,this suppression increases to more than ?44 g m?2,which is similar to the values published by Costantino and Br′eon(2013).Generally,it is found that the CLWP at all atmospheric levels decreases slightly in the direct simulations(generally,<0.02).The DIRECT run leads to an increase in surface air temperature by 0.2°C relative to CTRL,and this increase enhances in the INDIR1 run.

    Over Domain2,the situation is slightly reversed;the aerosol direct effect is also linked to the CLWP,where the CLWP increases(> 1 g m?2).Small changes in LCLD are found relative to CTRL,with a slight increase in the DIRECT run,and reduction of about 0.02,when adding the first indirect effect.Also,the DIRECT simulation results in a reduction of MCLD and HCLD,but the total fractional cover increases;whereas,the INDIR1 simulations suggest an increase corresponding MCLD and a decrease associated HCLD and total cloud cover.Also over Domain2,the INDIR1 run leads to an increase in mean surface temperature by 0.5°C compared to CTRL,but the DIRECT run leads to a slightly weaker decrease.

    Fig.4.Relative errors in JJA 2006(a)total fractional cloud cover and(b)total precipitation(units:%),with respect to MODIS and CRU observations,respectively,for the different simulations,averaged over Domain1(dark gray)and Domain2(light gray).The average is calculated over land only.(c)Bias ratio of AOD(units:%)calculated for the simulations with aerosols only,with respect to MODIS.The error bars are plotted at 5%.

    Table 3.Differences in mean CLWP(ΔCLWP)(units:g m?2),LCLD(ΔLCLD),MCLD(ΔMCLD),HCLD(ΔHCLD),total cloud cover(ΔTCLD),surface air temperature(ΔT;units: °C),and total precipitation(ΔTprecip;units:mm month?1),over the West(Domain1)and Central(Domain2)Africa regions(over land only),during JJA 2006,due to the aerosol direct, first indirect,and the combined aerosols(direct, first and second indirect)effects.These changes are calculated by the difference between the runs of DIRECT and INDIR1 and the control run(CTRL)with auto-conversion scheme of KS;also,between the runs of ALL_BH,ALL_TC and ALL-R6 and their control runs(CTRL-BH,CTRL_TC,and CTRL_R6,respectively).

    In terms of precipitation changes,results indicate a net reduction in total precipitation over Central Africa in both DIRECT and INDIR1,where ΔP is reduced by 4.0 and 42 mm month?1,respectively.In summary,the reduction in precipitation in West Africa(Domain1)is greater than that in Central Africa(Domain2).This is primarily due to the greater emissions ofaerosols over Domain1.aerosols cause a reduction in the re,which results in an enhancement of cloud albedo,in turn resulting in enhanced cooling at the surface.It is well known that a cooler surface is associated with suppressed convection processes that reduce the CLWP,in turn reducing the overall precipitation(Lohmann and Feichter,1997).

    3.4.Combined effects(direct,first and second indirect)

    To study the combined aerosol effects(direct, first and second indirect),we quantify changes in cloud cover and precipitation(as illustrated in Table 3)simulated by ALL_BH,ALL_TC and ALL-R6,relative to their control runs(CTRL-BH,CTRL_TC and CTRL-R6,respectively).With the combined aerosol effects,and consistent with the hypothesis of aerosol inhibition of precipitation(Albrecht,1989),CLWP is found to increase over West Africa with the three auto-conversion schemes relative to their control runs,with the greatest positive change from the TC scheme(ΔCLWP_>_1.8 g m?2)(Table 3).The combined aerosol effects increase the LCLD in all the sensitivity tests,with the greatest change in the R6 scheme(an increase of 0.06).The MCLD reduces consistently across all schemes,with the maximum change in the R6 scheme(0.06);however,there are some differences for HCLD among the different schemes.Whereas the combined aerosol effects reduce the HCLD in BH and R6(?0.06),the TC scheme shows a slight increase in cloud cover(by 0.004)compared to the cases without aerosols.The mean total cloud cover increase over Domain1 was found to be small,by approximately 0.003,in all schemes.Interestingly,the decrease in air temperature at the surface seen in all experiments,especially ALLR6(ΔT=_?0.4°C),is a characteristic resulting from the aforementioned overall increase in total cloud cover.The combined aerosol effects suppress the total precipitation over Domain1 with the schemes of BH and R6,with a reduction of precipitation by 46 mm month?1with R6,whereas TC increases the precipitation by less than 3 mm month?1.This increase may be attributable to an enhancement in HCLD.

    Over Domain2,the CLWP decreases with the two autoconversion schemes of BH and TC(ΔCLWP=_?2 g m?2and_?4 g m?2,respectively),but the R6 scheme causes an increase in CLWP to more than 24 g m?2.The domainaverage changes in cloud are relatively small,with the greatest changes for MCLD being an increase of 5%with the R6 scheme.Similar to Domain1,the total cloud cover increases overDomain2ineachexperiment,especiallyfortheALL_TC and ALL_R6 simulations(ΔTCLD_>_0.007 and 0.009,respectively),albeit these changes are relatively small.Furthermore,the air temperature,averaged over Domain2,is associated with a decrease in the three experiments relative to their control runs(ΔT=?0.2°C with ALL_TC and ALL-R6).The total precipitation averaged over Central Africa decreases in the three runs with different percentages,with the maximum suppression in the ALL-R6 simulation(ΔTprecip>?57%)relative to its control run(CTRL_R6).

    3.5.Radiative forcing

    The radiative forcing(RF)of aerosols represents the infl uence of aerosols on the Earth’s energy balance,where a positive RF indicates that the energy of the surface–atmosphere system increases,leading to a warming of the system.In contrast,negative RF corresponds to a cooling of the system.Here,the RF is estimated as the difference in the net radiative fl ux(downward minus upward)between the present-day total aerosol loading(natural and anthropogenic)and the simulation with no aerosols(control simulations).

    The net RF(shortwave and longwave)at the surface and top of the atmosphere(NRF_SRF and NRFTOA,respectively)due to the different aerosol effects are averaged over Domain1(Fig.5a).There is a small positive NRF_SRF over west Africa due to the DIRECT simulation(NRF_SRF=1 W m?2;standard deviation of±2.5 W m?2),which becomes negative(?7 W m?2)by including the first indirect effect(INDIR1).Also at the TOA,the warming caused by the direct aerosol effect is transformed to negative RF in the INDIR1 simulation(NRF_TOA=3±3 W m?2and?8.5±5 W m?2,respectively).The ALL_BH run(combined aerosol effectswith the BHscheme)further decreases thecoolingatthe surface to?1±2 W m?2and leads to a warming at the TOA of 0.8±3 W m?2.However,using the TC and R6 autoconversion schemes,the combined aerosol effects(ALL_TC and ALL_R6)lead to a cooling of?4±2 W m?2and?23±2 W m?2,respectively,at the surface,and?1±0.9 W m?2and?21±1.5 W m?2,respectively,at the TOA.

    Fig.5.Net RF(shortwave and longwave)at the surface(dark gray)and TOA(light gray)during JJA 2006 simulated by the different experiments(DIRECT,INDIR1,ALL_BH,ALL_TC,and ALLR6)averaged over(a)West Africa and(b)Central Africa,with error bars of standard deviation.

    The average NRF_SRF and NRFTOA over Domain2 are shown in Fig.5b.The aerosol direct effect(DIRECT)causes negative RF at the surface(?4±1 W m?2)and very low positive RF at the TOA(0.2±1 W m?2).The RF over Domain2 could be due the low emissions of BC and OC over this domain,as shown in the spatial distribution of their emissions in Figs.2b and c.

    After adding the aerosol first indirect effect,the aerosolinduced cooling at the surface is found to be NRFSRF=?10±2 W m?2and NRF_TOA=_?14±3 W m?2,at the surface and TOA,respectively.With the combined aerosol effects,the sign and magnitude of RF differ according to the different auto-conversion schemes,since the three runs keep the cooling at the surface,with the maximum caused by the ALL_R6 run(NRFSRF=_?23±3 W m?2).However,theALL_BHandALLTCrunscauseverylowwarming(<_0.5±1 W m?2)at the TOA,with the ALL_R6 run cooling reaching a large negative forcing of?25±3 W m?2.

    3.6.Inf l uence on WAM circulation

    Here,we investigate the dynamic and thermodynamic responses to the aerosol indirect effect in the cases of the INDIR1 and ALL_R6 simulations,which show pronounced change in precipitation,through analyzing the average WAM circulation anomalies—namely,the changes in the mean SLP(MSLP)and wind field at 850 hPa due to the indirect effect.Figure 6 shows the change in the MSLP and wind field during WAM for both simulations.The continental pressure increases in both schemes but to different degrees.Pressure increases in West Africa and decreases over ocean,which results in a reduction in monsoon pump intensity(Konare et al.,2008).The indirect effects weaken the monsoon’s circulation,where the differential wind field has totally reversed its direction(all in fl ow becomes out fl ow).ALL_R6 shows a strong reduction in average monsoon circulation(Fig.6a)compared to the INDIR1 simulation(Fig.6b).The manifestation of pressure system reduction is shown in the reduction in the wind field.

    Intensi fication of continental pressure is only possible if the atmospheric column has been cooled aloft.This hypothesis can be shown by the analysis of the vertical heating rate owing to latent heat due to convection.Figure 7 shows the vertical zonal average convective heating rate.During JJA,deep convection is inhibited at the middle and high levels of the atmosphere.Comparison between vertical cloud cover(not shown)and the convective heating rate shows that the reduction in vertical cloud extension is due to cooling in the middle and upper levels.Between 5°N and 15°N,the vertical extension of the difference in the convective heating rate shows a dipole structure,where a positive(negative)change in the heating rate is observed in the lower(middle and upper)atmosphere up to 850 hPa(200 hPa).The strength of this dipole is an indication of deep cloud suppression and hence precipitation reduction.The dipole strength is very weak in BH and TC,which agrees with the results in Table 3.The R6 auto-conversion scheme shows a strong reduction in the heating rate(?0.9 K d?1)in the middle and upper troposphere.This reduction in the convective heating rate is comparable to the direct effect made by dust aerosol,as shown in Solmon et al.(2012).On the other hand,the INDIR1 simulation shows a strong yet different signal where the reduction in the convective heating rate has a narrow meridional extension in the middle troposphere and,contrary to R6,the positive convective heating rate extends to the upper troposphere but north of 10°N.The first indirect effect reduces the CLWP,leading to a reductioninLCLDandyetenhancescloudalbedo.Thispathway results in a reduction in MCLD and a stabilization of the atmospheric column.On the other pathway of the ALL_R6 that increases the low cloud cover,which results in reduction in surface temperature,which in turn reduces monsoon circulation and inhibits deep convection.

    Fig.6.Effect of the first indirect effect and R6 auto-conversion scheme on monsoon circulation(JJA 2006):(a)difference in circulation between the ALL_R6 and CTRLR6 simulations at 850 hPa and the MSLP;(b)difference in circulation between the INDIR1 and CTRL simulations at 850 hPa and the MSLP.The shading shows the difference in the MSLP in units of hPa.Dark gray indicates positive anomalies and represents a strengthening of the MSLP,while the lightest gray shows below-zero anomalies and presents a weakening of the MSLP.Arrows represents the difference in circulation,i.e.,the direction and relative intensity of the change in the wind field(units:m s?1)due to the auto-conversion.

    Fig.7.Effects of aerosols on convection with the different auto-conversion schemes.Speci fically,the panels show meridional cross sections of the heating rate due to convection(units:K d?1),where negative in dashed lines(positive in solid lines)values indicate cooling(heating)of the atmosphere:(a)ALL_BH minus CTRL_BH;(b)ALL_TC minus CTRL_TC;(c)ALL_R6 minus CTRL_R6;(d)the INDIR1 minus CTRL.

    4.Summary and conclusion

    In this work,we study the aerosol direct and indirect effects on the climate of tropical Africa,focusing on the western and central regions during the summer season of the WAM,using RegCM4.4.1 implemented with three precipitation auto-conversion schemes(BH,TC,and R6).

    We find that,at low cloud liquid water mixing ratios with relatively larger cloud droplets(re=10μm)or low aerosol concentrations,the auto-conversion rate is accelerated by the BH scheme,more so than in the TC,R6 and KS schemes,respectively,when the fcis less than or equal to 50%.However,as the cloud cover increases and reaches closer to 100%,the BH and KS schemes produce less precipitation than the other two schemes.Whereas,for extremely low in-cloud liquid water(qL_≤_0.1 g kg?1)with smaller cloud droplets(re=7.5μm)or high aerosol concentrations,the TC and BH schemes(with fc≤50%)result in larger precipitation than the other schemes.Based on these detailed sensitivity simulations,we note the importance of the implementation of aerosol properties(as the re)in the parameterization of the auto-conversion process,which can alter the precipitation rates in the model(as in the cases of the first indirect and the combined aerosol effects with the different auto-conversion schemes).

    The inclusion of both the aerosol direct and first indirect effects leads to cooling at both the surface and the TOA,which results in suppression of precipitation over West and Central Africa.The sign and magnitude of the RF of the combined aerosol effects(direct,first and second indirect)are inf l uenced by the different auto-conversion schemes.At the surface,the various schemes result in negative net RF,with maximum values exceeding?20 W m?2,attaining its largest reduction with the R6 scheme over West and Central Africa.Whereas,at the TOA,the difference in the sign of RF be-tween the three schemes is more obvious,since the BH and TC schemes cause a slight warming of the order of+1 W m?2over the central domain,and cooling over the western domain(?2 W m?2).However,the R6 scheme results in cooling over both regions by less than?20 W m?2.Our simulations show that the precipitation in West and Central Africa,during the WAM period,is likely to be highly sensitive to the parameterization or treatment of the indirect effect in models,and the inclusion of aerosol indirect effects helps significantly in improving the agreement between measurements and model results.

    Finally,the analysis of the average WAM circulation and convective heating rate under the inf l uence of aerosols shows that the first indirect effect and R6 scheme weaken the WAM main circulation,which in turn suppresses precipitation due to two different pathways.

    Acknowledgements.The authors would like to thank both of the NOAA/OAR/ESRL PSD,Boulder,Colorado,USA,for providing the NCEP Reanalysis 2 data on their web site at http://www.esrl.noaa.gov/psd/,and ICTP on their website at http://clima-dods.ictp.it/data/regcm4/NNRP2/.

    Albrecht,B.A.,1989:Aerosols,cloud microphysics,and fractional cloudiness.Science,245,1227–1230,https://doi.org/10.1126/science.245.4923.1227.

    Beheng,K.D.,1994:A parameterization of warm cloud microphysical conversion processes.Atmo.Res.,33,193–206,https://doi.org/10.1016/0169-8095(94)90020-5.

    Chiapello,I.,C.Moulin,and J.M.Prospero,2005:Understanding the long-term variability of African dust transport across the Atlantic as recorded in both Barbados surface concentrations and large-scale total ozone mapping spectrometer(TOMS)optical thickness.J.Geophys.Res.,110,D18S10,https://doi.org/10.1029/2004JD005132.

    Costantino,L.,and F.M.Br′eon,2013:Aerosol indirect effect on warm clouds over South-East Atlantic,from co-located MODIS and CALIPSO observations.Atmospheric Chemistry and Physics,13,69–88,https://doi.org/10.5194/acp-13-69-2013.

    Dickinson,R.E.,Henderson-Sellers,A.,and P.J.Kennedy,1993:Biosphere-atmosphere transfer scheme(BATS)version 1e as coupled to the NCAR community climate model.National Center for Atmospheric Research Technical Note NCAR.TN-387+STR,72 pp.

    Emmons,L.K.,and Coauthors,2010:Description and evaluation oftheModelforOzoneandRelatedchemicalTracers,version 4(MOZART-4).Geoscientific Model Development,3,43–67,https://doi.org/10.5194/gmd-3-43-2010.

    Fan,J.W.,Y.Wang,D.Rosenfeld,and X.H.Liu,2016:Review of aerosol-cloud interactions: Mechanisms,significance,and challenges.J.Atmos.Sci.,73,4221–4252,https://doi.org/10.1175/JAS-D-16-0037.1.

    Fritsch,J.M.,and C.F.Chappell,1980: Numerical prediction of convectively driven mesoscale pressure systems.Part 1:Convective parameterization.J.Atmos.Sci.,37,1722–1733,https://doi.org/10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2.

    Gautam,R.,and Coauthors,2011:Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas:Distribution,properties and radiative effects during the 2009 pre-monsoon season.Atmos.Chem.Phys.,11,12 841–12 863,https://doi.org/10.5194/acp-11-12841-2011.

    Giorgi,F.,1989: Two-dimensional simulations of possible mesoscale effects of nuclear war fires.I:Model description.J.Geophys.Res.,94,1127–1144,https://doi.org/10.1029/JD094iD01p01127.

    Giorgi,F.,and W.L.Chameides,1986:Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model.J.Geophys.Res.,91,14 367–14 376,https://doi.org/10.1029/JD091iD13p14367.

    Giorgi,F.,and Coauthors,2012:RegCM4:Model description and preliminary tests over multiple CORDEX domains.Climate Research,52,7–29,https://doi.org/10.3354/cr01018.

    Giorgi,F.,M.R.Marinucci,and G.T.Bates,1993:Development of a second-generation regional climate model(RegCM2).Part I:Boundary-layer and radiative transfer processes.Mon.Wea.Rev.,121,2794–2813,https://doi.org/10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2.

    Grell,G.A,1993: Prognostic evaluation of assumptions usedbycumulusparameterizations.Mon.Wea.Rev.,121,764–787,https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    Gu,Y.,K.N.Liou,J.H.Jiang,H.Su,and X.Liu,2012:Dust aerosol impact on North Africa climate:A GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data.Atmos.Chem.Phy.Discuss.,11,1667–1679,https://doi.10.5194/acpd-11-31401-2011.

    Gu,Y.,K.N.Liou,Y.Xue,C.R.Mechoso,W.Li,and Y.Luo,2006:Climatic effects of different aerosol types in China simulated by the UCLA general circulation model.J.Geophys.Res.,111,D15201,https://doi.org/10.1029/2005 JD006312.

    Gultepe,I.,and G.A.Isaac,1997:Liquid water content and temperature relationship from aircraft observations and its applicability to GCMs.J.Climate,10,446–452,https://doi.org/10.1175/1520-0442(1997)010<0446:LWCATR>2.0.CO;2.

    Hegg,D.A.,1994:Cloud condensation nucleus-sulphate mass relationship and cloud albedo.J.Geophys.Res.,99,25 903–25 907,https://doi.org/10.1029/94JD02224.

    Holtslag,A.A.M.,E.I.F.de Bruijn,and H.L.Pan,1990:A high resolution air mass transformation model forshort-rangeweatherforecasting.Mon.Wea.Rev.,118,1561–1575,https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2.

    Hsu,N.C.,S.C.Tsay,M.D.King,and J.R.Herman,2006:Deep blue retrievals of Asian aerosol properties during ACEAsia.IEEE Trans.Geosci.Remote Sens.,44,3180–3195,https://doi.org/10.1109/TGRS.2006.879540.

    Huang,J.F.,C.D.Zhang,and J.M.Prospero,2009:African aerosol and large-scale precipitation variability over West Africa.Environ.Res.Lett.,4,015006,https://doi.org/10.1088/1748-9326/4/1/015006.

    Huang,Y.,2005:Assessments of the direct and indirect effects of anthropogenic aerosols on regional precipitation over east Asia using a coupled regional climate-chemistry-aerosol model.PhD dissertation,Georgia Institute of Technology.

    Huang,Y.,W.L.Chameides,and R.E.Dickinson,2007:Direct and indirect effects of anthropogenic aerosols on regional precipitation over east Asia.J.Geophys.Res.,112,D03212,https://doi.org/10.1029/2006JD007114.

    IPCC,2013:Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press,1535 pp.

    Ji,Z.M.,G.L.Wang,J.S.Pal,and M.Yu,2016:Potential climate effect of mineral aerosols over West Africa.Part I:Model validation and contemporary climate evaluation.Climate Dyn.,46,1223–1239,https://doi.org/10.1007/s00382-015-2641-y.

    Kessler,E.,1969:On the distribution and continuity of water substance in atmospheric circulations.Meteorological Monographs.Vol.10,American Meteorological Society,84 pp,https://doi.org/10.1007/978-1-935704-36-2-1.

    Kiehl,J.T.,J.J.Hack,G.B.Bonan,B.A.Boville,B.P.Briegleb,D.L.Williamson,and P.J.Rasch,1996:Description of the NCAR community climate model(CCM3).Technical Report NCAR/TN-420+STR.

    Kim,K.M.,W.K.M.Lau,Y.C.Sud,and G.K.Walker,2010:In fl uence of aerosol-radiative forcings on the diurnal and seasonal cycles of rainfall over West Africa and Eastern Atlantic Ocean using GCM simulations.Climate Dyn.,35(1),115–126,https://doi.org/10.1007/s00382-010-0750-1.

    Kodros,J.K.,C.E.Scott,S.C.Farina,Y.H.Lee,C.L’Orange,J.Volckens,and J.R.Pierce 2015:Uncertainties in global aerosols and climate effects due to biofuel emissions,Atmos.Chem.Phys.,15,8577–8596,https://doi.org/10.5194/acp-15-8577-2015.

    Konare,A.,A.S.Zakey,F.Solmon,F.Giorgi,S.Rauscher,S.Ibrah,and X.Bi,2008:A regional climate modeling study of the effect of desert dust on the West African monsoon.J Geophys.Res.,113:D12206,https://doi.org/10.1029/2007JD009322.

    Levy,R.C.,L.A.Remer,S.Mattoo,E.F.Vermote,and Y.J.Kaufman,2007:Second-generation operational algorithm:Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral refl ectance.J.Geophys.Res.,112,D13211,https://doi.org/10.1029/2006JD007811.

    Liu,Y.G.,and P.H.Daum,2004:Parameterization of the autoconversion process.Part I:Analytical formulation of the Kessler-type parameterizations.J.Atmos.Sci.,61,1539–1548,https://doi.org/10.1175/1520-0469(2004)061<1539:POTAPI>2.0.CO;2.

    Liu,Y.G.,P.H.Daum,and R.McGraw,2004:An analytical expression for predicting the critical radius in the autoconversion parameterization.Geophys.Res.Lett.,31,L06121,https://doi.org/10.1029/2003GL019117.

    Liu,Y.G.,P.H.Daum,R.L.McGraw,M.A.Miller,and S.J.Niu,2007:Theoretical expression for the autoconversion rate of the cloud droplet number concentration.Geophys.Res.Lett.,34,L16821,https://doi.org/10.1029/2007GL030389.

    Lohmann,U.,and J.Feichter,1997:Impact of sulfate aerosols on albedo and lifetime of clouds:A sensitivity study with the ECHAM4 GCM.J.Geophys.Res.,102,13 685–13 700,https://doi.org/10.1029/97JD00631.

    Martin,G.M.,D.W.Johnson,and A.Spice,1994:The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds.J.Atmos.Sci.,51,1823–1842,https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    Mitchell,T.D.,and P.D.Jones,2005:An improved method of constructing a database of monthly climate observations and associated high-resolution grids.International Journal of Climatology,25(6),693–712,https://doi.org/10.1002/joc.1181.

    Olivier,J.G.J.,J.J.M.Berdowski,J.A.H.W.Peters,J.Bakker,A.J.H.Visschedijk,and J.-P.J.Bloos,2001:Applications of EDGAR.Including a description of EDGAR 3.0:Reference database with trend data for 1970-1995.RIVM,Bilthoven.RIVM report no.773301 001/NOP report no.410200 051.

    Pal,J.S.,E.E.Small,and E.A.B.Eltahir,2000:Simulation of regional-scale water and energy budgets:Representation of subgrid cloud and precipitation processes within RegCM.J.Geophys.Res.,105,29 579–29 594,https://doi.org/10.1029/2000JD900415.

    Pruppacher,H.R.,and J.D.Klett,1997:Microphysics of Clouds and Precipitation.2nd ed.,Springer,954 pp.

    Qian,Y.,and F.Giorgi,1999: Interactive coupling of regional climate and sulfate aerosol models over eastern Asia.J.Geophys.Res.,104,6477–6499,https://doi.org/10.1029/98JD02347.

    Rogers,R.R.,and M.K.Yau,1989:A Short Course in Cloud Physics.3rd ed.,Oxford,Pergamon,UK.

    Rotstayn,L.D.,and Y.G.Liu,2005:A smaller global estimate of the second indirect aerosol effect.Geophys.Res.Lett.,32,L05708,https://doi.org/10.1029/2004GL021922.

    Schultz,M.G.,and Coauthors,2007:REanalysis of the TRO-pospheric chemical composition over the past 40 years—A long-term global modeling study of tropospheric chemistry funded under the 5th EU Framework Programme 2007.Technical Report,EU-Contract No.EVK2-CT-2002-00170,20 pp.[Available online at http://retro.enes.org/reports/D1–6-final.pdf]

    Seinfeld,J.H.,and S.N.Pandis,2006:Atmospheric Chemistry and Physics:From Air Pollution to Climate Change.2nd ed.,Wiley-Interscience.

    Solmon,F.,F.Giorgi,and C.Liousse,2006:Aerosol modelling for regional climate studies:Application to anthropogenic particles and evaluation over a European/African domain.Tellus,58B,51–72,https://doi.org/10.1111/j.1600-0889.2005.00155.x.

    Solmon,F.,N.Elguindi,and M.Mallet,2012:Radiative and climatic effects of dust over West Africa,as simulated by a regional climate model.Climate Research,52,97–113,https://doi.org/10.3354/cr01039.

    Sylla,M.B.,E.Coppola,L.Mariotti,F.Giorgi,P.M.Ruti,A.Dell’Aquila,and X.Bi,2010:Multiyear simulation of the african climate using a regional climate model(RegCM3)with the high resolution ERA-interim reanalysis.Climate Dyn.,35,231–274,https://doi.org/10.1007/s00382-009-0613-9.

    Tripoli,G.J.,and W.R.Cotton,1980:A numerical investigation of several factors contributing to the observed variable intensity of deep convection over South Florida.J.Atmos.Sci.,19,1037–1063,https://doi.org/10.1175/1520-0450(1980)019<1037:ANIOSF>2.0.CO;2.

    Twomey,S.,1977:The in fl uence of pollution on the shortwave albedo of clouds.J.Atmos.Sci.,34,1149–1152,https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    7 April 2017;revised 30 July 2017;accepted 5 September 2017)

    :Salah,Z.,A.Shalaby,A.L.Steiner,A.S.Zakey,R.Gautam,and M.M.Abdel Wahab,2018:Study of aerosol direct and indirect effects and auto-conversion processes over the West African monsoon region using a regional climate model.Adv.Atmos.Sci.,35(2),182–194,https://doi.org/10.1007/s00376-017-7077-3.

    ?Corresponding author:Zeinab SALAH

    Email:zeinabsalah@gmail.com

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag GmbH Germany,part of Springer Nature 2018

    婷婷六月久久综合丁香| 欧美人与性动交α欧美精品济南到| 99精品久久久久人妻精品| 很黄的视频免费| 国产av一区在线观看免费| 亚洲精品av麻豆狂野| 欧美绝顶高潮抽搐喷水| 久久久久亚洲av毛片大全| 国产精品久久久人人做人人爽| 亚洲精品美女久久av网站| cao死你这个sao货| 日韩一卡2卡3卡4卡2021年| 制服人妻中文乱码| 国产精品乱码一区二三区的特点| 人人妻人人澡欧美一区二区| 女性生殖器流出的白浆| 制服诱惑二区| svipshipincom国产片| 中文资源天堂在线| 天天躁夜夜躁狠狠躁躁| 美女高潮喷水抽搐中文字幕| 国产成人影院久久av| 最新在线观看一区二区三区| 日韩高清综合在线| 两个人视频免费观看高清| 听说在线观看完整版免费高清| 免费高清在线观看日韩| АⅤ资源中文在线天堂| 亚洲男人天堂网一区| 国产av不卡久久| 在线观看一区二区三区| 999久久久国产精品视频| 国产伦在线观看视频一区| 精品日产1卡2卡| 视频在线观看一区二区三区| 亚洲熟妇熟女久久| 一进一出好大好爽视频| 女人高潮潮喷娇喘18禁视频| 欧美国产精品va在线观看不卡| 黄色丝袜av网址大全| 午夜老司机福利片| 日韩三级视频一区二区三区| 成人三级黄色视频| 亚洲av成人一区二区三| 日韩大尺度精品在线看网址| 久久这里只有精品19| a在线观看视频网站| 欧美日韩亚洲综合一区二区三区_| www.999成人在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品,欧美在线| 精品高清国产在线一区| 成人18禁在线播放| 免费观看精品视频网站| 国产片内射在线| 黑人欧美特级aaaaaa片| 国产又黄又爽又无遮挡在线| 国产国语露脸激情在线看| 国产又色又爽无遮挡免费看| av在线播放免费不卡| 亚洲av电影在线进入| 可以在线观看的亚洲视频| 一级毛片女人18水好多| 此物有八面人人有两片| 国产黄色小视频在线观看| 成人国语在线视频| 亚洲国产精品合色在线| 久久国产精品男人的天堂亚洲| 搡老妇女老女人老熟妇| 欧洲精品卡2卡3卡4卡5卡区| 日韩中文字幕欧美一区二区| 日本精品一区二区三区蜜桃| 一进一出抽搐动态| 熟妇人妻久久中文字幕3abv| 午夜a级毛片| 国产精品久久久久久人妻精品电影| 特大巨黑吊av在线直播 | 亚洲精品美女久久av网站| 1024手机看黄色片| 精品国产国语对白av| 神马国产精品三级电影在线观看 | 操出白浆在线播放| 欧美乱码精品一区二区三区| 国产精品香港三级国产av潘金莲| 99riav亚洲国产免费| 午夜久久久久精精品| 麻豆成人av在线观看| 国产免费av片在线观看野外av| 老鸭窝网址在线观看| 国产精品久久电影中文字幕| 国产一级毛片七仙女欲春2 | 又黄又爽又免费观看的视频| av欧美777| 亚洲五月天丁香| 在线播放国产精品三级| 国产精品综合久久久久久久免费| 欧美性猛交╳xxx乱大交人| xxxwww97欧美| 国产乱人伦免费视频| 久热这里只有精品99| 最近最新免费中文字幕在线| 久久青草综合色| 老熟妇仑乱视频hdxx| av有码第一页| 91麻豆av在线| 亚洲精品在线美女| 成人亚洲精品一区在线观看| 国产亚洲欧美精品永久| 亚洲欧美精品综合一区二区三区| 国产一卡二卡三卡精品| 国产欧美日韩一区二区精品| 色综合婷婷激情| 男人舔奶头视频| videosex国产| 叶爱在线成人免费视频播放| 两人在一起打扑克的视频| 午夜亚洲福利在线播放| 久久久久国产一级毛片高清牌| 女性被躁到高潮视频| 久久狼人影院| 久久精品国产亚洲av高清一级| 亚洲国产中文字幕在线视频| 国产伦一二天堂av在线观看| 高清在线国产一区| 少妇 在线观看| 国产三级在线视频| 亚洲av熟女| 丝袜人妻中文字幕| 成人一区二区视频在线观看| 亚洲人成网站在线播放欧美日韩| 精品电影一区二区在线| 国产伦人伦偷精品视频| 国产视频内射| 女同久久另类99精品国产91| 国产又色又爽无遮挡免费看| 禁无遮挡网站| 亚洲在线自拍视频| 亚洲精品一卡2卡三卡4卡5卡| 久久欧美精品欧美久久欧美| 女性生殖器流出的白浆| 法律面前人人平等表现在哪些方面| 国产亚洲精品综合一区在线观看 | 999精品在线视频| 一区福利在线观看| 一级作爱视频免费观看| 国产精品野战在线观看| 国产真人三级小视频在线观看| 亚洲精品粉嫩美女一区| 成人亚洲精品av一区二区| 波多野结衣巨乳人妻| 人人妻人人澡欧美一区二区| 淫秽高清视频在线观看| 99精品久久久久人妻精品| 男女那种视频在线观看| 欧美精品亚洲一区二区| 日韩精品免费视频一区二区三区| 国产欧美日韩一区二区精品| 伦理电影免费视频| www.自偷自拍.com| av有码第一页| 亚洲av第一区精品v没综合| 无人区码免费观看不卡| 啦啦啦韩国在线观看视频| 亚洲熟女毛片儿| 国产一区二区激情短视频| 日韩高清综合在线| 亚洲国产日韩欧美精品在线观看 | 免费人成视频x8x8入口观看| 日韩大码丰满熟妇| 精品久久久久久久毛片微露脸| 午夜福利欧美成人| 国产精品98久久久久久宅男小说| 欧美 亚洲 国产 日韩一| 欧美亚洲日本最大视频资源| 久久精品人妻少妇| 村上凉子中文字幕在线| 久久久久亚洲av毛片大全| 亚洲国产精品sss在线观看| 2021天堂中文幕一二区在线观 | 男女床上黄色一级片免费看| 久久精品91蜜桃| 日本五十路高清| 欧美日韩黄片免| 激情在线观看视频在线高清| 动漫黄色视频在线观看| 美国免费a级毛片| 在线观看舔阴道视频| www日本在线高清视频| 变态另类成人亚洲欧美熟女| 又黄又粗又硬又大视频| 女人爽到高潮嗷嗷叫在线视频| 久热爱精品视频在线9| 精品一区二区三区视频在线观看免费| 久久香蕉精品热| 欧美三级亚洲精品| 欧美又色又爽又黄视频| 色哟哟哟哟哟哟| 老司机靠b影院| av中文乱码字幕在线| 亚洲av成人av| 免费高清在线观看日韩| av超薄肉色丝袜交足视频| 午夜免费激情av| 国内久久婷婷六月综合欲色啪| 久久国产精品影院| 欧美黄色片欧美黄色片| 精品午夜福利视频在线观看一区| 一级a爱视频在线免费观看| 变态另类丝袜制服| 三级毛片av免费| 精品福利观看| 国产91精品成人一区二区三区| 18禁黄网站禁片午夜丰满| 国产激情欧美一区二区| 村上凉子中文字幕在线| 大型av网站在线播放| 欧美最黄视频在线播放免费| 老司机靠b影院| 亚洲av成人av| 国产成人欧美在线观看| 一级黄色大片毛片| 亚洲av电影在线进入| 可以在线观看的亚洲视频| 亚洲av五月六月丁香网| 国产欧美日韩一区二区三| 亚洲色图 男人天堂 中文字幕| 国产aⅴ精品一区二区三区波| 亚洲精品一卡2卡三卡4卡5卡| 国产精品九九99| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人一区二区三区免费视频网站| 一区二区三区激情视频| 欧美黑人欧美精品刺激| 搡老妇女老女人老熟妇| 免费在线观看日本一区| 日韩欧美国产一区二区入口| 免费看十八禁软件| 国产精品一区二区免费欧美| 美女午夜性视频免费| 最近最新中文字幕大全免费视频| 一级毛片高清免费大全| 国产三级在线视频| 精品欧美国产一区二区三| 人人澡人人妻人| 午夜两性在线视频| 18禁美女被吸乳视频| 国产亚洲欧美精品永久| 嫩草影视91久久| 久久中文字幕一级| 久久热在线av| 99国产精品一区二区三区| 一边摸一边做爽爽视频免费| av天堂在线播放| 女人高潮潮喷娇喘18禁视频| av欧美777| 19禁男女啪啪无遮挡网站| 成年人黄色毛片网站| aaaaa片日本免费| 99热这里只有精品一区 | 两个人看的免费小视频| 91在线观看av| 麻豆久久精品国产亚洲av| 亚洲精品美女久久久久99蜜臀| or卡值多少钱| 精品久久蜜臀av无| 精品不卡国产一区二区三区| 亚洲久久久国产精品| 亚洲欧美精品综合久久99| 国产精品99久久99久久久不卡| 亚洲无线在线观看| 两人在一起打扑克的视频| 少妇熟女aⅴ在线视频| 变态另类丝袜制服| av片东京热男人的天堂| 韩国精品一区二区三区| 国产精华一区二区三区| 亚洲国产日韩欧美精品在线观看 | 日本成人三级电影网站| 精品人妻1区二区| 男女做爰动态图高潮gif福利片| 一本久久中文字幕| 热99re8久久精品国产| 亚洲国产精品久久男人天堂| 99精品在免费线老司机午夜| 日本免费一区二区三区高清不卡| 两个人免费观看高清视频| 国产精品久久久久久精品电影 | 19禁男女啪啪无遮挡网站| 18禁美女被吸乳视频| 亚洲人成电影免费在线| 国产亚洲欧美精品永久| 亚洲欧洲精品一区二区精品久久久| 欧美成人免费av一区二区三区| 欧美黑人欧美精品刺激| 久久久国产欧美日韩av| 国产精品久久久久久精品电影 | 在线国产一区二区在线| 久久精品aⅴ一区二区三区四区| xxxwww97欧美| 亚洲午夜精品一区,二区,三区| 国产私拍福利视频在线观看| 午夜福利在线观看吧| 精品国产乱子伦一区二区三区| 妹子高潮喷水视频| 日韩高清综合在线| 韩国av一区二区三区四区| 欧美黑人欧美精品刺激| 精品午夜福利视频在线观看一区| 久久久国产欧美日韩av| 午夜福利在线观看吧| 欧美乱码精品一区二区三区| 亚洲无线在线观看| 日韩欧美在线二视频| 99久久久亚洲精品蜜臀av| 男女做爰动态图高潮gif福利片| 国产亚洲精品久久久久5区| 欧美另类亚洲清纯唯美| 精品卡一卡二卡四卡免费| 亚洲精品在线观看二区| av视频在线观看入口| 精品日产1卡2卡| av电影中文网址| 午夜免费观看网址| 国产日本99.免费观看| 欧美亚洲日本最大视频资源| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产日韩欧美精品在线观看 | 亚洲精华国产精华精| 久久午夜综合久久蜜桃| 国产一级毛片七仙女欲春2 | 婷婷亚洲欧美| 日本精品一区二区三区蜜桃| 很黄的视频免费| 精品电影一区二区在线| 大型av网站在线播放| 熟妇人妻久久中文字幕3abv| 波多野结衣高清作品| www.熟女人妻精品国产| 美女免费视频网站| 亚洲一卡2卡3卡4卡5卡精品中文| 色哟哟哟哟哟哟| 国内毛片毛片毛片毛片毛片| 69av精品久久久久久| 久热这里只有精品99| 在线观看午夜福利视频| 久久久久精品国产欧美久久久| 亚洲成av人片免费观看| 日本一区二区免费在线视频| 又黄又爽又免费观看的视频| 啦啦啦免费观看视频1| 嫩草影院精品99| 亚洲一区高清亚洲精品| 99久久99久久久精品蜜桃| 亚洲自拍偷在线| 日韩视频一区二区在线观看| 久久这里只有精品19| 国产精品99久久99久久久不卡| avwww免费| www.www免费av| netflix在线观看网站| 欧美又色又爽又黄视频| 欧美性猛交黑人性爽| 国产av又大| 亚洲 欧美一区二区三区| 又黄又粗又硬又大视频| 在线天堂中文资源库| 在线观看免费午夜福利视频| 国产亚洲精品久久久久久毛片| 久久久久久国产a免费观看| www国产在线视频色| 黄色a级毛片大全视频| 黄色 视频免费看| 满18在线观看网站| 首页视频小说图片口味搜索| 国产精品亚洲美女久久久| www.999成人在线观看| 麻豆国产av国片精品| 久久国产亚洲av麻豆专区| 99re在线观看精品视频| 亚洲五月天丁香| 国产片内射在线| 村上凉子中文字幕在线| 黄频高清免费视频| 久久青草综合色| 午夜免费成人在线视频| 欧美激情极品国产一区二区三区| 亚洲国产精品久久男人天堂| 精品国产国语对白av| 国产三级在线视频| 国产成人影院久久av| 法律面前人人平等表现在哪些方面| 欧美亚洲日本最大视频资源| 一级片免费观看大全| 欧美中文日本在线观看视频| 校园春色视频在线观看| 精品久久久久久久人妻蜜臀av| 波多野结衣av一区二区av| 日本 欧美在线| 91在线观看av| 午夜福利在线在线| 欧美性猛交黑人性爽| 亚洲欧美精品综合久久99| 一本精品99久久精品77| 久久精品亚洲精品国产色婷小说| 无遮挡黄片免费观看| 久热这里只有精品99| 亚洲自偷自拍图片 自拍| 黑人操中国人逼视频| 国产精品久久久久久精品电影 | 俺也久久电影网| 99久久综合精品五月天人人| 黄色 视频免费看| 国产高清激情床上av| 中国美女看黄片| 三级毛片av免费| 久久这里只有精品19| 成人三级做爰电影| 自线自在国产av| 美女高潮到喷水免费观看| 精品一区二区三区四区五区乱码| 99国产精品99久久久久| 久久香蕉精品热| 欧美激情 高清一区二区三区| 18美女黄网站色大片免费观看| 正在播放国产对白刺激| 精品国产亚洲在线| 长腿黑丝高跟| 欧美黑人巨大hd| 国产国语露脸激情在线看| 欧美久久黑人一区二区| 亚洲中文字幕一区二区三区有码在线看 | av福利片在线| 欧美另类亚洲清纯唯美| 亚洲色图av天堂| 亚洲精品中文字幕一二三四区| 啦啦啦 在线观看视频| 叶爱在线成人免费视频播放| 两性夫妻黄色片| 中文字幕久久专区| 白带黄色成豆腐渣| 亚洲国产欧美日韩在线播放| 国产一卡二卡三卡精品| 在线观看免费日韩欧美大片| 黄色毛片三级朝国网站| 欧美+亚洲+日韩+国产| 亚洲精品国产精品久久久不卡| 一级作爱视频免费观看| 成人欧美大片| 欧美不卡视频在线免费观看 | 精品一区二区三区av网在线观看| 此物有八面人人有两片| 女性生殖器流出的白浆| 亚洲黑人精品在线| 伦理电影免费视频| 黄网站色视频无遮挡免费观看| 亚洲av美国av| 亚洲黑人精品在线| 亚洲天堂国产精品一区在线| 亚洲精品在线美女| 99热只有精品国产| 欧美黑人巨大hd| 欧美成人免费av一区二区三区| 久久 成人 亚洲| 久久婷婷成人综合色麻豆| 欧美性猛交黑人性爽| 性欧美人与动物交配| www日本在线高清视频| 国产蜜桃级精品一区二区三区| 嫁个100分男人电影在线观看| 99精品在免费线老司机午夜| 大型黄色视频在线免费观看| 欧美日韩乱码在线| 黄色丝袜av网址大全| 日本成人三级电影网站| 免费在线观看完整版高清| 18美女黄网站色大片免费观看| 夜夜躁狠狠躁天天躁| 亚洲国产高清在线一区二区三 | 免费在线观看亚洲国产| 国产熟女xx| 亚洲av美国av| 一本久久中文字幕| 曰老女人黄片| 成在线人永久免费视频| 人人妻人人看人人澡| 黄色女人牲交| 欧美另类亚洲清纯唯美| 久久国产乱子伦精品免费另类| 午夜精品久久久久久毛片777| 国产视频一区二区在线看| 99热只有精品国产| 一本精品99久久精品77| 午夜a级毛片| 国产单亲对白刺激| 日韩国内少妇激情av| 一个人观看的视频www高清免费观看 | 久久久久久久久免费视频了| 久久精品aⅴ一区二区三区四区| 国产v大片淫在线免费观看| ponron亚洲| 亚洲成国产人片在线观看| 身体一侧抽搐| www.www免费av| 精品久久蜜臀av无| 村上凉子中文字幕在线| 最新在线观看一区二区三区| 不卡一级毛片| 一本久久中文字幕| 亚洲三区欧美一区| 亚洲人成77777在线视频| 欧美最黄视频在线播放免费| 亚洲精品色激情综合| 色综合婷婷激情| 国产精品一区二区三区四区久久 | 老熟妇乱子伦视频在线观看| 欧美激情高清一区二区三区| 一级毛片精品| 日韩 欧美 亚洲 中文字幕| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区av网在线观看| 亚洲精品久久成人aⅴ小说| 欧美一级毛片孕妇| 啦啦啦免费观看视频1| 两个人看的免费小视频| 免费电影在线观看免费观看| 校园春色视频在线观看| 国产真人三级小视频在线观看| 国产成人av激情在线播放| 99精品欧美一区二区三区四区| 久久热在线av| 午夜影院日韩av| 观看免费一级毛片| 国产一卡二卡三卡精品| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产欧洲综合997久久, | 色婷婷久久久亚洲欧美| 香蕉丝袜av| 波多野结衣巨乳人妻| 日韩三级视频一区二区三区| 搞女人的毛片| 琪琪午夜伦伦电影理论片6080| 国内久久婷婷六月综合欲色啪| 亚洲国产毛片av蜜桃av| 亚洲成av人片免费观看| 亚洲天堂国产精品一区在线| 国产不卡一卡二| 精品午夜福利视频在线观看一区| 老司机靠b影院| www国产在线视频色| 一级a爱片免费观看的视频| xxx96com| 亚洲国产欧洲综合997久久, | 99精品欧美一区二区三区四区| 国产亚洲精品av在线| 亚洲无线在线观看| 侵犯人妻中文字幕一二三四区| 亚洲欧美一区二区三区黑人| 亚洲成人久久性| 可以在线观看的亚洲视频| 欧美黑人精品巨大| 亚洲男人的天堂狠狠| 国产黄a三级三级三级人| 久久久久久久久免费视频了| 一夜夜www| 亚洲va日本ⅴa欧美va伊人久久| 99在线视频只有这里精品首页| 国产一级毛片七仙女欲春2 | 成人特级黄色片久久久久久久| 99在线视频只有这里精品首页| 黄色毛片三级朝国网站| 久久天躁狠狠躁夜夜2o2o| 美女国产高潮福利片在线看| tocl精华| 午夜福利高清视频| www.精华液| 日韩欧美一区视频在线观看| 波多野结衣巨乳人妻| 亚洲av美国av| 女性被躁到高潮视频| 可以在线观看的亚洲视频| 国产精品影院久久| 熟女少妇亚洲综合色aaa.| 在线天堂中文资源库| 亚洲av中文字字幕乱码综合 | 美女扒开内裤让男人捅视频| 国产不卡一卡二| 制服人妻中文乱码| 香蕉丝袜av| 欧美日韩瑟瑟在线播放| 麻豆成人午夜福利视频| 波多野结衣高清无吗| 精品第一国产精品| 国产精品,欧美在线| 一本综合久久免费| 岛国视频午夜一区免费看| 757午夜福利合集在线观看| 欧美在线一区亚洲| 91字幕亚洲| 国产精华一区二区三区| 日韩 欧美 亚洲 中文字幕| 亚洲中文日韩欧美视频| 欧美激情高清一区二区三区| 99久久久亚洲精品蜜臀av| 国产激情久久老熟女| 一进一出好大好爽视频| 亚洲一区二区三区不卡视频| 99久久无色码亚洲精品果冻| 成人永久免费在线观看视频| 视频在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 亚洲国产中文字幕在线视频| 俄罗斯特黄特色一大片| 欧美绝顶高潮抽搐喷水| bbb黄色大片| 午夜免费成人在线视频|