• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aerosol Properties and Their Impacts on Surface CCN at the ARM Southern Great Plains Site during the 2011 Midlatitude Continental Convective Clouds Experiment

    2018-01-09 05:35:39TimothyLOGANXiquanDONGandBaikeXI
    Advances in Atmospheric Sciences 2018年2期

    Timothy LOGAN,Xiquan DONG,and Baike XI

    1Department of Atmospheric Sciences,Texas A&M University,College Station,TX 77843-3150,USA

    2Department of Hydrology and Atmospheric Sciences,University of Arizona,Tucson,AZ 85721-0081,USA

    Aerosol Properties and Their Impacts on Surface CCN at the ARM Southern Great Plains Site during the 2011 Midlatitude Continental Convective Clouds Experiment

    Timothy LOGAN1,Xiquan DONG?2,and Baike XI2

    1Department of Atmospheric Sciences,Texas A&M University,College Station,TX 77843-3150,USA

    2Department of Hydrology and Atmospheric Sciences,University of Arizona,Tucson,AZ 85721-0081,USA

    Aerosol particles are of particular importance because of their impacts on cloud development and precipitation processes over land and ocean.Aerosol properties as well as meteorological observations from the Department of Energy Atmospheric Radiation Measurement(ARM)platform situated in the Southern Great Plains(SGP)are utilized in this study to illustrate the dependence of continental cloud condensation nuclei(CCN)number concentration(NCCN)on aerosol type and transport pathways.ARM-SGP observations from the 2011 Midlatitude Continental Convective Clouds Experiment field campaign are presented in this study and compared with our previous work during the 2009–10 Clouds,Aerosol,and Precipitation in the Marine Boundary Layer field campaign over the current ARM Eastern North Atlantic site.Northerly winds over the SGP ref l ect clean,continental conditions with aerosol scattering coefficient(σsp)values less than 20 Mm?1and NCCNvalues less than 100 cm?3.However,southerly winds over the SGP are responsible for the observed moderate to high correlation(R)among aerosol loading(σsp> 60 Mm?1)and NCCN,carbonaceous chemical species(biomass burning smoke),and precipitable water vapor.This suggests a common transport mechanism for smoke aerosols and moisture via the Gulf of Mexico,indicating a strong dependence on air mass type.NASA MERRA-2 reanalysis aerosol and chemical data are moderately to highly correlated with surface ARM-SGP data,suggesting that this facility can represent surface aerosol conditions in the SGP,especially during strong aerosol loading events that transport via the Gulf of Mexico.Future long-term investigations will help to understand the seasonal inf l uences of air masses on aerosol,CCN,and cloud properties over land in comparison to over ocean.

    aerosol indirect effect,aerosol transport,biomass burning smoke

    1.Introduction

    Aerosol particles exhibit major impacts on cloud development and precipitation processes(Rosenfeld et al.,2008;Li et al.,2011).Though the aerosol direct effect can simply be thought of as a reduction of incoming solar radiation reaching the Earth’s surface,the aerosol indirect effect(AIE)involves a complex set of aerosol–cloud–precipitation interactions.These indirect effects include the alteration of cloud microphysical properties such as cloud lifetime,droplet size distribution,liquid water content(LWC),ice water content,liquid water path(LWP),ice water path,cloud optical depth,and albedo(Penner et al.,2004;Dong et al.,2005,2006,2014).Precipitation processes will certainly be affected in numerous and,at times,detrimental ways(Wang et al.,2009;Li et al.,2011;Guo et al.,2014).Hence,there is a major impact to society as a whole due to a heavy dependence on the distribution of available water over a given region for public consumption,agriculture,and industrial purposes.

    Urban areas are primary sources of sulfate,nitrate,ammonium,and carbonaceous aerosols generated by factory emissions and car exhaust.Numerous studies have shown that the cloud condensation nuclei(CCN)number concentration(NCCN)typically increases downwind of urban areas,leading to thicker clouds with longer lifetimes and more precipitation(Rosenfeld et al.,2008;Tao et al.,2012;Leng et al.,2014).Biomass smoke aerosols account for over half of the global carbonaceous aerosol content and are produced primarily from agricultural burning and wildfires(Lyons et al.,1998;Reid and Hobbs,1998;Wang et al.,2009).These aerosols are being examined for the potential to perturb cloud development and have been studied in the Amazon and Southeast Asia(Reid and Hobbs,1998;Rosenfeld,1999;Graf et al.,2009)due to their constant generation in these regions.Biomass smoke can either enhance or suppress cloud development depending on the chemical nature of the particles(Rosenfeld,1999;Rosenfeld et al.,2008;Tao et al.,2012).More studies are being conducted in North and Central America due to the possible link between biomass burning smoke and its possible inf l uence on deep convection in the Southern Great Plains(SGP)region of the United States(Wang et al.,2009;Saide et al.,2015).Hence,cloud microphysical properties are sensitive to ambient aerosol particle concentrations;though,admittedly,the science behind this sensitivity is extremely complex(Koren et al.,2005;Rosenfeld et al.,2008;Camponogara et al.,2014;Fan et al.,2015).

    The2011 MidlatitudeContinentalConvectiveClouds Experiment(MC3E)was an intensive field campaign conducted over the SGP region from 22 April to 6 June 2011(Jensen et al.,2016).The primary goal of MC3E was to study not only deep convective cloud microphysical processes,but also the environment in which these clouds develop over land.A combination of surface,aircraft,and satellite observations was collected during the campaign.The Department of Energy(DOE)Atmospheric Radiation Measurement(ARM)facility,located in north-central Oklahoma,provided continuous surface measurements of variables such as aerosol particle physical and chemical properties and NCCN,in addition to local precipitation amounts,throughout the entire campaign period.The comprehensiveness of the multi-platform observations during MC3E made this campaign an ideal test bed for the observational investigation of aerosol inf l uences on continental cloud development.Thus,the MC3E campaign is a fortuitous opportunity to compare aerosol inf l uences on NCCNover land with our previous study that was conducted over the Eastern North Atlantic Ocean site(Logan et al.,2014).

    Theprimary goalsofthiscompanion studyareas follows:(1)analyze the physical and chemical nature and origins of the aerosol particles using ARM-SGP surface-based observations and trajectory analysis during MC3E(25 April to 25 May 2011);and(2)elucidate their ability to activate as CCN,as well as their inf l uences on NCCN,with respect to the nature of the air masses that transport them.This study builds upon the methodology of our previous work by adding a chemical component to verify aerosol type,and using other parameters such as precipitable water vapor(PWV)and LWP to show the dependence of cloud development on aerosol(CCN)and air mass type.Section 2 outlines the methodology,instrumentation,and observations used in this study.Section 3 provides ananalysisoftheaerosolopticalandchemicalproperties,statistical connections with NCCN,identification of the source region of the aerosols during MC3E,and air mass characteristics.Section 4 summarizes the study’s key findings and discusses areas of focus for future research.

    2.Data and methodology

    The ARM-SGP central facility(36.6°N,97.5°W)employs surface-based instruments and remote sensing equipment that can provide continuous measurements of the physical and chemical properties of atmospheric constituents,such as gases,aerosols,and clouds,as well as local meteorological conditions(e.g.,wind,temperature,precipitation,and atmospheric profiles).The facility is located in a region of the United States where it can sample air from surrounding areas and neighboring states,as well as aerosols that advect from the Gulf of Mexico and Central America(Fig.1).The ARM Aerosol Observation System(AOS)has several surfacebased(10 m above ground-level)instruments that can retrieve physical and chemical information of aerosol particles at the lowest levels of the atmosphere.The AOS platform features a nephelometer(Model 3563,TSI,http://www.tsi.com/),a cloud condensation nuclei counter(Droplet Measurement Technologies,http://www.dropletmeasurement.com/),and an Aerodyne Aerosol Chemical Speciation Monitor(ACSM,http://www.aerodyne.com/).

    The nephelometer can measure the aerosol scattering coefficient(σsp)at three wavelengths(450,550,and 700 nm).This instrument uses a filter that captures and analyzes aerosol particles with aerodynamic diameters(i.e.,irregularly shaped particles possessing the same settling velocity of spherical particles of equal size),Dp,of 10μm and lower at 40%relative humidity to minimize any hygroscopic effects(Jefferson,2011).The data are measured at a 1-minute temporal resolution and have been geometrically corrected(Anderson and Ogren,1998).The total aerosol scattering coeffi-cient at the green wavelength(σsp,550)of particles(Dp≤ 10μm)is used to denote aerosol loading and is analogous to similar retrievals of aerosol optical depth(AOD)at the midvisible wavelength(Logan et al.,2014).In general,background continental aerosol loading is typically less than 10 Mm?1,but can be higher depending on the proximity to aerosol source regions,such as urban/industrial centers or agriculture(Bergin,2000;Logan et al.,2014).Therefore,this study denotes σsp,550less than 20 Mm?1as background or“clean”conditions,and strong aerosol loading as having values that exceed 60 Mm?1(three times the background)(Bergin,2000;Logan et al.,2014).

    The single-column Data Management Team Model 1 cloud condensation nuclei counter uses an optical particle counter that measures the surface aerosols that are able to activate as CCN at seven supersaturation levels(Jefferson,2011;Uin,2016).The data have a temporal resolution of 1 h because the CCN counter normally needs roughly 5–10 min to stabilize and measure NCCNat each supersaturation level.This study uses the 0.2%supersaturation level to represent atmospheric conditions of moderate to strong aerosol loading in the presence of low-level clouds(Hudson and Noble,2014;Leng et al.,2014;Liu and Li,2014;Logan et al.,2014).

    Fig.1.Aerosol transport pathways over the ARM-SGP site as given by the mean 850 hPa heights(boundary layer)and backward trajectories over the entire MC3E campaign(25 April to 25 May 2011).Note the average positions of the trough(cyclonic rotation)and two ridges(anticyclonic rotation)are conducive to aerosol and moisture transport from the south(Mexico and the Gulf Region)and continental aerosol transport from the north and west.

    The ACSM employs a thermal vaporization,electron impact ionization mass spectrometer that can measure groundlevel species,such as carbonaceous compounds(black and organic carbon)and ions of sulfate,nitrate,ammonium,and chloride,with a 30-min temporal resolution in units ofμg m?3(Ng et al.,2011).Chemical species such as sulfate,nitrate,and ammonium ions can denote anthropogenic aerosols derived from pollution and agriculture(Hudson et al.,2004;Ng et al.,2011;Liu and Li,2014).Black and organic carboncompoundsarethemaincombustionproductsofbiomass materials(e.g.,trees and vegetation).Therefore,the carbonaceous species concentration is used to denote aerosol particles derived from biomass burning smoke(Ng et al.,2011).Note that,though the ACSM alone is not sufficient to determine aerosol type,it is used in conjunction with the other measurement platforms,trajectory analysis,meteorological observations,and reanalysis data to verify the location and movement of the air masses over aerosol source regions.

    3.Results and discussion

    In this section,we present the trajectory analysis,aerosol,cloud,and moisture environment during MC3E.Furthermore,we discuss the conditions in which aerosol particles can inf l uence NCCNthrough an integrative analysis of ground-based ARM-SGP observations and retrievals.Simulations of AOD and black carbon(BC)data from the second NASA Modern Era Retrospective Reanalysis for Research(MERRA-2)model are used in this study to provide more spatial coverage and lend support to the ARM-SGP measurements during MC3E.Note that this study assumes that aerosol particles originating from the near surface(e.g.,within the boundary layer)serve as the CCN responsible for cloud development(Logan et al.,2014).

    3.1.Dynamics and trajectory analysis

    During the spring months(March,April and May)of 2011,there were numerous episodes of biomass burning smoke being transported via the Gulf of Mexico to the SGP region.Synoptic and mesoscale dynamics play important roles in governing the movement of the air masses that transport aerosols from their source to sink regions(Logan et al.,2010,2014;Tao et al.,2013).Figure 1 shows the NOAA/ESRL reanalysis mean 850 hPa geopotential heights(Kalnay et al.,1996)along with the mean positions of two upper-level high pressure systems(ridges)and an upper-level low pressure system(trough)during the MC3E campaign.A ridge centered over the Atlantic Ocean is responsible for the southerly transport of Gulf of Mexico moisture and aerosols from Mexico and Central America.Continental aerosols are transported from the combination of a ridge centered over the eastern Pacific Ocean and a trough centered near the Great Lakes region.The NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)(Rolph,2012;Draxler and Rolph,2013;Stein et al.,2015)model computes the backward trajectories of parcels within the air masses(Leng et al.,2014).The model is initialized at 1800 UTC and is run each day from 25 April to 25 May 2011 using a height of 500 m(represents near-surface or sub-cloud,boundary layer air).There is a clear distinction between the southerly and northerly trajectories denoting the direction of air transport to the SGP region via continental and marine air masses(Fig.1).

    As illustrated in Fig.2,the trajectories are partitioned by NCCNmagnitude,whichrangefromclean(NCCN<500cm?3)to strongly polluted(NCCN>1500 cm?3)conditions.AOD retrievals from the Moderate Resolution Imaging Spectroradiometer onboard the Terra satellite(MODIS-Terra)Combined Deep Blue/Dark Target product(e.g.,NASA Giovanni)are used to show not only the general aerosol loading during the entire MC3E campaign,but also hotspots of aerosol activity.The cleaner trajectories are primarily from regions north of the ARM-SGP site.This re fl ects source regions of continental air that are generally devoid of active fires( fire data provided by satellite at http://earthdata.nasa.gov/data/nearreal-time-data/data/hazards-and-disasters/ fires).Note that there are few densely populated areas and no megacities along the paths of the clean trajectories.The weakly and moderately polluted trajectories(NCCN~ 500–1500 cm?3)have origins both south and north of the ARM-SGP site and denote air parcels that likely contain aerosols from satellitecon firmed fires in the midwestern and southwestern regions of the United States(Figs.2b and c).The strongly polluted trajectories are mainly observed as coming from the south via the Gulf of Mexico(Fig.2d).Figure 3 illustrates the origins of air masses containing carbonaceous(BC)aerosols.Though the trajectories with the highest BC content come primarily from the south,there are instances of weakly and moderately polluted trajectories originating from the west.During the period of the MC3E campaign,there were confirmed incidences of wild fires and dust events in areas west of the ARM-SGP site.For example,there are instances of elevated mean AOD(~0.2)in the Texas panhandle,northeastern New Mexico,eastern Colorado,and western Arizona.

    As previously discussed,biomass burning smoke has been observed during the spring season over the Gulf of Mexico for decades and is mainly attributed to agricultural burns and wild fires in Mexico and Central America(Peppler et al.,2000;Wang et al.,2009).In addition,the Gulf Coast has numerous urban/industrial areas that include the megacity of Houston,Texas,along with petrochemical facilities and shipping lanes generating pollution throughout the year.The pollution and smoke aerosols tend to be con fined closer to the surface during humid,stagnant conditions,while longrange transported aerosols,in general,are able to reach the surface via subsidence,entrainment,and turbulent processes between the interface of the free troposphere and boundary layer(Leng et al.,2014;Logan et al.,2014;Dong et al.,2015).

    3.2.Physical and chemical properties of aerosol particles and NCCNduring MC3E

    Figure 4a shows the time series of σsp,550,NCCN,and CCN activation rates given by the ratio of condensation nuclei number concentration(NCN)to NCCNfrom 0000 UTC 25 April to 0000 UTC 25 May 2011.In general,NCCNincreases(decreases)with increasing(decreasing)σsp,550,with a strong correlation(R-value)of 0.8,suggesting that the surface aerosol particles easily activate as CCN.In fact,when σsp,550exceeds 60 Mm?1,the NCCNexceeds 1000 cm?3.The highest NCCNvalue(~ 2000 cm?3)corresponds to the highest σsp,550value(~ 100 Mm?1)on 11 May 2011,while the lowest values occur during the period 12–17 May 2011(σsp≤20 Mm?1,NCCN≤500 cm?3).The sharp decrease in NCCNand σspis indicative of a mesoscale precipitation event occurring on 11 May 2011 that removed aerosols via wet deposition(Wang et al.,2016).

    The daily-averaged NCCN/NCNratio values show similar variations,with increases corresponding to periods of strong aerosol loading and decreases corresponding to cleaner conditions.The lowest ratios denote continental aerosols that do not activate efficiently as CCN,such as mineral dust observed over the SGP region by satellite(not shown)on 12–14 May 2011.After the passage of a strong cold front on 11 May 2011,westerly winds transported dust from New Mexico and the Texas panhandle into the region.In this instance,the dust aerosols do not activate well as CCN given the drier conditions after the frontal passage(Logan et al.,2014).Moreover,all ratios that are less than 10%correspond to trajectories that are north and west of the ARM-SGP site(Fig.2 and Fig.3),further denoting continental air.The highest ratios are observed during polluted conditions as a result of smoke being transported from the south,as shown by the trajectories in Fig.2 and Fig.3.The ratios approach 60%on May 11,which suggests the majority of smoke aerosols do activate as CCN.However,it is important to note that aging,hygroscopicity(or“kappa”),and the overall chemical nature of the smoke particles can impact the activation rate and subsequent contribution to overall aerosol loading(Petters and Kreidenweis,2007).In fact,long-term future investigations will attempt to quantify this behavior using more observation and modeling data.

    Figure 4b shows the surface aerosol chemical properties from the AOS measurements where the carbonaceous concentration is dominant with an order of magnitude higher than those from sulfate,ammonium,and nitrate.The maxima of the chemical species concentrations and NCCNare also strongly correlated(R~0.84).This suggests that both smoke and pollution aerosols inf l uence the aerosol particle chemistry,with smoke being the largest contributor(Lyons et al.,1998;Kreidenweis et al.,2001;Hudson et al.,2004;Koren et al.,2005).Note that the smoke aerosols are not initially hygroscopic,but can undergo aging during transport and oxidize to a more water-soluble form,and therefore readily activate as CCN,as demonstrated in the conceptual model depicted in Fig.5.

    PWV is the vertically integrated amount of water vapor in an atmospheric column,while the LWP is the total amount of column liquid water(Liljegren et al.,2001).PWV describes the maximum amount of precipitation observed if all moisture in a given area could condense,while LWP is more related to cloud properties such as droplet size,optical depth,and cloud LWC(Dong et al.,2000).Figure 4c shows examples of collocated peaks of PWV(>30 mm)and LWP(> 1000 g m?2),which denote precipitation events and a subsequent change in air mass(wind direction)from polluted(southerly wind)to clean(northerly wind).This is synonymous with a change in moisture conditions from marine(humid)to continental(dry),which is supported by the trajectory analysis(Fig.2).The overall trend in PWV is similar to the aerosol loading,NCCNand chemical species,with a moderate correlation(R~0.5),suggesting that the water vapor and aerosols are likely in-phase and aligned along the same transport pathway.The observed trends in σsp,NCCN,and PWV during MC3E further illustrate the shared transport pathway of Gulf moisture,pollution,and biomass burning smoke,which stresses the importance of conducting a longterm research effort that investigates the sensitivity of clouds and precipitation processes to changes in air mass type.

    Fig.2.MODIS-Terra AOD with HYSPLIT sub-cloud backward trajectories during MC3E.30-day area-averaged AOD values are used with trajectories denoting clean(blue lines),weakly polluted(purple lines),moderately polluted(black lines),and strongly polluted(red lines)air parcels.Note the trajectories that pass over the Gulf Coast and Gulf of Mexico(to the south)are typically more polluted than trajectories that pass over land(from the north and west).

    Fig.3.As in Fig.2 but for carbonaceous aerosols(BC).Note that,similar to Fig.2,air masses originating from the north contain less BC than air masses originating from the north.Trajectories that are weakly and moderately polluted that originate from the west are indicative of biomass burning smoke from confirmed wildfires within the United States.

    Fig.4.ARM-SGP surface observations and sub-cloud backward trajectory analysis during MC3E:(a)NCCNat 0.2%supersaturation(black diamonds)along with the aerosol scattering coefficient(σsp)at the 550 nm wavelength in units of Mm?1(green solid line),MERRA-2 AOD data(red-diamond line with values multiplied by 175 for fit),and daily-averaged aerosol-to-CCN activation ratios(gold-box line with values multiplied by 100 for fit)on the secondary y-axis;(b)carbonaceous(black solid line)and inorganic chemical constituents(purple,blue,and red solid lines)of the surface aerosols(sulfate,ammonium,and nitrate,respectively)along with MERRA-2 BC data in units of kg m?2(gold-triangle line multiplied by 60 000 for fit);(c)PWV and cloud LWP retrieved from microwave radiometer brightness measurements(black and green solid lines,respectively).

    Fig.5.Conceptual model of a biomass burning smoke particle becoming a cloud droplet(A–C).Thehydrophobicsmokeparticle(A)areagedandoxidizedbysunlightand/orgas-phaseradicals to a more water-soluble form(B)and becomes a CCN.Net condensation(hygroscopic growth)occurs around the smoke particle(C)to create cloud droplets or ice particles(D)depending on the updraft strength in the cloud(i.e.,strong updrafts can lift CCN above the freezing level).

    3.3.MERRA-2 simulations of AOD and BC

    MERRA-2 offers a large improvement over the previous generation of MERRA model data products.MERRA-2 uses an updated version of the NASA Goddard Earth Observing System atmospheric data assimilation system,which is capable of incorporating newer types of satellite data(e.g.,Aura,MODIS,Suomi NPP,GOES)(Buchard et al.,2015;McCarty etal.,2015).The data havea spatial coverageof 0.5°×0.625°and are output either hourly or monthly,with the former being used in this study.The AOD and BC data products are compared with the ARM-SGP σspand carbonaceous content observations during the entire MC3E campaign,along with a heavily polluted episode(5–12 May 2011)over the SGP.

    Figures 4a and 4b show the temporal variations in AOD and BC assimilated by MERRA-2 during MC3E.Compared to the ARM-SGP observations,there are similarities between the MERRA-2 simulations and ARM-SGP observations;notably,sharp increases in aerosols during 30 April to 1 May 2011,a gradual increase during 5–11 May 2011,and peaks at 20 May and 23 May 2011.Recall that the largest aerosol loading occurred on 11 May 2011.Though the trends in MERRA-2 are not perfectly in-phase with the ARM-SGP results,the model does an adequate job of capturing the same timeframe and magnitude of the aerosol episodes as the surface-based instruments.

    The correlations between MERRA-2 and ARM-SGP AOD and BC data are shown in Tables 1 and 2,respectively.In addition,correlations with PWV(moisture content)are also provided.Two scenarios are presented:correlations for the entire month,and a selected pollution event(5–11 May 2011).MERRA-2 AOD has an overall weaker correlation with ARM-SGP σspand NCCNduring MC3E(R < 0.6).This is likely due to a combination of uncertainties associated with comparing column to point measurements and the assumption that all aerosols can act as CCN,especially at the surface.In addition,Buchard et al.(2015)pointed out that the satellite retrieval algorithms used by MERRA-2 suffer from uncertainties in the presence of clouds and have large differences over land and ocean.However,during the pollution episode,where the aerosols and moisture were aligned along the same transport pathway,there are higher correlations between the two datasets(R>0.7).This suggests that the smoke aerosols that dominated the aerosol content do convert to CCN efficiently,especially over the SGP region.Note that,even during the pollution event,the MERRA-2 AOD correlation only increases from 0.31 to 0.5,which again is due to uncertainties in just how efficient the aerosol activation to CCN process is captured in the model,and therefore warrants further study(e.g.,long-term study of the AIE)(Buchard et al.,2015).Two additional causes of uncertainty,(1)representation error between the MERRA-2(column measurement)and surface AOS(point source)datasets and(2)hygroscopic particle swelling that can lead to increases in total AOD,will also be addressed in future long-term studies.

    Table 1.Comparison between MERRA-2 AOD and ARM-SGP using aerosol parameters(AOD,σsp,NCCN,and carbonaceous content)and PWV(moisture parameter).

    Table 2.Comparison between MERRA-2 BC and ARM-SGP using aerosol parameters(AOD,σsp,NCCN,and carbonaceous content)and PWV(moisture parameter).

    There are similar findings when taking into account the MERRA-2 BC product,in that higher correlations are observed with ARM-SGP carbonaceous species measurements during the pollution episode(R>0.8).This suggests that there are probably multiple source regions for the smoke aerosols,especially when the air mass switches from the warm and moist Gulf of Mexico air to drier,continental air that may contain smoke from remnant fires west of the ARM-SGP site.Though the MERRA-2 data product can show a larger picture of the aerosol burden over the SGP,surface-based ARM-SGP observations do show relatively good agreement with the satellite-ingested data assimilation methods used by MERRA-2.

    3.4.Continental boundary layer and marine boundary layer NCCN

    Since it is assumed that boundary layer CCN are the primary agents in cloud development,how do aerosols that activate as CCN over land compare to those over the ocean?Previous work suggests that wind-driven sea salt is the dominant contributor to aerosol content over the ocean and can regularly activate as CCN,thus contributing to cloud formation(Logan et al.,2014;Dong et al.,2015;Wood et al.,2015).Sulfate aerosols and aged biomass burning smoke also make excellent CCN,while mineral dust activates poorly as CCN,though none of these aerosol types was consistently observed over the Azores region in the study by Logan et al.(2014);specifically,there were only seven cases of moderate aerosol loading(σsp> 30 Mm?1)over 19 months.

    Over land,the present study shows that biomass burning smoke is an excellent source of continental boundary layer CCN,and has similar episodic intrusions.A future goal of this line of study is to compare and contrast long-term cloud development over land and ocean as a function of the AIE in both regions using surface-based,satellite-retrieved and reanalysis data products of aerosol,cloud,and precipitation properties.In addition,model simulations will also be performed to see which aerosol types have the greatest impacts on precipitation processes.

    4.Summary and conclusions

    Aerosols and their ability to activate as CCN are investigated over land using observations from the 2011 MC3E campaign conducted over the SGP region of the United States.Trajectory analysis shows that many of the aerosols responsible for increases in NCCNhave source regions in Mexico,Central America,and along the Gulf Coast.Further analysis suggests these aerosols consist mainly of biomass burning smoke particles that have been found to easily activate as CCN in a previous study(e.g.,Logan et al.,2014).We present the following conclusions:

    (1)There are moderate to high correlations(R>0.5)between aerosol loading(σsp),NCCN,carbonaceous chemical species,and PWV,suggesting a shared common transport pathway via the Gulf of Mexico and further indicating the dependence on moist,tropical marine air masses for transport.However,NCCNvalues were lowest when a clean,continental air mass was in place over the SGP,except for instances of active wildfires within the region of inf l uence of the air mass.

    (2)When comparing ARM-SGP surface observations with the larger spatial coverage MERRA-2 reanalysis data,there is good agreement between the two platforms,suggesting that the ARM-SGP site can serve as a suitable,representative measurement platform,especially during periods of heavy aerosol loading episodes during the spring months when biomass smoke is almost always present over the Gulf of Mexico and transported to the SGP region of the United States.This could aid future investigations looking into the AIE in terms of cloud development over land.

    (3)As compared with our previous study,Logan et al.(2014),it is evident that there are some similarities and differences between how aerosols impact NCCNover ocean and land.Both regions see increases in NCCNwhen biomass burning smoke is the dominant aerosol type but is only observed periodically.In contrast,during clean conditions over the ocean,sea salt is the main contributor to CCN production,and strong(weak)surface winds and turbulent conditions can enhance(diminish)NCCNproduction(Dong et al.,2015).Over land,there is a strong dependence of NCCNon changes in air mass type from marine to continental(Leng et al.,2014).Further research involving the AIE will focus on examining,over the long-term,how air masses inf l uence cloud properties and precipitation processes over land and ocean.

    Acknowledgements.The surface aerosol data were obtained from the ARM Program sponsored by the U.S.DOE Office of Energy Research,Office of Health and Environmental Research,and Environmental Sciences Division.The meteorological data for Figs.1–3 were obtained from the NOAA ESRL Physical Sciences Division in Boulder,Colorado(http://www.esrl.noaa.gov/psd/).The authors wish to thank the scientists at the DOE ARM-SGP site for maintaining the data used in this study.Analyses and visualizations used in this paper were produced with the NASA Giovanni online data system,developed and maintained by the NASA GES DISC(found at http://giovanni.gsfc.nasa.gov/giovanni/).The authors deeply appreciate the comments and suggestions from the anonymous reviewers of this manuscript.This research was supported by National Science Foundation Collaborative Research under the award number AGS-1700728 at the University of Arizona and AGS-1700796 at Texas A&M University.

    Anderson,T.L.,andJ.A.Ogren,1998:Determiningaerosolradiative properties using the TSI 3563 integrating nephelometer.Aerosol Science and Technology,29,57–69,https://doi.org/10.1080/02786829808965551.

    Bergin,M.H.,2000:Aerosol radiative properties and their impacts.From Weather Forecasting to Exploring the Solar System,C.Boutron,Ed.,EDP Sciences,51–65.

    Buchard,V.,and Coauthors,2015:Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis.Atmos.Chem.Phys.,15,5743–5760,https://doi.org/10.5194/acp-15-5743-2015.

    Camponogara,G.,M.A.F.Silva Dias,and G.G.Carri′o,2014:Relationship between Amazon biomass burning aerosols and rainfall over the La Plata Basin.Atmos.Chem.Phys.,14,4397–4407,https://doi.org/10.5194/acp-14-4397-2014.

    Dong,X.Q.,P.Minnis,T.P.Ackerman,E.E.Clothiaux,G.G.Mace,C.N.Long,and J.C.Liljegren,2000:A 25-month database of stratus cloud properties generated from groundbased measurements at the Atmospheric Radiation MeasurementSouthernGreatPlainsSite.J.Geophys.Res.,105,4529–4537,https://doi.org/10.1029/1999JD901159.

    Dong,X.Q.,P.Minnis,and B.K.Xi,2005:A climatology of midlatitude continental clouds from the ARM SGP central facility:Part I:Low-level cloud macrophysical,microphysical,and radiative properties.J.Climate,18,1391–1410,https://doi.org/10.1175/JCLI3342.1.

    Dong,X.Q.,B.K.Xi,and P.Minnis,2006:A climatology of midlatitude continental clouds from the ARM SGP central facility.Part II:Cloud fraction and surface radiative forcing.J.Climate,19,1765–1783,https://doi.org/10.1175/JCLI3710.1.

    Dong,X.Q.,B.K.Xi,A.Kennedy,P.Minnis,and R.Wood,2014:A 19-month record of marine aerosol-cloud-radiation properties derived from DOE ARM mobile facility deployment at the Azores.Part I:Cloud fraction and single-layered MBL cloud properties.J.Climate,27,3665–3682,https://doi.org/10.1175/JCLI-D-13-00553.1.

    Dong,X.Q.,A.C.Schwantes,B.K.Xi,and P.Wu,2015:Investigation of the marine boundary layer cloud and CCN properties under coupled and decoupled conditions over the Azores.J.Geophys.Res.,120,6179–6191,https://doi.org/10.1002/2014JD022939.

    Draxler,R.R.,and G.D.Rolph,2013:HYSPLIT(HYbrid Single-Particle Lagrangian Integrated Trajectory)Model access via NOAA ARL READY Website.NOAA Air Resources Laboratory,Silver Spring,MD.[Available online from http://ready.arl.noaa.gov/HYSPLIT.php]

    Fan,J.W.,and Coauthors,2015:Improving representation of convective transport for scale-aware parameterization:1.Convection and cloud properties simulated with spectral bin and bulk microphysics.J.Geophys.Res.,120,3485–3509,https://doi.org/10.1002/2014JD022142.

    Graf,H.-F.,J.Yang,and T.M.Wagner,2009:Aerosol effects on clouds and precipitation during the 1997 smoke episode in Indonesia.Atmos.Chem.Phys.,9,743–756,https://doi.org/10.5194/acp-9-743-2009.

    Guo,X.L.,D.H.Fu,X.Guo,and C.M.Zhang,2014:A case study of aerosol impacts on summer convective clouds and precipitation over northern China.Atmos.Res.,142,142–157,https://doi.org/10.1016/j.atmosres.2013.10.006.

    Hudson,J.G.,and S.Noble,2014:CCN and vertical velocity inf l uences on droplet concentrations and supersaturations in clean and polluted stratus clouds.J.Atmos.Sci.,71,312–331,https://doi.org/10.1175/JAS-D-13-086.1.

    Hudson,P.K.,and Coauthors,2004:Biomass-burning particle measurements:Characteristic composition and chemical processing.J.Geophys.Res.,109,D23S27,https://doi.org/10.1029/2003JD004398.

    Jefferson,A.,2011:Aerosol Observing System(AOS)handbook.Tech.Rep.DOE/SC-ARM/TR-014,U.S.Department of Energy,Washington,D.C.

    Jensen,M.P.,and Coauthors,2016:The midlatitude continental convective clouds experiment(MC3E).Bull.Amer.Meteor.Soc.,97,1667–1686,https://doi.org/10.1175/BAMS-D-14-00228.1.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77,437–471,https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Koren,I.,Y.J.Kaufman,D.Rosenfeld,L.A.Remer,and Y.Rudich,2005:Aerosol invigoration and restructuring of Atlantic convective clouds.Geophys.Res.Lett.,32,L14828,https://doi.org/10.1029/2005GL023187.

    Kreidenweis,S.M.,L.A.Remer,R.Bruintjes,and O.Dubovik,2001:Smoke aerosol from biomass burning in Mexico:Hygroscopic smoke optical model.J.Geophys.Res.,106,4831–4844,https://doi.org/10.1029/2000JD900488.

    Leng,C.,and Coauthors,2014:Variations of cloud condensation nuclei(CCN)andaerosolactivityduringfog–hazeepisode:A case study from Shanghai.Atmos.Chem.Phys.,14,12 499–12 512,https://doi.org/10.5194/acp-14-12499-2014.

    Li,Z.Q.,F.Niu,J.W.Fan,Y.G.Liu,D.Rosenfeld,and Y.N.Ding,2011:Long-term impacts of aerosols on the vertical development of clouds and precipitation.Nat.Geosci.,4,888–894,https://doi.org/10.1038/ngeo1313.

    Liljegren,J.C.,E.E.Clothiaux,G.G.Mace,S.Kato,and X.Q.Dong,2001:A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature.J.Geophys.Res.,106,14 485–14 500,https://doi.org/10.1029/2000JD900817.

    Liu,J.J.,and Z.Q.Li,2014:Estimation of cloud condensation nuclei concentration from aerosol optical quantities:Inf l uential factors and uncertainties.Atmos.Chem.Phys.,14,471–483,https://doi.org/10.5194/acp-14-471-2014.

    Logan,T.,B.K.Xi,X.Q.Dong,R.Obrecht,Z.Q.Li,and M.Cribb,2010:A study of Asian dust plumes using satellite,surface,and aircraft measurements during the INTEX-B field experiment.J.Geophys.Res.,115,D00K25,https://doi.org/10.1029/2010JD014134.

    Logan,T.,B.K.Xi,and X.Q.Dong,2014:Aerosol properties and their inf l uences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores.J.Geophys.Res.,119,4859–4872,https://doi.org/10.1002/2013JD021288.

    Lyons,W.A.,T.E.Nelson,E.R.Williams,J.A.Cramer,and T.R.Turner,1998:Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires.Science,282,77–80,https://doi.org/10.1126/science.282.5386.77.

    McCarty,W.,D.Considine,T.Lee,C.Randles,L.Coy,K.Wargan,M.Bosilovich,and R.Gelaro,2015:Use of Satellite Observations in NASA Reanalyses:MERRA-2 and Future Plans.Tech.Rep.NASA CGMS-43 NASA-WP-06,v1,1–15.

    Ng,N.L.,and Coauthors,2011:An aerosol chemical speciation monitor(ACSM)for routine monitoring of the composition and mass concentrations of ambient aerosol.Aerosol Science and Technology,45,780–794,https://doi.org/10.1080/02786826.2011.560211.

    Penner,J.E.,X.Q.Dong,and Y.Chen,2004:Observational evidence of a change in radiative forcing due to the indirect aerosol effect.Nature,427,231–234,https://doi.org/10.1038/nature02234.

    Peppler,R.A.,and Coauthors,2000:ARM southern Great Plains site observations of the smoke pall associated with the 1998 Central American fires.Bull.Amer.Meteor.Soc.,81,2563–2591,https://doi.org/10.1175/1520-0477(2000)081<2563:ASGPSO>2.3.CO;2.

    Petters,M.D.,and S.M.Kreidenweis,2007:A single parameter representation of hygroscopic growth and cloud condensation nucleus activity.Atmos.Chem.Phys.,7,1961–1971,https://doi.org/10.5194/acp-7-1961-2007.

    Reid,J.S.,and P.V.Hobbs,1998:Physical and optical properties of young smoke from individual biomass fires in Brazil.J.Geophys.Res.,103,32 013–32 030,https://doi.org/10.1029/98JD00159.

    Rolph,G.D.,2012:Real-time Environmental Applications and Display sYstem(READY)Website(Available online from http://ready.arl.noaa.gov).NOAA Air Resources Laboratory,Silver Spring,MD.

    Rosenfeld,D.,1999:TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall.Geophys.Res.Lett.,26,3105–3108,https://doi.org/10.1029/1999GL 006066.

    Rosenfeld,D.,U.Lohmann,G.B.Raga,C.D.O’Dowd,M.Kulmala,S.Fuzzi,A.Reissell,and M.O.Andreae,2008:Flood or drought:How do aerosols affect precipitation?Science,321,1309–1313,https://doi.org/10.1126/science.1160606.

    Saide,P.E.,and Coauthors,2015:Central American biomass burning smoke can increase tornado severity in the U.S.Geophys.Res.Lett.,42,956–965,https://doi.org/10.1002/2014GL062826.

    Stein,A.F.,R.R.Draxler,G.D.Rolph,B.J.B.Stunder,M.D.Cohen,and F.Ngan,2015:NOAA’s HYSPLIT atmospheric transport and dispersion modeling system.Bull.Amer.Meteor.Soc.,96,2059–2077,https://doi.org/10.1175/BAMS-D-14-00110.1.

    Tao,W.-K.,J.-P.Chen,Z.Q.Li,C.E.Wang,and C.D.Zhang,2012:Impact of aerosols on convective clouds and precipitation.Rev.Geophys.,50,RG2001,https://doi.org/10.1029/2011RG000369.

    Tao,W.-K.,and Coauthors,2013:Precipitation intensity and variation during MC3E:A numerical modeling study.J.Geophys.Res.,118,7199–7218,https://doi.org/10.1002/jgrd.50410.

    Uin,J.,2016:Cloud condensation nuclei particle counter instrument handbook.DOE/SC-ARM-TR-168,1-9.

    Wang,J.,S.C.van den Heever,and J.S.Reid,2009:A conceptual model for the link between Central American biomass burning aerosols and severe weather over the south central United States.Environ.Res.Lett.,4,015003,https://doi.org/10.1088/1748-9326/4/1/015003.

    Wang,J.Y.,X.Q.Dong,B.K.Xi,and A.J.Heymsfield,2016:Investigation of liquid cloud microphysical properties of deep convective systems:1.Parameterization raindrop size distribution and its application for stratiform rain estimation.J.Geophys.Res.,121,10 739–10 760,https://doi.org/10.1002/2016JD024941.

    Wood,R.,and Coauthors,2015:Clouds,aerosols,and precipitation in the marine boundary layer:An arm mobile facility deployment.Bull.Amer.Meteor.Soc.,96,419–440,https://doi.org/10.1175/BAMS-D-13-00180.1.

    7 February 2017;revised 7 April 2017;accepted 22 May 2017)

    :Logan,T.,X.Q.Dong,and B.K.Xi,2018:Aerosol properties and their impacts on surface CCN at the ARM Southern Great Plains site during the 2011 Midlatitude Continental Convective Clouds Experiment.Adv.Atmos.Sci.,35(2),224–233,https://doi.org/10.1007/s00376-017-7033-2.

    ?Corresponding author:Xiquan DONG

    Email:xdong@email.arizona.edu

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag GmbH Germany,part of Springer Nature 2018

    街头女战士在线观看网站| 夫妻午夜视频| 青春草亚洲视频在线观看| 亚洲色图综合在线观看| 午夜福利视频精品| 美女内射精品一级片tv| 日本欧美国产在线视频| 亚洲精品一区蜜桃| 亚洲人成77777在线视频| 欧美精品一区二区免费开放| 天美传媒精品一区二区| 飞空精品影院首页| 五月开心婷婷网| 欧美日韩在线观看h| 91久久精品国产一区二区三区| 女性被躁到高潮视频| 亚洲美女搞黄在线观看| 女性生殖器流出的白浆| 国产国语露脸激情在线看| 中文字幕最新亚洲高清| 999精品在线视频| 国产又色又爽无遮挡免| 国产黄频视频在线观看| 精品少妇久久久久久888优播| 少妇熟女欧美另类| a级片在线免费高清观看视频| 久久久久久久久久久久大奶| 精品一区在线观看国产| 亚洲精品第二区| 秋霞伦理黄片| freevideosex欧美| 综合色丁香网| 熟妇人妻不卡中文字幕| 色网站视频免费| 国产伦精品一区二区三区视频9| 一区二区三区四区激情视频| 成人二区视频| 国产精品一区二区三区四区免费观看| 日本wwww免费看| 国产免费视频播放在线视频| 精品99又大又爽又粗少妇毛片| 伊人久久精品亚洲午夜| 精品久久久久久久久亚洲| 欧美日韩视频高清一区二区三区二| 日韩一区二区三区影片| 久久av网站| 欧美亚洲 丝袜 人妻 在线| 97在线视频观看| 简卡轻食公司| 久久精品熟女亚洲av麻豆精品| 亚洲欧美一区二区三区黑人 | 成年人免费黄色播放视频| 成人手机av| 美女xxoo啪啪120秒动态图| 国产日韩欧美视频二区| 成年人免费黄色播放视频| 69精品国产乱码久久久| 国模一区二区三区四区视频| 老熟女久久久| 大陆偷拍与自拍| 菩萨蛮人人尽说江南好唐韦庄| 9色porny在线观看| a 毛片基地| 亚洲精品成人av观看孕妇| 草草在线视频免费看| 成年av动漫网址| 欧美激情国产日韩精品一区| 男女啪啪激烈高潮av片| 精品久久久久久电影网| 夫妻午夜视频| 美女cb高潮喷水在线观看| 国产深夜福利视频在线观看| 少妇的逼水好多| 亚洲av二区三区四区| 日本与韩国留学比较| 啦啦啦在线观看免费高清www| videossex国产| 亚洲精品456在线播放app| 18+在线观看网站| 成人亚洲欧美一区二区av| 国产在线免费精品| 国产高清不卡午夜福利| 亚洲激情五月婷婷啪啪| 如日韩欧美国产精品一区二区三区 | 亚洲国产毛片av蜜桃av| 免费人成在线观看视频色| 国产在线免费精品| 日韩人妻高清精品专区| 最新中文字幕久久久久| 一级a做视频免费观看| 久久97久久精品| 欧美日韩av久久| 国产av一区二区精品久久| 91午夜精品亚洲一区二区三区| 国产视频首页在线观看| 18禁动态无遮挡网站| 五月开心婷婷网| 亚洲av.av天堂| 99久国产av精品国产电影| 夜夜爽夜夜爽视频| 男女啪啪激烈高潮av片| 青青草视频在线视频观看| 婷婷色av中文字幕| 免费高清在线观看日韩| 肉色欧美久久久久久久蜜桃| 午夜福利网站1000一区二区三区| 亚洲国产av新网站| 9色porny在线观看| 久久久久精品性色| 亚洲少妇的诱惑av| 91精品三级在线观看| 美女脱内裤让男人舔精品视频| 国产一区二区三区av在线| 亚洲内射少妇av| videossex国产| 成年av动漫网址| 91精品三级在线观看| 久久久午夜欧美精品| 精品一区二区免费观看| 亚洲精品乱久久久久久| 美女xxoo啪啪120秒动态图| 大香蕉97超碰在线| 人妻系列 视频| 少妇精品久久久久久久| 亚洲国产日韩一区二区| 全区人妻精品视频| 国产熟女午夜一区二区三区 | 嘟嘟电影网在线观看| 热99久久久久精品小说推荐| 国产av码专区亚洲av| 少妇丰满av| 成人漫画全彩无遮挡| 嘟嘟电影网在线观看| 国产高清不卡午夜福利| 国产亚洲最大av| 晚上一个人看的免费电影| 色94色欧美一区二区| 在线观看三级黄色| 最近2019中文字幕mv第一页| 伦理电影大哥的女人| 亚州av有码| 最近2019中文字幕mv第一页| 老司机影院毛片| 国产精品人妻久久久影院| 午夜激情av网站| 尾随美女入室| 成人国产av品久久久| 热99久久久久精品小说推荐| 人人妻人人澡人人看| 午夜福利影视在线免费观看| 亚洲国产精品999| 看非洲黑人一级黄片| 性色avwww在线观看| 男女无遮挡免费网站观看| 18在线观看网站| av在线播放精品| 新久久久久国产一级毛片| 日本-黄色视频高清免费观看| 亚洲欧洲日产国产| 丝瓜视频免费看黄片| 午夜福利在线观看免费完整高清在| 午夜久久久在线观看| 啦啦啦啦在线视频资源| 免费观看av网站的网址| 国产成人av激情在线播放 | 成人黄色视频免费在线看| 国模一区二区三区四区视频| 国产毛片在线视频| 草草在线视频免费看| 亚洲欧美中文字幕日韩二区| 女人久久www免费人成看片| 亚州av有码| 建设人人有责人人尽责人人享有的| 女人久久www免费人成看片| 亚洲国产欧美在线一区| 国产精品蜜桃在线观看| 国产免费福利视频在线观看| 狂野欧美激情性xxxx在线观看| 久久久久久久大尺度免费视频| 免费av不卡在线播放| 高清av免费在线| 成人二区视频| 久久久久久久久久久久大奶| 丰满少妇做爰视频| 久久av网站| 国产成人免费观看mmmm| 日本黄色片子视频| 男女免费视频国产| 久久韩国三级中文字幕| 日韩在线高清观看一区二区三区| 久久久久久久久大av| 亚洲欧美一区二区三区国产| 一级毛片黄色毛片免费观看视频| 久久久久久久精品精品| 国产淫语在线视频| 一区二区av电影网| 国产69精品久久久久777片| 久久国产精品大桥未久av| 午夜久久久在线观看| 18禁动态无遮挡网站| 国产成人精品无人区| 黄色怎么调成土黄色| 久久久国产欧美日韩av| 一区在线观看完整版| 国产亚洲精品久久久com| 国产成人午夜福利电影在线观看| 亚洲一级一片aⅴ在线观看| 少妇人妻精品综合一区二区| 夜夜看夜夜爽夜夜摸| 青春草亚洲视频在线观看| 涩涩av久久男人的天堂| 日本与韩国留学比较| 最近手机中文字幕大全| 色5月婷婷丁香| 久久久久久伊人网av| 国产日韩欧美视频二区| 纵有疾风起免费观看全集完整版| 国产免费一区二区三区四区乱码| 赤兔流量卡办理| 极品人妻少妇av视频| 麻豆乱淫一区二区| 日本黄大片高清| 综合色丁香网| 欧美97在线视频| 大香蕉久久成人网| 久久久久精品性色| 日本-黄色视频高清免费观看| 日本av手机在线免费观看| 日韩视频在线欧美| 成人国产av品久久久| 国产一区二区在线观看日韩| 少妇熟女欧美另类| 天天操日日干夜夜撸| 日日摸夜夜添夜夜爱| 亚洲精品久久成人aⅴ小说 | 亚洲精品中文字幕在线视频| 亚洲av中文av极速乱| 午夜91福利影院| av视频免费观看在线观看| 人人妻人人澡人人看| 一级黄片播放器| 国产有黄有色有爽视频| 人人澡人人妻人| 亚洲欧美日韩另类电影网站| 精品少妇黑人巨大在线播放| 少妇被粗大猛烈的视频| 国模一区二区三区四区视频| 日本91视频免费播放| 在线看a的网站| 一级毛片电影观看| 建设人人有责人人尽责人人享有的| 免费大片黄手机在线观看| 久久精品久久久久久噜噜老黄| 91精品国产国语对白视频| 高清在线视频一区二区三区| .国产精品久久| 日韩制服骚丝袜av| 春色校园在线视频观看| 免费少妇av软件| 男女边摸边吃奶| 午夜免费鲁丝| 国产欧美日韩一区二区三区在线 | 亚洲精品第二区| 亚洲第一区二区三区不卡| 久久青草综合色| 精品一品国产午夜福利视频| 免费不卡的大黄色大毛片视频在线观看| 国产一级毛片在线| 欧美亚洲 丝袜 人妻 在线| 日本欧美国产在线视频| 高清午夜精品一区二区三区| 99久久综合免费| 亚洲性久久影院| 久久久国产一区二区| 精品人妻一区二区三区麻豆| 搡女人真爽免费视频火全软件| 亚洲精品成人av观看孕妇| 亚洲欧美一区二区三区黑人 | 一区二区三区四区激情视频| 亚洲久久久国产精品| 国产精品免费大片| 美女中出高潮动态图| 九九久久精品国产亚洲av麻豆| 亚洲精品中文字幕在线视频| 国产精品成人在线| 下体分泌物呈黄色| 亚洲国产精品一区二区三区在线| 欧美 亚洲 国产 日韩一| 女性生殖器流出的白浆| 国产综合精华液| 国产av一区二区精品久久| 国产一区亚洲一区在线观看| 又黄又爽又刺激的免费视频.| 日韩精品有码人妻一区| 如何舔出高潮| 欧美日韩在线观看h| 最近的中文字幕免费完整| 久久人妻熟女aⅴ| 18禁在线无遮挡免费观看视频| 精品人妻熟女毛片av久久网站| 欧美另类一区| 一区二区日韩欧美中文字幕 | 在线观看国产h片| 精品视频人人做人人爽| 777米奇影视久久| av线在线观看网站| 人人妻人人澡人人看| 欧美亚洲日本最大视频资源| 亚洲色图 男人天堂 中文字幕 | 亚洲av在线观看美女高潮| 五月伊人婷婷丁香| 久热久热在线精品观看| 街头女战士在线观看网站| 亚洲五月色婷婷综合| 纵有疾风起免费观看全集完整版| a级毛片黄视频| 在线天堂最新版资源| 久久国产亚洲av麻豆专区| 麻豆成人av视频| 成人影院久久| kizo精华| 99九九线精品视频在线观看视频| 亚洲精品一二三| 欧美另类一区| 国产不卡av网站在线观看| 欧美精品国产亚洲| 国产高清三级在线| av又黄又爽大尺度在线免费看| 国产在线一区二区三区精| 久久精品久久久久久噜噜老黄| 国产一级毛片在线| 看非洲黑人一级黄片| 欧美亚洲日本最大视频资源| 婷婷色综合大香蕉| 妹子高潮喷水视频| 国产熟女午夜一区二区三区 | 一级毛片 在线播放| 老熟女久久久| 国产成人免费观看mmmm| 又黄又爽又刺激的免费视频.| 女人精品久久久久毛片| 日本91视频免费播放| 国产成人91sexporn| 18禁观看日本| 日本wwww免费看| 亚洲美女搞黄在线观看| 亚洲综合色惰| 丁香六月天网| 中国三级夫妇交换| 亚洲av成人精品一区久久| 97超视频在线观看视频| 日韩视频在线欧美| 夫妻午夜视频| 久久亚洲国产成人精品v| 激情五月婷婷亚洲| 亚洲精华国产精华液的使用体验| 久久影院123| 亚洲精品一二三| 搡老乐熟女国产| 少妇的逼水好多| 男女高潮啪啪啪动态图| 欧美激情 高清一区二区三区| 男女国产视频网站| 91精品一卡2卡3卡4卡| a级毛片免费高清观看在线播放| 精品视频人人做人人爽| av一本久久久久| 国产av一区二区精品久久| 免费av中文字幕在线| 80岁老熟妇乱子伦牲交| √禁漫天堂资源中文www| 精品视频人人做人人爽| 丰满乱子伦码专区| a级片在线免费高清观看视频| 中国国产av一级| 中国美白少妇内射xxxbb| 9色porny在线观看| 黄色配什么色好看| 亚洲成人手机| 夜夜看夜夜爽夜夜摸| 欧美 亚洲 国产 日韩一| 制服丝袜香蕉在线| 亚洲欧美中文字幕日韩二区| 国产极品天堂在线| 免费看av在线观看网站| 国产一区二区在线观看日韩| 伊人久久国产一区二区| 亚洲国产欧美在线一区| 少妇被粗大的猛进出69影院 | av国产久精品久网站免费入址| 人人妻人人澡人人爽人人夜夜| 久久韩国三级中文字幕| 你懂的网址亚洲精品在线观看| 国产在视频线精品| 满18在线观看网站| 午夜激情福利司机影院| 如日韩欧美国产精品一区二区三区 | 亚洲精华国产精华液的使用体验| 人人妻人人添人人爽欧美一区卜| 欧美激情极品国产一区二区三区 | 日日啪夜夜爽| 日韩三级伦理在线观看| 午夜视频国产福利| 人人妻人人添人人爽欧美一区卜| 成人亚洲精品一区在线观看| 一区二区三区乱码不卡18| 夜夜看夜夜爽夜夜摸| 老司机影院成人| 人成视频在线观看免费观看| 少妇熟女欧美另类| 国产一区二区在线观看日韩| 精品亚洲成a人片在线观看| 最近最新中文字幕免费大全7| 精品久久久噜噜| 亚洲内射少妇av| 18+在线观看网站| 国产成人av激情在线播放 | 99九九线精品视频在线观看视频| 岛国毛片在线播放| 婷婷色综合www| 少妇 在线观看| 肉色欧美久久久久久久蜜桃| 欧美日韩视频高清一区二区三区二| 日本欧美视频一区| 一区二区av电影网| 亚洲精品456在线播放app| 国产极品天堂在线| 曰老女人黄片| 你懂的网址亚洲精品在线观看| 丝袜美足系列| 久久鲁丝午夜福利片| 成人影院久久| 少妇的逼水好多| 又粗又硬又长又爽又黄的视频| 亚洲av在线观看美女高潮| 免费观看a级毛片全部| 少妇 在线观看| 两个人的视频大全免费| 一本大道久久a久久精品| 夫妻性生交免费视频一级片| 最近中文字幕高清免费大全6| 久久亚洲国产成人精品v| 色哟哟·www| 日韩视频在线欧美| 成人国语在线视频| 亚洲精品一区蜜桃| 草草在线视频免费看| 内地一区二区视频在线| 日韩伦理黄色片| 亚洲精品中文字幕在线视频| 久久99精品国语久久久| 国产精品一二三区在线看| 91aial.com中文字幕在线观看| 蜜桃国产av成人99| 亚洲熟女精品中文字幕| 国产69精品久久久久777片| 蜜臀久久99精品久久宅男| 少妇熟女欧美另类| 亚洲激情五月婷婷啪啪| 国产精品一区www在线观看| 天天操日日干夜夜撸| 国产精品熟女久久久久浪| 午夜福利在线观看免费完整高清在| 亚洲精品国产av成人精品| 99视频精品全部免费 在线| 国产免费一区二区三区四区乱码| 日韩熟女老妇一区二区性免费视频| 亚洲精品av麻豆狂野| 久久精品人人爽人人爽视色| 亚洲国产色片| 91国产中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 亚洲中文av在线| 草草在线视频免费看| 久久久久久人妻| 欧美日韩视频精品一区| 晚上一个人看的免费电影| 久久精品久久久久久噜噜老黄| 亚洲精品国产av蜜桃| 精品国产乱码久久久久久小说| 国产精品蜜桃在线观看| 99热国产这里只有精品6| 国产精品蜜桃在线观看| 观看av在线不卡| 飞空精品影院首页| 久久精品久久久久久噜噜老黄| 如何舔出高潮| av免费观看日本| 18禁动态无遮挡网站| 欧美人与性动交α欧美精品济南到 | 美女中出高潮动态图| 国产男女内射视频| 精品一品国产午夜福利视频| 国产亚洲欧美精品永久| 欧美一级a爱片免费观看看| 在线观看三级黄色| 美女中出高潮动态图| 日本猛色少妇xxxxx猛交久久| 天天影视国产精品| 啦啦啦在线观看免费高清www| 精品久久久噜噜| 国产国拍精品亚洲av在线观看| 美女中出高潮动态图| 九色成人免费人妻av| 美女中出高潮动态图| 亚洲内射少妇av| 久久这里有精品视频免费| 国国产精品蜜臀av免费| 久热这里只有精品99| 久久久精品94久久精品| 蜜桃在线观看..| 99九九线精品视频在线观看视频| 国产成人一区二区在线| 在线观看美女被高潮喷水网站| 成年人免费黄色播放视频| 久久韩国三级中文字幕| 国产男女超爽视频在线观看| 亚洲婷婷狠狠爱综合网| 欧美老熟妇乱子伦牲交| 成年美女黄网站色视频大全免费 | 国产成人精品一,二区| 极品人妻少妇av视频| 久久久国产欧美日韩av| 亚洲av男天堂| 国产日韩欧美亚洲二区| 最新中文字幕久久久久| 极品少妇高潮喷水抽搐| 亚洲av.av天堂| 国产色爽女视频免费观看| 色婷婷av一区二区三区视频| 亚洲图色成人| 国产成人91sexporn| 午夜福利视频在线观看免费| 美女国产视频在线观看| 国产亚洲av片在线观看秒播厂| 成人国语在线视频| 久久久久久久亚洲中文字幕| av又黄又爽大尺度在线免费看| 男女无遮挡免费网站观看| 一级毛片电影观看| 亚洲国产精品999| av在线播放精品| 人人妻人人澡人人爽人人夜夜| 一级毛片我不卡| 男女免费视频国产| 黄色视频在线播放观看不卡| 亚洲激情五月婷婷啪啪| 国产69精品久久久久777片| 五月伊人婷婷丁香| 亚洲精品一区蜜桃| av又黄又爽大尺度在线免费看| 一级毛片aaaaaa免费看小| 久久久久人妻精品一区果冻| 国产探花极品一区二区| 91精品伊人久久大香线蕉| 精品国产一区二区三区久久久樱花| 高清欧美精品videossex| 美女大奶头黄色视频| 天堂俺去俺来也www色官网| 观看av在线不卡| 亚洲少妇的诱惑av| 一级片'在线观看视频| 国产精品人妻久久久久久| 最近中文字幕高清免费大全6| 免费av不卡在线播放| 国产精品久久久久成人av| av网站免费在线观看视频| 日本黄色片子视频| 国产国语露脸激情在线看| 午夜影院在线不卡| 99九九线精品视频在线观看视频| 伦理电影大哥的女人| 国产亚洲精品久久久com| 日韩一本色道免费dvd| 啦啦啦啦在线视频资源| 3wmmmm亚洲av在线观看| 特大巨黑吊av在线直播| 精品久久久久久久久亚洲| 丁香六月天网| 黑人猛操日本美女一级片| 亚洲精品一二三| 成人毛片a级毛片在线播放| 国产亚洲精品久久久com| 国产免费福利视频在线观看| 国产综合精华液| 少妇被粗大的猛进出69影院 | 99久久中文字幕三级久久日本| 秋霞伦理黄片| 综合色丁香网| 国产高清不卡午夜福利| av女优亚洲男人天堂| 亚洲美女黄色视频免费看| 中文字幕免费在线视频6| xxx大片免费视频| 亚洲精品一二三| 国产成人免费无遮挡视频| 精品熟女少妇av免费看| 一级黄片播放器| 亚洲欧洲国产日韩| 午夜影院在线不卡| 青青草视频在线视频观看| 一级毛片黄色毛片免费观看视频| 韩国av在线不卡| 国产伦精品一区二区三区视频9| 性色avwww在线观看| 午夜福利网站1000一区二区三区| 麻豆精品久久久久久蜜桃| 久久久久精品久久久久真实原创| 亚洲国产毛片av蜜桃av| 91久久精品国产一区二区三区| 黄色一级大片看看| 一本一本综合久久| 日本与韩国留学比较| 精品人妻一区二区三区麻豆| 男女高潮啪啪啪动态图|