• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Growth Rates of Fine Aerosol Particles at a Site near Beijing in June 2013

    2018-01-09 05:35:36ChuanfengZHAOYananLIFangZHANGYeleSUNandPucaiWANG
    Advances in Atmospheric Sciences 2018年2期

    Chuanfeng ZHAO,Yanan LI,Fang ZHANG,Yele SUN,and Pucai WANG

    1State Key Laboratory of Earth Surface Processes and Resource Ecology,and College of Global Change and Earth System Science,Beijing Normal University,Beijing 100875,China

    2Joint Center for Global Change Studies,Beijing 100875,China

    3Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100875,China

    Growth Rates of Fine Aerosol Particles at a Site near Beijing in June 2013

    Chuanfeng ZHAO?1,2,Yanan LI1,Fang ZHANG1,Yele SUN3,and Pucai WANG3

    1State Key Laboratory of Earth Surface Processes and Resource Ecology,and College of Global Change and Earth System Science,Beijing Normal University,Beijing 100875,China

    2Joint Center for Global Change Studies,Beijing 100875,China

    3Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100875,China

    Growth of fine aerosol particles is investigated during the Aerosol–CCN–Cloud Closure Experiment campaign in June 2013 at an urban site near Beijing.Analyses show a high frequency(~50%)of fine aerosol particle growth events,and show that the growth rates range from 2.1 to 6.5 nm h?1with a mean value of~ 5.1 nm h?1.A review of previous studies indicates that at least four mechanisms can affect the growth of fine aerosol particles:vapor condensation,intramodal coagulation,extramodal coagulation,and multi-phase chemical reaction.At the initial stage of fine aerosol particle growth,condensational growth usually plays a major role and coagulation efficiency generally increases with particle sizes.An overview of previous studies shows higher growth rates over megacity,urban and boreal forest regions than over rural and oceanic regions.This is most likely due to the higher condensational vapor,which can cause strong condensational growth of fine aerosol particles.Associated with these multiple factors of inf l uence,there are large uncertainties for the aerosol particle growth rates,even at the same location.

    growth rate,fine aerosol particle,Xianghe

    1.Introduction

    Aerosol is ubiquitous in Earth’s atmosphere and causes considerableimpactstosociety,includingchangesinclimate,atmospheric chemistry and human health(IPCC,2007).Fine aerosol particles have strong negative effects on atmospheric visibility and human health by entering the respiratory,circulatory and nervous systems(Harrison and Yin,2000;Kreyling et al.,2004).The climate impact of aerosol is one of the largest uncertainties in current climate model simulations(IPCC,2007),and atmospheric particle formation has been identified as one of the most important aerosol processes that shouldbeexplicitlytreatedinnext-generationclimatemodels(Ghan and Schwartz,2007).Many studies have focused on both the formation and growth of fine aerosol particles(Kulmala et al.,2004a,2012;Spracklen et al.,2006,2010;Yu et al.,2010).

    While aerosol particle formation and growth events can be identified based on the evolution of size distributions and particle number concentrations following the definition of Kulmala et al.(2004a),their quantitative observation requires measurements of aerosol particle size distributions down to sizes as small as 3 nm in diameter(McMurry,2000).Actually,even 3 nm is not small enough to study the aerosol formation process,which is mainly the nucleation process(Kulmala et al.,2004b).Therefore,using aerosol measurements from differential mobility particle sizer or scanning mobility particle sizer(SMPS)systems with a cutoffsize of 3 nm or even larger,is not suitable for the detection of nucleation and the initial steps of particle growth(Kulmala et al.,2004b).In this paper,we only examine the growth of atmospheric fine aerosol with a size range of 10–100 nm without considering the formation process.

    The growth of atmospheric fine aerosol particles is a frequent global phenomenon,and one of the major sources for accumulation-mode(0.1–2.0 μm)aerosol particles in both clean and polluted atmospheres.When fine aerosol particles grow large enough to serve as cloud condensation nuclei(CCN),they modify Earth’s radiation budget by ref l ecting solar radiation directly or indirectly,e.g.via cloud albedo(Twomey,1974;Garrett and Zhao,2006;Lubin and Vogelmann,2006;Spracklen et al.,2008;Zhao et al.,2012),cloud lifetime(Albrecht,1989),or cloud invigoration(Rosenfeld et al.,2008;Li et al.,2011).Thus,it is important to study the growth of fine aerosol particles.

    In recent times,Beijing has continuously experienced many heavy haze events almost every year,and vehicle emis-sions through secondary aerosol formation have become one of the major sources of atmospheric pollution in city.It is therefore important for us to know the frequency of fine aerosol particle growth events and understand the growth rate(GR)of fine aerosol particles.

    In this study,we examine the GRs of fine aerosol particles near Beijing based on 10 fine aerosol particle growth events found during a field experiment in June 2013.We then try to understand the different GRs over several locations found by various studies.

    2.Field experiment

    A comprehensive intensive observation period field experiment concerning aerosol and clouds,called the Aerosol–CCN–Cloud Closure Experiment(AC3E),was carried out during 1–30 June 2013 at Xianghe(39.80°N,116.96°E;35 m above sea level)in Hebei Province,China,located about 60 km southeast of Beijing.Figure 1 shows the location of the site.It lies in a plain area surrounded by agricultural land,densely occupied residences,and light industry.Situated close to the local downtown area with a population of 50 000 and between two megacities(Beijing and Tianjin),the site experiences frequent pollution plumes deriving from urban,rural or mixed origin.

    AC3E provided a series of observations such as aerosol particle size distribution,mass distribution,chemical composition,cloud condensation nuclei and meteorological status.The present study mainly uses the measurements of aerosol particle size distribution and particle chemical composition.Aerosol particle size distribution(10–500 nm)is measured with TSI’s SMPS 3082.Before entering the instrument,the air fl ow is dried with a silica gel diffusion dryer to an average relative humidity of<5%.The measurements of non-refractory submicron(40 nm to 1μm)aerosol species including organics,sulfate,nitrate,ammonium and chloride are obtained with an Aerodyne Aerosol Chemical Speciation Monitor(Sun et al.,2012).Detailed descriptions of these instruments can be obtained from the instrument manuals and corresponding references(e.g.Sun et al.,2012).CCN data,which are obtained at supersaturations of 0.2%,0.5%and 0.8%using a Droplet Measurement Technologies continuous-f l ow CCN counter(Lance et al.,2006),are also used in this study to examine the impact of fine aerosol particle growth.

    Fig.1.Location of the site at Xianghe,where we carried out the AC3E campaign field measurements.

    The meteorological conditions were recorded during the campaign.For most cases,the weather was hot and wet,with an average temperature of 23.6°C and an average ambient relative humidity of 72.3%.

    3.Theory and method

    3.1.Fine aerosol particle growth

    Although not the focus of our study,we begin by providing a brief summary of the mechanisms for fine aerosol particle formation.As shown in Kulmala et al.(2000),several nucleation mechanisms have been proposed to explain fine aerosol particle production,along with meteorologicalrelated nucleation enhancement processes such as turbulent fl uctuations,waves and mixing(Easter and Peters,1994;Nilsson and Kulmala,1998).Two fine aerosol particle formation theories—binary nucleation theory(water and sulfuric acid)(Doyle,1961;Raes et al.,1992;Kulmala et al.,1998)and ternary nucleation theory(sulphuric acid–ammonia–water)(Coffman and Hegg,1995;Korhonen et al.,1999)—have indicated the importance of sulfuric acid and ammonia to the formation of fine aerosol particles.

    Our focus is the growth of fine aerosol particles.As showninTable1,severalmechanismsforfineaerosolparticle growth have been proposed by Kulmala et al.(2004b).The study indicated that the first,third and fourth mechanisms shown in Table 1 do not require additional vapors other than those participating in the nucleation processes(which are the major mechanisms for fine aerosol particle formation),whereas the other two mechanisms do.In general,condensational growth associated with mechanisms 1–3 is more significant when concentrations of condensable vapors are higher,and the efficiency of these three mechanisms should decrease with growth time and then particle sizes due to the consumption of condensable vapors;self-coagulation effi-ciency increases with sizes during the aerosol growing stage;and multi-phase chemical reactions are favored by an acidic environment.Recently,Yue et al.(2010)indicated that fine aerosol particle growth process is mainly caused by three mechanisms:intramodal coagulation,extramodal coagulation with larger pre-existing particles,and vapor condensation.Different from Kulmala et al.(2004b),Yue et al.(2010)indicated negative effects of extramodal coagulation for the growth of fine aerosol particles:the growing aerosol particles can be scavenged or removed by pre-existing larger particles.We should note that many studies(e.g.,Kulmala et al.,2005;Kuang et al.,2012)show the primary mechanism for thegrowth of fine aerosol particles is the condensation of sulfuric acid vapor and low-volatility organic vapors.In summary,the growth of fine aerosol particles should be strongly associated with the condensation of sulfuric acid vapor and lowvolatibility organic vapors,the concentration of pre-existing large size aerosol,the concentration of fine aerosol particles,and favorable meteorological conditions.

    Table 1.Mechanisms listed in Kulmala et al.(2004b)for fine aerosol growth.

    3.2.Method for growth rate calculation

    Fine aerosol particle growth events are identified in this study based on the evolution of aerosol particle size distributions following the definition of Kulmala et al.(2004a).Specifically,an obvious growth trend in particle size distributions can be found during fine aerosol particle growth events.

    Following the expression in Heintzenberg(1994),GR is defined as the growth rate of fine aerosol particles at mean diameter Dmwithin a time period Δt:

    Note that the mean diameter Dmis a mean geometric diameter of a log-normal ultrafine aerosol particle mode,which has been fitted to the number size distribution.GR can also be expressed as(Kulmala et al.,1998)

    where Dpis the particle radius,mυis the molecular mass of condensable vapor,D is the diffusion coefficient,C is the vapor concentration,ρ is the particle density,and βMis the transitional correction factor for the mass f l ux.Equation(2)shows that GR should be related to condensable vapor,particle size and particle concentration.As indicated earlier,both condensation and coagulation play important roles for fine aerosol particle growth.

    Figure 2 shows the temporal variation of aerosol particle size distribution and total aerosol number concentration in the size range from 10 nm to 500 nm on 17 June 2013.Based on the identification method described above,a fine aerosol particle growth event occurs on this day.The aerosol number concentration shows a sharp increase in the initial stage(1100–1400 LST)of this growth event due to the conversion of fine aerosol from sizes below 10 nm to above 10 nm.Considering the two facts that the aerosol number concentration does not change much in the initial stage(such as 10–50 nm)and there are generally heavy emissions of NOxand SO2gases from strong traffic pollution and burning coal in this region,the fast growth of fine aerosol particles in the initialstageshouldbeassociatedwithcondensationalgrowth,as shown in Eq.(2).In the later stage,the aerosol number concentration decreases gradually,which should be due to intramodal and extramodal coagulations.Interestingly,there is a jump in aerosol number concentration between 1900 and 2100 LST,which should be due to the aerosol particles from other sources such as biomass burning.For the measured size range between 10 and 500 nm,there is a clear increasing trend in aerosol particle sizes with time during 1100–2200 LST.It is highly likely that new aerosol particle formation occurs at times before 1100 LST,such as 0900–1100 LST,which is consistent with the findings of many other studies(e.g.,Wu et al.,2007;Zhang et al.,2011).

    Fig.2.An example of a fine aerosol particle growth event that occurred on 17 June 2013.

    Fig.3.An example of the calculation of GR on 17 June 2013.

    Figure 3 illustrates the calculation of GR using Eq.(1)for fine aerosol particles measured at Xianghe on 17 June 2013.Using the time series data of aerosol particle size distributions, ΔDmand Δt can be easily estimated.The fine aerosol particle GRis slightly larger for the period 1100–1430 LST than for 1430–1800 LST,which could be associated with the decreasing condensation efficiency and increasing extramodal coagulation efficiency while the intramodal coagulation efficiency also increases.After 1800 LST,the GR becomes a little larger again.Roughly estimated,the mean particle size increases from 25 nm to 100 nm from 1100 to 2230 LST,corresponding to a mean GR of 6.5 nm h?1.

    Large uncertainties in the estimations of GR could exist.As indicated by Kulmala et al.(2004a),the main problem for GR calculation is to distinguish between fine mode and pre-existing large aerosol particles.The GR is defined as the slope of the linear fitting line between aerosol particle mean size and time.However,different from that shown in Shi and Qian(2003),the mean sizes of fine aerosol particles usually do not show a perfect positive linear relation with time because of two issues.One is the existence of large sized background aerosol particles,and the other is the f l uctuation of the particle size distributions.Both make it difficult to identify the size classes that belong to the fine aerosol particle growth events.Unless it is very clear,we need to make a good guess based on our knowledge.Sometimes,it is even difficult to give an accurate estimate for the start and end points of fine aerosol particle growth events,which usually also affects the calculation of the fine aerosol particle GR.Considering these factors of inf l uence,uncertainties in determined GRs are also examined in this study.For example,the uncertainty for the determined GR values in Fig.3 is estimated as±0.8 nm h?1.

    The observed particle size distributions can be classified into three modes:“nucleation mode”,with size Dm≤ 25 nm;“Aitken mode”,with a size range of 25–100 nm;and “accumulation mode”,with size range of 100–1000 nm.The nucleation mode and Aitken mode aerosol particle GRs are generally different.Considering the aerosol size range measured here is between 10 and 500 nm,the average GRs of fine aerosol particles in the size range of 10–100 nm are examined with Eq.(1)in this study.

    4.Results and discussion

    4.1.Fine aerosol particle growth at Xianghe

    Figure 4 shows the temporal variation of measured aerosol size spectra between 10 and 500 nm during the AC3E campaign period of 9–25 June 2013,except 18 June when an instrument error occurred.While not always obvious, fine aerosol particle growth events occur on days 9,10,11,12,13,17,19,20,21 and 23.The frequency of days that fine aerosol particle growth events occur is around 50%.Assuming these fine aerosol particles are formed locally,the occurrence frequency of fine aerosol growth events is much larger than that found by Wu et al.(2007)and Shen et al.(2011),which show about 20%and 12%respectively in summer.Note that Wu et al.(2007)and Shen et al.(2011)used SMPS measure-ments with a lower size limit of 3 nm,and what they determined were frequencies of new particle formation events that occurred in years other than 2013.Also,Xianghe is a little farther away from central Beijing.Consistent with most studies(e.g.,Kulmala et al.,2004a;Wu et al.,2007), fine aerosol particle growth events often occur on clean and sunny days,and the particles can grow large enough as accumulation mode aerosol in several hours or 1–2 days.Most of these fineaerosolparticlegrowtheventsobservedheretypicallybegin around 0900–1200 LST,which is consistent with Zhang et al.(2011)and Wu et al.(2007).

    Fig.4.Temporal variation of particle number size distribution between 10 nm and 500 nm and aerosol number concentration with sizes larger than 25 nm(green line),50 nm(blue line),and 100 nm(purple line),for the AC3E campaign period of 9–25 June 2013.

    Figure 4 shows the temporal variation of aerosol number concentration with sizes larger than 25 nm,50 nm and 100 nm separately,which exactly illustrates this point.Aerosol with sizes larger than 100 nm(accumulation-mode aerosol)can be treated as pre-existing large sized background aerosol in the initial stage of a fine aerosol particle growth event,which is generally minimal in concentration during the day of the growth event.Thus,we can use the daily minimum aerosol concentration in the accumulation mode to estimate the relative impact caused by extramodal coagulation on the mean growth rate of fine aerosol particles in an event.Unfortunately,there is no clear relationship between the daily minimum accumulation-mode aerosol concentrations and the GRs of fine aerosol particles,as shown in Fig.4.This may imply a de ficiency of extramodal coagulation.

    For all fine aerosol particle growth event days during the AC3E campaign,the GRs are calculated and shown in Fig.5.The GR values range from 2.1 to 6.5 nm h?1,with an average value around 5.1 nm h?1.These values are roughly consistent with the findings from previous studies in the Beijing area(Wu et al.,2007;Yue et al.,2010;Zhang et al.,2011),which show averaged GRs of about 3–5 nm h?1.However,as indicated in Fig.4,large uncertainties exist for determined fineaerosol particleGRsateachevent,which is usually about 0.5–1 nm h?1.

    Fig.5.Growth rates of fine aerosol particles for observed events during the AC3E campaign between 9 and 25 June 2013.The circles represent the mean values and the bars represent the ranges.

    Figure 6 shows that the dominant aerosol chemical compositions are organics and nitrate,with relatively smaller amounts of ammonium and sulfate,which is slightly different from the findings of Zhang et al.(2011)in which the amount of sulfate was more than that of nitrate.Note that the chemical composition from the Aerosol Chemical Speciation Monitor(ACSM)in Fig.6 is for aerosol particles with sizes between 40 nm and 1μm.Here,we simply assume that the particles with sizes between 10 and 500 nm measured by SMPS have the same chemical composition as obtained by ACSM.The NOxand SO2gases are emitted mainly from strong traffic pollution and burning coal(Zhu et al.,2016),which serve as precursors of fine aerosol particles and provide an acidic environment that can cause fast growth of fine aerosol particles through vapor condensation.As shown in Zhu et al.(2016,Figs.2 and 3),both observation and model simulation results for a short period during the observation window show high concentrations of NOxand SO2,at roughly 400 ppb and 25 ppb,respectively.These help make the growth of fine aerosol particles faster.Also,the acidic environment strengthens the multi-phase chemical reactions such that fine aerosol particles can grow faster.

    Fig.6.Temporal variation of aerosol chemical composition measured during the AC3E campaign between 9 and 25 in June 2013.

    Fig.7.Temporal variation of CCN concentration at supersaturations of 0.2%,0.5%and 0.8%during the AC3E campaign between 9 and 25 June 2013.

    One important point regarding the growth of fine aerosol particles is that large aerosols play important indirect radiative roles by serving as CCN.Figure 7 shows the temporal variation of CCN during the AC3E campaign.For almost every fine aerosol growth event,the concentration of CCN is lowest in the initial stage,and quickly increases with the growth of the fine aerosol particles.When the aerosol particles grow large enough,the intramodal and extramodal coagulations make the CCN number concentration decrease.From Fig.7,we can also identify the main growth trends as found in Fig.4:a significant increase in CCN on the days when fine aerosol particles grow.When the environment is suitable for cloud formation,increased CCN will have strong impacts on both cloud microphysical properties and radiation budgets.

    4.2.Spatial variation of growth rates

    By combining various findings on the GRs of fine aerosol particles at different locations,we can examine the spatial variation of GRs.Table 2 lists the fine aerosol particle GRs found by various studies over six different types of locations:clean Antarctic region,slightly polluted rural areas,polluted urban areas,relatively clean(or lightly polluted)megacities,polluted megacities,and boreal forest.The reference studies,locations,and growth rates obtained are also listed in the table.Note that there are strong seasonal variations for fine aerosol particle GRs found by many of these previous studies.Higher GRs of fine aerosol particles are found during summer than in winter,which is potentially associated with the higher precipitable water vapor concentration in summer.Based on the studies listed in Table 2,we provide a rough estimate of the mean GR of fine aerosol particles over each location.These are:0.2,1.3,3.8,5.0,2.0 and 5.0 nm h?1,for the Antarctic,rural,urban,polluted megacity,relatively clean megacity,and boreal forest,respectively.Note that these estimates are very rough and large uncertainties could exist.

    Fig.8.Variation of fine aerosol particle growth rates with location[clean Antarctic,clean rural,urban,and megacities(divided into clean and polluted),and forest].The results are from different studies shown in Table 1.The bars represent the most likely ranges and the red lines indicate the mean values of GRs for the corresponding location types.

    Figure 8 shows the variation in mean GRs over the six locations indicated in Table 2.The bars represent the potential ranges of fine aerosol particle GRs and the red lines indicate the estimated mean values of GRs for the corresponding location types.In general,the fine aerosol particle GRs have a large variability,even in the same location type dominated by similar aerosol types.This suggests significant inf l uences from other environmental factors such as meteorological conditions and pre-existing background aerosol pollution.These results presented in section 3 imply that one dominant mechanism for the variation of GRs with location is vapor condensation.Both fine aerosol particle GRs and condensablevapor concentration are larger in urban and polluted megacity regions compared with Antarctic and rural regions.For relatively clean megacities,the fine aerosol particle GRs lie between those of urban and rural regions.Due to the release of volatile organic compounds from boreal regions,the mean fine aerosol particle GR over boreal forest is also large—almost the same as that over polluted megacities.In addition,multi-phase chemical reactions are generally larger in the urban,megacity and boreal regions.

    Table 2.Growth Rates(GRs)of fine aerosol particles reported by various studies at different locations.The GR estimates for different types of regions in summer are also shown in the table.Note SP?,S?,F?and W?indicate spring,summer,fall and winter,respectively.The results from references with an asterisk are from Table 2 in Kulmala et al.(2004a).

    5.Summary and discussion

    The growth of fine aerosol particles is a frequent phenomenon in Earth’s atmosphere and plays an important role for local environments and global climate change.Based on short-term aerosol observations during the AC3E campaign,the present study shows a high frequency(~50%)of fine aerosol particle growth events at Xianghe in summer.The GRs of fine aerosol particles during the AC3E campaign range from 2.1 to 6.5 nm h?1,with a mean value of~ 5.1 nm h?1.The most likely contribution to the GRs of fine aerosol particles from four factors of inf l uence are discussed in this study,including vapor condensation,intramodal coagulation,extramodal coagulation and multi-phase chemical reactions.For Xianghe,with its heavy releases of organic,nitrate and sulfate materials(Zhu et al.,2016),vapor condensation should play a major role for the growth of fine aerosol in the initial stage,making GRs high.Considering the several mechanisms for fine aerosol particle growth proposed by Kulmala et al.(2004b)and Yue et al.(2010),in the following stages,the combined impacts of extramodal and intramodal coagulations should contribute to the growth of fine aerosol particles,along with condensation growth.Due to the existence of pre-existing large size aerosol particles and the fl uctuations of aerosol size distributions(such as on 19,20 and 21 June in Fig.4),large uncertainties could exist for our calculated GRs of fine aerosol.

    A review of previous findings about the GRs of fine aerosol particles shows higher GR values over megacity,urban and boreal forest regions compared with rural or oceanic regions,most likely caused by the more signi ficant vapor condensation effects.The heavy releases of organic,nitrate and sulfate materials in urban and megacity regions,and the heavy releases of volatile organic compounds from boreal forest regions,make the condensational vapor in megacity,urban and boreal forest regions much greater than in rural or oceanic regions.In short,GRs of fine aerosol particles are infl uenced by multiple factors including condensational vapor,pre-existing large aerosol particles,and various other environmental factors,causing observed values to vary within a broad range and with large uncertainties,even over the same location.

    This study uses theories and results from previous studies to explain our observational findings for the fast GRs(2.1–6.5 nm h?1)of fine aerosol particles found at Xianghe near Beijing,which include both the condensational growth and coalescence growth of fine aerosol particles.Whilst carried out in some of the studies cited here,model simulations or lab investigations have not been carried out to further evaluate our explanation,which would be a valuable approach to take in the future.Moreover,this study calculates the GRs of fine aerosol particles without considering their dissipation through dry deposition,while precipitation scavenging or wet deposition has been excluded.The dry deposition may have slightly increased the calculated GRs since it is easier for smaller particles to be deposited at the growth size range between 10 and 500 nm(Zhang et al.,2001).In other words,the GRs of fine aerosol particles could be slightly smaller in the study area.

    Acknowledgements.This work was supported by the Ministry of Science and Technology of China(Grant No.2017YFC1501403),the National Natural Science Foundation of China(Grant No.41575143),the China “1000 Plan”Young Scholar Program,the State Key Laboratory of Earth Surface Processes and Resource Ecology,and the Fundamental Research Funds for the Central Universities.The data used in this study are from the AC3E campaign,which was supported by the Ministry of Science and Technology of China.

    Albrecht,B.,1989:Aerosols,cloud microphysics and fractional cloudiness.Science,245,1227-1230,http://dx.doi.org/10.1126/science.245.4923.1227.

    Birmili,W.,H.Berresheim,C.Plass-D¨ulmer,T.Elste,S.Gilge,A.Wiedensohler,and U.Uhrner,2003:The Hohenpeissenberg aerosol formation experiment(HAFEX):A longterm study including size-resolved aerosol,H2SO4,OH,and monoterpenes measurements.Atmos.Chem.Phys.,3,361–376,https://doi.org/10.5194/acp-3-361-2003.

    Coffman,D.J.,and D.A.Hegg,1995:A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer.J.Geophys.Res.,100,7147–7160,https://doi.org/10.1029/94JD03253.

    Doyle,G.J.,1961:Self-nucleation in the sulfuric acid-water system.The Journal of Chemical Physics,35,795–799,https://doi.org/10.1063/1.1701218.

    Easter,R.C.,and L.K.Peters,1994:Binary homogeneous nucleation:Temperature and relative humidity f l uctuations,nonlinearity,and aspects of new particle production in the atmosphere.J.Appl.Meteor.,33,775–784,https://doi.org/10.1175/1520-0450(1994)033<0775:BHNTAR>2.0.CO;2.

    Eisele,F.L.,and P.H.McMurry,1997:Recent progress in understanding particle nucleation and growth.Philos.Trans.Roy.Soc.B,352,191–201,https://doi.org/10.1098/rstb.1997.0014.

    Garrett,T.J.,and C.F.Zhao,2006:Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes.Nature,440(7085),787–789,https://doi.org/10.1038/nature 04636.

    Ghan,S.J.,and S.E.Schwartz,2007:Aerosol properties and processes:A path from field and laboratory measurements to global climate models.Bull.Amer.Meteor.Soc.,88,1059–1083,https://doi.org/10.1175/BAMS-88-7-1059.

    Gras,J.L.,1993:Condensation nucleus size distribution at mawson,Antarctica:seasonal cycle.Atmos.Environ.A,27(9),1417-1425,https://doi.org/10.1016/0960-1686(93)90127-K.

    Harrison,R.M.,and J.X.Yin,2000:Particulate matter in the atmosphere:Which particle properties are important for its effects on health?Science of the Total Environment,249(1–3),85–101,https://doi.org/10.1016/S0048-9697(99)00513-6.

    Heintzenberg,J.,1994:Properties of the log-normal particle size distribution.Aerosol Science and Technology,21,46–48,https://doi.org/10.1080/02786829408959695.

    Herrmann,E.,and Coauthors,2013:New particle formation in the western Yangtze River Delta:First data from SORPES-station.Atmos.Chem.Phys.Discuss.,13,1455–1488,https://doi.org/10.5194/acpd-13-1455-2013.

    IPCC,2007:Climate Change 2007:The Physical Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,Solomon et al.,Eds.,Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA,996 pp.

    Korhonen,P.,M.Kulmala,A.Laaksonen,Y.Viisanen,R.Mc-Graw,and J.H.Seinfeld,1999:Ternary nucleation of H2SO4,NH3,and H2O in the atmosphere.J.Geophys.Res.,104,26 349–26 353,https://doi.org/10.1029/1999JD900784.

    Kreyling,W.G.,M.Semmler,and W.M¨oller,2004:Dosimetry and toxicology ofultrafine particles.Journalof Aerosol Medicine,17(2),140–152,https://doi.org/10.1089/0894268041457147.

    Kuang,C.,M.Chen,J.Zhao,J.Smith,P.H.McMurry,and J.Wang,2012:Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei.Atmos.Chem.Phys.,12,3573–3589,https://doi.org/10.5194/acp-12-3573-2012.

    Kulmala,M.,A.Laaksonen,and L.Pirjola,1998:Parameterizations for sulfuric acid/water nucleation rates.J.Geophys.Res.,103,8301–8307,https://doi.org/10.1029/97JD03718.

    Kulmala,M.,L.Pirjola,and J.M.M¨akel¨a,2000:Stable sulphate clustersasasourceofnewatmosphericparticles.Nature,404,66–69,https://doi.org/10.1038/35003550.

    Kulmala,M.,H.Vehkam¨aki,T.Pet¨aj¨a,M.Dal Maso,A.Lauri,V.-M.Kerminen,W.Birmili,and P.H.McMurry,2004a:Formation and growth rates of ultrafine atmospheric particles:A review of observations.Journal of Aerosol Science,35,143–176,https://doi.org/10.1016/j.jaerosci.2003.10.003.

    Kulmala,M.,and Coauthors,2004b:Initial steps of aerosol growth.Atmos.Chem.Phys.,4,2553–2560,https://doi.org/10.5194/acp-4-2553-2004.

    Kulmala,M.,T.Pet¨aj¨a,P.M¨onkk¨onen,I.K.Koponen,M.Dal Maso,P.P.Aalto,K.E.J.Lehtinen,and V.-M.Kerminen,2005:On the growth of nucleation mode particles:Source rates of condensable vapor in polluted and clean environments.Atmos.Chem.Phys.,5,409–416,https://doi.org/10.5194/acp-5-409-2005.

    Kulmala,M.,and Coauthors,2012:Measurement of the nucleation of atmospheric aerosol particles.Nature Protocols,7,1651–1667,https://doi.org/10.1038/nprot.2012.091.

    Lance,S.,A.Nenes,J.Medina,and J.N.Smith,2006:Mapping the operation of the DMT continuous f l ow CCN counter.Aerosol Science and Technology,40,242–254,https://doi.org/10.1080/02786820500543290.

    Li,Z.Q.,F.Niu,J.W.Fan,Y.G.Liu,D.Rosenfeld,and Y.N.Ding,2011:Long-term impacts of aerosols on the vertical development of clouds and precipitation.Nature Geoscience,4,888–894,https://doi.org/10.1038/NGEO1313.

    Lubin,D.,and A.M.Vogelmann,2006:A climatologically significant aerosol longwave indirect effect in the Arctic.Nature,439,453–456,https://doi.org/10.1038/nature04449.

    Makela,J.M.,I.K.Koponen,P.Aalto,and M.Kulmala,1999:One-year data of submicron size modes of tropospheric background aerosol in southern Finland.J.Aero.Sci.,31,595-611,https://doi.org/10.1016/S0021-8502(99)00545-5.

    Makela,J.M.,M.Dal Maso,L.Pirjola,P.Keronen,L.Laakso,M.Kulmala,and A.Laaksonen,2000:Characteristics of the atmospheric particle formation events observed at a boreal forest site in southern Finland.Boreal Environ.Res.,5,299-313,ISSN 1239-6095.

    McMurry,P.H.,2000:A review of atmospheric aerosol measurements.Atmos.Environ.,34,1959-1999,https://doi.org/10.1016/S1352-2310(99)00455-0.

    Neus¨uss,C.,and Coauthors,2002:Characterization and parameterizationofatmosphericparticlenumber,mass,andchemical size distributions in central Europe during LACE-98 MINT.J.Geophys.Res.,107(D21),8127,https://doi.org/10.1029/2001 JD000514.

    Nilsson,E.D.,and M.Kulmala,1998:The potential for atmospheric mixing processes to enhance the binary nucleation rate.J.Geophys.Res.,103,1381–1389,https://doi.org/10.1029/97JD02629.

    Park,J.,H.Sakurai,K.Vollmers,and P.H.McMurry,2004:Aerosol size distributions measured at the South Pole during ISCAT.Atmos.Environ.,38(32),5493-5500,https://doi.org/10.1016/j.atmosenv.2002.12.001.

    Raes,F.,A.Saltelli,and R.Van Dingenen,1992:Modelling formation and growth of H2SO4-H2O aerosols:Uncertainty analysis and experimental evaluation.Journal of Aerosol Science,23,759–771,https://doi.org/10.1016/0021-8502(92)90042-T.

    Rosenfeld,D.,U.Lohmann,G.B.Raga,C.D.O’Dowd,M.Kulmala,S.Fuzzi,A.Reissell,and M.O.Andreae,2008:Flood or drought:How do aerosols affect precipitation?Science,321,1309–1313,https://doi.org/10.1126/science.1160606.

    Shen,X.J.,and Coauthors,2011:First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain.Atmos.Chem.Phys.,11,1565–1580,https://doi.org/10.5194/acp-11-1565-2011.

    Shi,J.P.,and Y.Qian,2003:Continuous measurements of 3 nm to 10μm aerosol size distributions in St.Louis,M.S.Thesis,Department of Mechanical Engineering,University of Minnesota,Minneapolis,MN 55455.

    Spracklen,D.V.,K.S.Carslaw,M.Kulmala,V.-M.Kerminen,G.W.Mann,and S.-L.,Sihto,2006:The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales.Atmos.Chem.Phys.,6,5631–5648,https://doi.org/10.5194/acp-6-5631-2006.

    Spracklen,D.V.,and Coauthors,2008:Contribution of particle formation to global cloud condensation nuclei concentrations.Geophys.Res.Lett.,35,L06808,https://doi.org/10.1029/2007GL033038.

    Spracklen,D.V.,and Coauthors,2010:Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation.Atmos.Chem.Phys.,10,4775–4793,https://doi.org/10.5194/acp-10-4775-2010.

    Sun,Y.,Z.F.Wang,H.B.Dong,T.Tang,J.Li,X.L.Pan,P.Chen,and J.T.Jayne,2012:Characterization of summer organic and inorganic aerosols in Beijing,China with an Aerosol Chemical Speciation Monitor.Atmos.Environ.,51,250–259,https://doi.org/10.1016/j.atmosenv.2012.01.013.

    Twomey,S.,1974:Pollution and the planetary albedo.Atmos.Environ.,8,1251–1256,https://doi.org/10.1016/0004-6981(74)90004-3.

    Weber,R.J.,J.J.Marti,P.H.McMurry,F.L.Eisele,D.J.Tanner,and A.Jefferson,1997:Measurements of new particle formation and ultrafine particle growth rates at a clean continental site.J.Geophys.Res.,102,4375–4385,https://doi.org/10.1029/96JD03656.

    Wu,Z.J.,and Coauthors,2007:New particle formation in Beijing,China:Statistical analysis of a 1-year data set.J.Geophys.Res.,112(D9),D09209,https://doi.org/10.1029/2006 JD007406.

    Yu,F.Q.,and Coauthors,2010:Spatial distributions of particle number concentrations in the global troposphere:Simulations,observations,and implications for nucleation mechanism.J.Geophys.Res.,115,D17205,https://doi.org/10.1029/2009JD013473.

    Yue,D.L.,and Coauthors,2010:The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing.Atmos.Chem.Phys.,10,4953–4960,https://doi.org/10.5194/acp-10-4953-2010.

    Zhang,L.M.,S.L.Gong,J.Padro,and L.Barrie,2001:A size-segregated particle dry deposition scheme for an atmospheric aerosol module.Atmos.Environ.,35(3),549–560,https://doi.org/10.1016/S1352-2310(00)00326-5.

    Zhang,Y.M.,X.Y.Zhang,J.Y.Sun,W.L.Lin,S.L.Gong,X.J.Shen,andS.Yang,2011:Characterizationofnewparticleand secondary aerosol formation during summertime in Beijing,China.Tellus B,63,382–394,https://doi.org/10.1111/j.1600-0889.2011.00533.x.

    Zhao,C.F.,S.A.Klein,S.C.Xie,X.H.Liu,J.S.Boyle,and Y.Y.Zhang,2012:Aerosol first indirect effects on nonprecipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites.Geophys.Res.Lett.,39,L08806,https://doi.org/10.1029/2012GL051213.

    Zhu,Y.,and Coauthors,2016:Distribution and sources of air pollutants in the North China plain based on on-road mobile measurements.Atmos.Chem.Phys.,16,12 551–12 565,https://doi.org/10.5194/acp-16-12551-2016.

    29 March 2017;revised 1 August 2017;accepted 14 August 2017)

    :Zhao,C.F.,Y.N.Li,F.Zhang,Y.L.Sun,and P.C.Wang,2018:Growth rates of fine aerosol particles at a site near Beijing in June 2013.Adv.Atmos.Sci.,35(2),209–217,https://doi.org/10.1007/s00376-017-7069-3.

    ?Corresponding author:Chuanfeng ZHAO

    Email:czhao@bnu.edu.cn

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag GmbH Germany,part of Springer Nature 2018

    欧美另类亚洲清纯唯美| 看片在线看免费视频| 一个人看的www免费观看视频| 国产女主播在线喷水免费视频网站 | 国产精品伦人一区二区| 尾随美女入室| 人妻夜夜爽99麻豆av| 免费播放大片免费观看视频在线观看 | 国产成人aa在线观看| 丝袜喷水一区| 黄色一级大片看看| av国产免费在线观看| 国产精品日韩av在线免费观看| 午夜福利在线观看吧| 老司机福利观看| 国产伦理片在线播放av一区| 日韩欧美精品v在线| 最近视频中文字幕2019在线8| 精品一区二区三区视频在线| 一级爰片在线观看| 麻豆久久精品国产亚洲av| 国产成人91sexporn| 久久韩国三级中文字幕| 内地一区二区视频在线| 久久久久久久久久久免费av| 亚洲成人中文字幕在线播放| 深爱激情五月婷婷| 女人被狂操c到高潮| 在线播放无遮挡| 亚洲激情五月婷婷啪啪| 最近视频中文字幕2019在线8| 少妇人妻精品综合一区二区| 波多野结衣巨乳人妻| 国产精品久久久久久久电影| 国产精品,欧美在线| 午夜福利在线观看吧| 国产精品蜜桃在线观看| 精品久久久噜噜| 97超碰精品成人国产| 天天一区二区日本电影三级| 亚洲第一区二区三区不卡| 国产成人免费观看mmmm| 国模一区二区三区四区视频| 精品人妻一区二区三区麻豆| 亚洲国产高清在线一区二区三| 亚洲国产精品专区欧美| 国产成人a∨麻豆精品| 在线免费观看不下载黄p国产| 国产久久久一区二区三区| 小蜜桃在线观看免费完整版高清| 三级经典国产精品| 又粗又爽又猛毛片免费看| АⅤ资源中文在线天堂| 一级黄片播放器| 久久久久久久久中文| 在线观看av片永久免费下载| 97在线视频观看| 亚洲欧美中文字幕日韩二区| 国产午夜精品一二区理论片| 日本与韩国留学比较| 舔av片在线| 秋霞在线观看毛片| 人妻制服诱惑在线中文字幕| 免费av毛片视频| 能在线免费看毛片的网站| 直男gayav资源| 免费av不卡在线播放| 国产精品av视频在线免费观看| 色播亚洲综合网| 午夜精品国产一区二区电影 | 又爽又黄无遮挡网站| 亚洲,欧美,日韩| 日本与韩国留学比较| 一个人免费在线观看电影| 国产精品伦人一区二区| www.av在线官网国产| 欧美bdsm另类| 一个人观看的视频www高清免费观看| 高清毛片免费看| 免费av不卡在线播放| 免费av毛片视频| 亚洲精品国产av成人精品| 中文在线观看免费www的网站| 人人妻人人澡人人爽人人夜夜 | 有码 亚洲区| 最近的中文字幕免费完整| 看片在线看免费视频| 午夜福利在线在线| 69av精品久久久久久| 欧美高清性xxxxhd video| 色网站视频免费| 99久久中文字幕三级久久日本| 美女cb高潮喷水在线观看| 国产成人a区在线观看| 我的老师免费观看完整版| 中文精品一卡2卡3卡4更新| 亚洲欧美日韩高清专用| 尾随美女入室| 五月伊人婷婷丁香| 97热精品久久久久久| 真实男女啪啪啪动态图| 日韩一本色道免费dvd| 舔av片在线| 亚洲精品456在线播放app| 不卡视频在线观看欧美| 在线免费观看的www视频| 精品欧美国产一区二区三| 联通29元200g的流量卡| 2021天堂中文幕一二区在线观| 国产精品女同一区二区软件| 亚洲精品乱码久久久v下载方式| 黄色配什么色好看| 免费看a级黄色片| 高清在线视频一区二区三区 | 男女那种视频在线观看| 看黄色毛片网站| 国产高清不卡午夜福利| 村上凉子中文字幕在线| 免费不卡的大黄色大毛片视频在线观看 | 国语自产精品视频在线第100页| 天堂影院成人在线观看| 日本-黄色视频高清免费观看| 久久久午夜欧美精品| 看非洲黑人一级黄片| 国产一区二区在线av高清观看| 两个人视频免费观看高清| 1024手机看黄色片| 亚洲国产成人一精品久久久| 看黄色毛片网站| 午夜福利在线观看免费完整高清在| av国产免费在线观看| 国产黄a三级三级三级人| 汤姆久久久久久久影院中文字幕 | 日本wwww免费看| 卡戴珊不雅视频在线播放| 水蜜桃什么品种好| 精品久久久久久久久久久久久| 欧美日韩综合久久久久久| 日本五十路高清| 亚洲精品色激情综合| 国产高清国产精品国产三级 | 亚洲人与动物交配视频| 国产单亲对白刺激| av专区在线播放| 中文亚洲av片在线观看爽| 欧美日本亚洲视频在线播放| 亚洲一级一片aⅴ在线观看| 视频中文字幕在线观看| 欧美色视频一区免费| 国产乱人偷精品视频| av在线亚洲专区| 你懂的网址亚洲精品在线观看 | 免费黄网站久久成人精品| 九九在线视频观看精品| 亚洲精品国产成人久久av| 国产单亲对白刺激| 成人毛片60女人毛片免费| 18禁在线播放成人免费| 亚洲图色成人| 天堂中文最新版在线下载 | 久久久久免费精品人妻一区二区| 亚洲av成人精品一二三区| 性色avwww在线观看| 国产淫语在线视频| 97人妻精品一区二区三区麻豆| 久久6这里有精品| 尤物成人国产欧美一区二区三区| 天天躁夜夜躁狠狠久久av| 乱人视频在线观看| 99久久成人亚洲精品观看| 国内精品美女久久久久久| 国产av不卡久久| 秋霞在线观看毛片| 国产精品.久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜福利网站1000一区二区三区| 日本av手机在线免费观看| 欧美成人午夜免费资源| 1000部很黄的大片| 在线观看美女被高潮喷水网站| 亚洲久久久久久中文字幕| 亚洲第一区二区三区不卡| 久久久久久国产a免费观看| 又爽又黄无遮挡网站| 国语自产精品视频在线第100页| 日韩欧美三级三区| 国产精品一区www在线观看| 国产伦理片在线播放av一区| 国产精品一及| 国产精品嫩草影院av在线观看| 看片在线看免费视频| 少妇人妻一区二区三区视频| 日本欧美国产在线视频| 成人高潮视频无遮挡免费网站| 亚洲怡红院男人天堂| 国产人妻一区二区三区在| 色5月婷婷丁香| 色综合亚洲欧美另类图片| 国产精品熟女久久久久浪| 国产伦精品一区二区三区四那| 国产三级在线视频| 国产在视频线精品| 一个人看视频在线观看www免费| 国产成人免费观看mmmm| 久久草成人影院| 国产午夜福利久久久久久| 欧美一区二区国产精品久久精品| 99热这里只有精品一区| 国产亚洲5aaaaa淫片| av国产久精品久网站免费入址| 天堂av国产一区二区熟女人妻| 少妇人妻一区二区三区视频| 国产老妇伦熟女老妇高清| 国产伦理片在线播放av一区| 国产成年人精品一区二区| 最近2019中文字幕mv第一页| 国产黄片美女视频| 男女边吃奶边做爰视频| 亚洲欧美精品综合久久99| 精品国产一区二区三区久久久樱花 | 搡女人真爽免费视频火全软件| 久久国内精品自在自线图片| 亚洲无线观看免费| 久久精品影院6| 成人鲁丝片一二三区免费| 色综合色国产| 一边亲一边摸免费视频| 亚洲精品乱码久久久v下载方式| 男的添女的下面高潮视频| 欧美激情在线99| 午夜精品一区二区三区免费看| 自拍偷自拍亚洲精品老妇| 国产黄片视频在线免费观看| 成人综合一区亚洲| 亚洲美女视频黄频| 日本黄色片子视频| 纵有疾风起免费观看全集完整版 | 亚洲国产欧美在线一区| 日本黄色片子视频| 1000部很黄的大片| 亚洲高清免费不卡视频| 国产伦理片在线播放av一区| 一边亲一边摸免费视频| 午夜久久久久精精品| 精品人妻视频免费看| 日本欧美国产在线视频| 色综合色国产| 欧美性猛交黑人性爽| 老师上课跳d突然被开到最大视频| 午夜福利网站1000一区二区三区| 高清av免费在线| 女人被狂操c到高潮| 三级经典国产精品| 亚洲av福利一区| 麻豆精品久久久久久蜜桃| 免费观看在线日韩| 欧美成人一区二区免费高清观看| 国产午夜精品论理片| 国产成人精品婷婷| 老师上课跳d突然被开到最大视频| 国产 一区精品| 麻豆成人午夜福利视频| 亚洲第一区二区三区不卡| 两个人视频免费观看高清| 久久久久久久久中文| 免费不卡的大黄色大毛片视频在线观看 | 国产乱来视频区| 白带黄色成豆腐渣| 天美传媒精品一区二区| 18+在线观看网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一边亲一边摸免费视频| 99热这里只有是精品50| 久久久久久伊人网av| 免费看av在线观看网站| 亚洲真实伦在线观看| videossex国产| 一个人看视频在线观看www免费| 国产一区二区亚洲精品在线观看| av在线老鸭窝| 草草在线视频免费看| 亚洲欧美一区二区三区国产| 久久精品91蜜桃| 日韩av在线大香蕉| 免费看光身美女| 一级毛片电影观看 | 婷婷六月久久综合丁香| 亚洲人成网站在线播| 久久99精品国语久久久| 国内精品宾馆在线| 高清午夜精品一区二区三区| 国产视频首页在线观看| 亚洲美女搞黄在线观看| 国产av码专区亚洲av| 亚洲av.av天堂| 久久韩国三级中文字幕| 九九爱精品视频在线观看| 亚洲色图av天堂| 亚洲av.av天堂| 国产视频内射| 久久久久久九九精品二区国产| 插阴视频在线观看视频| 美女脱内裤让男人舔精品视频| 69av精品久久久久久| 国产午夜精品论理片| 一级毛片久久久久久久久女| 亚洲天堂国产精品一区在线| 日日撸夜夜添| 欧美另类亚洲清纯唯美| 最新中文字幕久久久久| 欧美丝袜亚洲另类| 2022亚洲国产成人精品| 成人性生交大片免费视频hd| 人妻夜夜爽99麻豆av| 最近手机中文字幕大全| 美女脱内裤让男人舔精品视频| 一二三四中文在线观看免费高清| 91狼人影院| 淫秽高清视频在线观看| 免费人成在线观看视频色| 我的女老师完整版在线观看| av黄色大香蕉| 精品久久久久久电影网 | 亚洲av免费在线观看| 亚洲精品乱码久久久v下载方式| 免费观看a级毛片全部| 一级黄片播放器| 日本免费一区二区三区高清不卡| av视频在线观看入口| 久久精品国产99精品国产亚洲性色| 免费av不卡在线播放| 亚洲熟妇中文字幕五十中出| 欧美成人精品欧美一级黄| 欧美+日韩+精品| 久久久久久久久久黄片| 韩国高清视频一区二区三区| ponron亚洲| 欧美色视频一区免费| 欧美三级亚洲精品| 99久久精品国产国产毛片| 亚洲av二区三区四区| 91久久精品国产一区二区成人| 欧美人与善性xxx| 国产精品爽爽va在线观看网站| 国产精品野战在线观看| 国产亚洲最大av| 午夜视频国产福利| 中国国产av一级| 精品久久久久久久人妻蜜臀av| 日本猛色少妇xxxxx猛交久久| 国产免费又黄又爽又色| 变态另类丝袜制服| 日韩一区二区视频免费看| 国产高清视频在线观看网站| 国产淫语在线视频| 丰满乱子伦码专区| 国产伦理片在线播放av一区| 精品免费久久久久久久清纯| 人妻制服诱惑在线中文字幕| 毛片一级片免费看久久久久| 欧美最新免费一区二区三区| 97热精品久久久久久| 成人亚洲欧美一区二区av| 午夜福利在线观看吧| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美中文字幕日韩二区| 久久精品人妻少妇| 久久人人爽人人片av| 欧美又色又爽又黄视频| 成人鲁丝片一二三区免费| 国产午夜精品久久久久久一区二区三区| 秋霞在线观看毛片| 国产真实伦视频高清在线观看| 麻豆精品久久久久久蜜桃| 国产极品天堂在线| 一级黄片播放器| 日产精品乱码卡一卡2卡三| 人妻系列 视频| 只有这里有精品99| 男人狂女人下面高潮的视频| www日本黄色视频网| 女的被弄到高潮叫床怎么办| 99久久精品热视频| 国产成人a区在线观看| 亚洲国产欧美在线一区| 成人午夜精彩视频在线观看| 欧美性感艳星| 国产成人freesex在线| 一区二区三区四区激情视频| 亚洲色图av天堂| 美女内射精品一级片tv| 日本免费在线观看一区| 久久久久网色| 亚洲激情五月婷婷啪啪| 超碰97精品在线观看| 国产真实伦视频高清在线观看| 国产精品久久久久久久久免| 久久婷婷人人爽人人干人人爱| 在线播放国产精品三级| 五月玫瑰六月丁香| 赤兔流量卡办理| or卡值多少钱| 伊人久久精品亚洲午夜| 午夜福利在线观看吧| 全区人妻精品视频| 人妻少妇偷人精品九色| 国产三级在线视频| 国产精品久久久久久久久免| 精品一区二区免费观看| 日本一本二区三区精品| 97在线视频观看| 日韩成人伦理影院| 欧美激情在线99| 欧美最新免费一区二区三区| 久久久色成人| 亚洲av中文av极速乱| 成年免费大片在线观看| 少妇被粗大猛烈的视频| 国产 一区 欧美 日韩| 国产欧美另类精品又又久久亚洲欧美| 99热精品在线国产| 久久久精品欧美日韩精品| 欧美人与善性xxx| 一二三四中文在线观看免费高清| 全区人妻精品视频| 水蜜桃什么品种好| 日韩欧美精品v在线| 99热这里只有精品一区| 日韩三级伦理在线观看| 久久久久久久久中文| 超碰av人人做人人爽久久| 岛国毛片在线播放| 春色校园在线视频观看| 欧美一区二区精品小视频在线| 非洲黑人性xxxx精品又粗又长| 亚洲自拍偷在线| 国产精品伦人一区二区| 亚洲av男天堂| 欧美97在线视频| 九九热线精品视视频播放| 亚洲无线观看免费| 一区二区三区四区激情视频| 全区人妻精品视频| 最近的中文字幕免费完整| 黄片无遮挡物在线观看| 长腿黑丝高跟| 人人妻人人看人人澡| 激情 狠狠 欧美| 亚洲欧美日韩东京热| 一二三四中文在线观看免费高清| 全区人妻精品视频| 亚洲欧美一区二区三区国产| 成人三级黄色视频| 国产av一区在线观看免费| 爱豆传媒免费全集在线观看| 中文字幕av在线有码专区| 我要搜黄色片| av福利片在线观看| 久久久色成人| 免费看a级黄色片| 亚洲av电影不卡..在线观看| 久久久久久久久久黄片| 国产激情偷乱视频一区二区| 日本av手机在线免费观看| 看十八女毛片水多多多| 亚洲av免费高清在线观看| 中文字幕av成人在线电影| 欧美3d第一页| 我的女老师完整版在线观看| 国产又色又爽无遮挡免| 91久久精品国产一区二区成人| 精品熟女少妇av免费看| 国产精品国产三级国产专区5o | 大又大粗又爽又黄少妇毛片口| 嫩草影院精品99| 成人高潮视频无遮挡免费网站| 插阴视频在线观看视频| 神马国产精品三级电影在线观看| 成人亚洲精品av一区二区| 美女黄网站色视频| 日韩在线高清观看一区二区三区| 天天躁日日操中文字幕| ponron亚洲| 91精品国产九色| 国产私拍福利视频在线观看| 国产午夜精品一二区理论片| 男女视频在线观看网站免费| 男的添女的下面高潮视频| 国产单亲对白刺激| 免费不卡的大黄色大毛片视频在线观看 | 特级一级黄色大片| 久久久久九九精品影院| 久久热精品热| 精品久久久久久成人av| 高清av免费在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美清纯卡通| 汤姆久久久久久久影院中文字幕 | 国产欧美日韩精品一区二区| 91在线精品国自产拍蜜月| 亚洲电影在线观看av| 国产精品国产三级国产专区5o | 精品久久久久久久人妻蜜臀av| 日日干狠狠操夜夜爽| 国产午夜福利久久久久久| 亚洲成人久久爱视频| 黄片wwwwww| 午夜精品一区二区三区免费看| 免费看美女性在线毛片视频| 你懂的网址亚洲精品在线观看 | 九九久久精品国产亚洲av麻豆| 欧美潮喷喷水| 国产免费视频播放在线视频 | 一级毛片电影观看 | 观看美女的网站| 成人亚洲欧美一区二区av| 久久精品夜色国产| 少妇丰满av| 日韩视频在线欧美| av在线播放精品| 国产午夜福利久久久久久| 成人鲁丝片一二三区免费| 99久久中文字幕三级久久日本| 亚洲成av人片在线播放无| av国产久精品久网站免费入址| 亚洲精品亚洲一区二区| 国产精品永久免费网站| 日韩强制内射视频| 美女脱内裤让男人舔精品视频| 少妇熟女欧美另类| 久久久久久久久大av| 亚洲成av人片在线播放无| 成人无遮挡网站| 日产精品乱码卡一卡2卡三| 中文字幕人妻熟人妻熟丝袜美| a级毛片免费高清观看在线播放| 国产黄片美女视频| 国产中年淑女户外野战色| 国产精品av视频在线免费观看| 亚洲av中文字字幕乱码综合| 亚洲婷婷狠狠爱综合网| 2022亚洲国产成人精品| 国产亚洲av片在线观看秒播厂 | 一区二区三区免费毛片| 国产极品天堂在线| 久久人妻av系列| 视频中文字幕在线观看| 国产精品一区二区性色av| 亚洲国产成人一精品久久久| 国产精品三级大全| av天堂中文字幕网| 国产亚洲一区二区精品| 在线免费观看的www视频| 国产免费男女视频| 毛片女人毛片| 黄片wwwwww| 老女人水多毛片| 欧美性感艳星| 寂寞人妻少妇视频99o| 欧美成人免费av一区二区三区| 欧美精品国产亚洲| 亚洲色图av天堂| 久久人人爽人人片av| 色吧在线观看| 成人一区二区视频在线观看| 听说在线观看完整版免费高清| 国产免费男女视频| 精品免费久久久久久久清纯| 黄色配什么色好看| 亚洲精品国产av成人精品| 免费看a级黄色片| 一级爰片在线观看| 日韩av在线大香蕉| 久久久午夜欧美精品| 男女那种视频在线观看| 一区二区三区四区激情视频| 久久久亚洲精品成人影院| 在线播放国产精品三级| 免费观看人在逋| 国产高潮美女av| 国产精品永久免费网站| 超碰av人人做人人爽久久| 国产免费一级a男人的天堂| 蜜桃久久精品国产亚洲av| 舔av片在线| 国内精品美女久久久久久| 亚洲人成网站在线播| 嫩草影院精品99| 国产成人精品久久久久久| 青春草国产在线视频| 国产成人精品婷婷| 欧美最新免费一区二区三区| 欧美3d第一页| 日韩三级伦理在线观看| 伦理电影大哥的女人| 免费在线观看成人毛片| 97超视频在线观看视频| 国产毛片a区久久久久| 久久精品夜色国产| 黑人高潮一二区| 黄色配什么色好看| 人妻系列 视频| 久久精品影院6| 欧美日韩综合久久久久久| 蜜桃亚洲精品一区二区三区| 久久久精品94久久精品| 九九在线视频观看精品| 亚洲欧美精品综合久久99| 国产亚洲最大av| 午夜福利在线观看免费完整高清在| 成年av动漫网址| 欧美一区二区亚洲| 国内少妇人妻偷人精品xxx网站| 中文在线观看免费www的网站| 国产高清有码在线观看视频|