• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress

    2022-12-28 09:55:14DongliZhang張冬利MingxiangWang王明湘andHuaishengWang王槐生
    Chinese Physics B 2022年12期
    關(guān)鍵詞:王明

    Dongli Zhang(張冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生)

    School of Electronic and Information Engineering,Soochow University,Suzhou 215006,China

    Keywords: negative bias stress,poly-Si,thin-film transistor,grain boundary

    1. Introduction

    Polycrystalline silicon (poly-Si) thin-film transistors(TFTs)are widely used in pixel circuits and peripheral driver circuits of small-size and high-resolution active-matrix flatpanel displays. However,due to the polycrystalline nature and the existence of grain boundaries(GBs)in the poly-Si film,the electrical characteristics of poly-Si TFTs may be deteriorated depending on the location of the GBs.[1–3]On the contrary,the GB in scaled TFTs is reported to be able to improve the offstate current and the subthreshold swing of poly-Si TFTs.[4]

    In addition to the electrical performance of the asfabricated poly-Si TFTs, degradation behavior and the corresponding degradation mechanisms under various kinds of bias stress should be well understood before the optimal design of poly-Si TFTs and TFT-based circuits. Stress conditions,such as positive gate bias stress, negative gate bias stress (NBS),and hot-carrier (HC) effect, could all result into degradation in TFTs’electrical characteristics,but the typical degradation phenomena obviously differ, exhibiting positive[5]and negative shift of the transfer curves[6–8]and decreased on-state current (Ion) with unaffected subthreshold characteristics,[9]respectively.

    GB-related HC degradation in poly-Si TFT has been reported,[10]whereas the effects of GB on other kinds of stress-induced degradation are not yet clarified. In the present paper,NBS degradation in poly-Si TFTs with a defective GB in the channel is investigated. Typical NBS degradation with negative shift of the transfer curves is found to be absent. Instead,reduced on-state current,unaffected subthreshold characteristics and suppressed gate-induced drain leakage(GIDL)current are observed. The corresponding mechanisms for the observed degradation phenomena are proposed in this paper.

    2. Experiments

    TFTs with a defective GB in the channel were fabricated on the basis of metal-induced lateral crystallization (MILC)technology.[11]A 100-nm-amorphous silicon was firstly deposited by the low-pressure chemical vapor deposition on silicon wafers covered with 500-nm thermal oxide. It was then patterned into the active islands before the deposition of 300-nm low-temperature oxide(LTO).After the definition of metal-introducing windows (MIWs) and the following deposition of 10-nm Ni by electron-beam evaporation,MILC heattreatment was carried out in nitrogen atmosphere at 550?C for 24 hrs. Further 24 hrs of post-annealing at 550?C was performed to improve the quality of the poly-Si after removing the unreacted nickel.[12]The TFTs were fabricated on the bilaterally crystallized poly-Si regions, where MIWs were opened on the two ends of the active island and crystallization proceeded from the MIWs towards the center of the active island,as schematically shown in Fig. 1. The two MILC fronts met and formed the defective MILC/MILC GB in the channel region of the TFT, which was perpendicular to the direction of the current flow in the channel.

    After the 300-nm covering LTO was removed, the 100-nm LTO was deposited as the gate dielectric and 300-nm poly-Si was deposited and patterned to form the gate, followed by self-aligned phosphorus implantation at a dosage of 4×1015cm?2and an implantation energy of 120 keV.Dopants were activated at 620?C for 3 hrs. A 500-nm LTO was then deposited,through which contact holes were opened,followed by deposition and patterning of 500-nm Al–1%Si into electrode pads. Finally, forming-gas annealing was performed at 420?C for 30 min.

    During the application of NBS to the poly-Si TFTs at the room temperature,a constant negative gate bias of?35 V was applied to the gate electrode with the source and drain electrodes grounded. The TFTs’ transfer curves before and after NBS were measured with the semiconductor parameter analyzer Agilent 4156C. The default channel width-tolength ratio of the poly-Si TFTs used in this paper isW/L=10μm/30μm.pendence on drain bias at small drain bias voltages and good saturation phenomenon at high drain bias voltages.

    Fig.2. (a)Transfer curves and(b)output curves of the fabricated poly-Si TFTs.

    Fig. 1. (a) Cross-sectional diagram and (b) plane-view picture of the TFT with bilaterally crystallized poly-Si channel and one MILC/MILC grain boundary in the channel.

    3. Results and discussion

    The electrical performance of the fabricated poly-Si TFTs were firstly characterized. Figure 2 shows the representative transfer curves and output curves. From the transfer curve measured withVdsof 0.1 V, the field-effect mobility (μFE),extracted from the maximum transconductance, and threshold voltage(Vth),extracted by the linear extrapolation method,were 85.1 cm2/V·s and 6.5 V, respectively. With an off-sate leakage current (Ioff) of 2.1×10?11A defined as the minimum drain current atVdsof 5.0 V,and on-state current(Ion)of 3.0×10?5A defined as the drain current atVdsof 5.0 V andVgsof 15.0 V,Ion/Ioffis estimated to be 1.43×106. The gate voltage difference characterizing the drain-induced barrier lowing effect(VDIBL)for the same drain current of 1×10?9A atVdsof 0.1 V and 5.0 V is 1.6 V and the subthreshold swing (SS)is 1.45 V/decade. The output curves exhibit good linear de-

    Fig.3. Comparison of the transfer curves measured before and after NBS for 7200 s with(a)Vds=5.0 V and(b)Vds=0.1 V.

    Figure 3 compares the transfer curves of one poly-Si TFT before and after NBS for 7200 s. The negative shift of the transfer curves frequently observed for poly-Si TFTs under NBS is absent. Instead,the TFT after NBS exhibits decreasedIon, unaffected subthreshold characteristics, and suppressed GIDL current at aVdsof 5.0 V (Fig. 3(a)). These degradation phenomena are quite similar to the typical HC stressinduced degradation phenomena at the first sight. However,the reverse-mode characteristics of the TFT behave almost the same as the forward-mode characteristics (Fig. 4), where the reverse-mode characteristics are measured with the source and drain exchanged from the configurations in forward-mode measurements. While the on-state current degrades more under reverse mode than under forward mode in HC-induced degradation.[13]

    Fig.4. Comparison of the transfer curves measured in forward mode and reverse mode for poly-Si TFT under NBS for 7200 s with(a)Vds=0.1 V and(b)Vds=5.0 V.

    Fig. 5. Simulated transfer characteristic curves for poly-Si TFTs with different nTA values in the grain boundary.

    The decreased on-state current after NBS indicates the trap state generation and the unaffected subthreshold characteristics imply that the trap states are not produced uniformly in the channel region.[14,15]Further considering the existence of weak Si–Si bonds and Si–H bonds in the GB,the trap states are most probably locally generated in the MILC/MILC GB.The hypothesis that the locally increased trap states in the GB result into the decreased on-state current were verified by simulation with Silvaco Atlas,[16]where the GB region was set to be 1 μm wide and the concentration of the acceptor-like tail states (nTA) was increased after fitting the initial transfer curves. The parameters, including the distribution of trap states in the poly-Si outside the GB and in the GB, are summarized in Tables 1 and 2,respectively.

    As shown in Fig. 5, the on-state current dose decreases with the increase innTA. The energy barrier in the conduction band formed at the GB in the on-state withVgsof 15 V increases with the increase innTA(Fig. 6) which couldhinder the current flow and suppress the on-state current. Furthermore, when thenTAin the GB region is increased to 4.2×1020cm?3·eV?1and thenGA,the peak value of acceptorlike deep states, is increased to 1.2×1018cm?3·eV?1, the measured subthreshold and on-sate characteristics after NBS for 7200 s could be well fitted by the simulated results(Fig.7),thereby confirming the validity of the proposed mechanism.

    Table 1. Parameters for the poly-Si outside the GB region.

    Table 2. Parameters for the poly-Si in the GB region.

    Fig.6. Comparison of the energy barrier for electrons in the conduction band formed at the grain boundary with different nTa,where Vgs is 15 V and Vds=0 V.

    Fig.7. Comparison of the transfer curve measured with Vds=5.0 V after NBS for 7200 s and that simulated with nTA=4.2×1020 cm?3·eV?1 and nGA=1.2×1018 cm?3·eV?1 in the grain boundary.

    In the NBS degradation mechanism, the holes available in the active layer are important factors to trigger the reactions in the NBS degradation and generation of positive charges in the gate oxide.[17–19]So, the 2D distribution contour of hole concentration in the active layer under the stress gate bias of?35 V was simulated. As shown in Fig.8,high-concentration holes appear at the front surface in the GB and outside the GB regions.

    Vertical distributions of the holes in the GB and those outside the GB were firstly extracted and compared (Fig. 9).At the top surface, the hole concentration is as high as 1.0×1019cm?3and 5.8×1018cm?3for the poly-Si outside the GB and in the GB regions, respectively. For a position far from the surface and at the same depth,the hole concentration in the GB is also much smaller than that outside the GB due to the higher trap state density in the GB.The lateral distribution of the holes in the channel at a depth of 80 nm from the top surface of the active island was also extracted,as shown in Fig.10. The hole’s concentration shows a peak value near the source/drain junctions and the peak concentration is surprisingly found to be more than two orders of magnitude higher than that in the active layer far from the source/drain junctions.

    Fig. 8. Simulated 2D distribution contour of holes in cross-section of the active layer with a gate bias of ?35 V.

    Fig.9. Depth distribution of holes in the GB and outside the GB region with a gate bias of ?35 V.

    Fig.10. Simulated lateral distribution of holes in the active island at a depth position of 80 nm with a gate bias of ?35 V.

    During NBS,the potential of the channel is coupled to be negative in respect to the grounded n+source and drain. Thus,reversely biased pn junctions are formed. The generated carriers in the depletion region of the source/drain pn junctions are separated by the electric field and holes drift into the channel of the TFT.In the neutral channel region,the holes diffuse towards the channel center from the source and drain sides,accompanied by recombination in the channel simultaneously.Then,a non-uniform distribution of holes in the channel could be observed.[20]

    The validity of the proposed explanation on the nonuniform distribution of holes in the active layer was further verified,where the lifetime of holes was varied. As shown in Figs.11(b)and 11(c),the peak concentration and the distribution range of the peak for holes near the source/drain decrease as the lifetime of holes decreases. When the carrier generation in the source/drain depletion region through trap-assisted tunneling is further excluded, which is accounted for the fitting of the GIDL current during the simulation of initial transfer curves, the holes distribute uniformly in the channel and the concentration is as low as 1.5×1010cm?3[Fig.11(d)],which is also reasonable as the thermal generation of holes in the active layer is uniform.

    Fig.11.Comparison of the simulated lateral distribution of the hole at a depth position of 80 nm in the active island with(a)default parameters,(b)lifetime reduced by one order of magnitude, (c) lifetime reduced by two orders of magnitude,and(d)carrier tunneling model excluded during simulation.

    Considering the higher-concentration holes in the channel near the source and drain under NBS,typical NBS degradation still takes place with positive charges(Qox)formed locally in the gate oxide near the source and drain. The locally distributed positive changes screen the electric field from the gate in the off-state and reduce the GIDL current, such that the dependence of leakage current on gate bias atVdsof 5.0 V is greatly reduced, as observed in Fig. 3(a).[21]As shown in Fig.12,the suppression effect of the GIDL current after NBS could be achieved by adding positive charges in the gate oxide in 0.5-μm-long regions from the gate edges,and the suppression effect is more effective with the increase in locally distributed positive charges in the gate oxide. For example,with aQoxof 4.0×1017cm?3, the GIDL current is suppressed to a current level of 5.8×10?11A, which is very close to the measured current of 6.5×10?11A after NBS.

    Figure 3(b)shows that the leakage current atVdsof 0.1 V,which is initially thermal generation dominated and gate-bias independent,significantly increases and becomes gate-bias dependent after NBS. Figure 13 compares the drain current,source current (Is), and gate leakage current (Ig) in the offstate atVdsof 0.1 V after NBS for 7200 s. The drain current and the source current show gate-bias dependence, and the dependence trend is similar to that for the gate leakage current. The sum of drain current and source current equals to the gate leakage current in the off-state. Thus,after NBS,the drain current atVdsof 0.1 V is clearly dominated by the gate leakage current. Considering that the gate leakage current before NBS shows gate-bias independence and as low as 0.1 pA(Fig.13),the defect-related conduction path in the gate oxide could be concluded to be introduced during NBS,such that the gate leakage becomes larger than the generation current at the drain junction and dominates the drain current at smallVds.

    Fig. 12. Suppressed GIDL current in the simulated transfer curves with different Qox values added in the gate oxide near the source and drain.

    Fig. 13. Comparison of the drain current, source current, and gate leakage current after NBS.The initial gate leakage current before NBS is also shown as a reference.

    4. Conclusion

    NBS degradation phenomena featured with reduced onstate and GIDL but increased gate bias dependence of the leakage current atVdsof 0.1 V are observed for poly-Si TFTs with a defective GB in the channel. Trap state generation in the GB, local generation of positive charge in the gate oxide near the source/drain,and trap state generation in the gate oxide are proposed to be the respective causes for the observed phenomena. The high-concentration holes in the bulk of the active island near the source/drain junctions are responsible for the local generation of positive charges in the gate oxide which suppresses the GIDL current.Meanwhile,the low concentration of holes in the bulk of the active island far from the source/drain junctions is proposed to the reason for the absence of the shift of the transfer curve after NBS.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61971299 and 61974101), the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201201),the Fund from Suzhou Science and Technology Bureau (Grant No. SYG201933), and the Fund from the State Key Laboratory of ASIC and System, Fudan University(Grant No.2021KF005).

    猜你喜歡
    王明
    The(1+1)-dimensional nonlinear ion acoustic waves in multicomponent plasma containing kappa electrons
    Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
    Higher Derivative Estimates for a Linear Elliptic Equation
    Degradation and its fast recovery in a-IGZO thin-film transistors under negative gate bias stress*
    追問高原
    北方音樂(2019年10期)2019-07-10 19:13:36
    走過318
    北方音樂(2019年10期)2019-07-10 19:13:36
    “看不見”的王明華
    海峽姐妹(2019年3期)2019-06-18 10:37:22
    王明輝:創(chuàng)造國(guó)藥秘方的新傳奇
    金色年華(2017年2期)2017-06-15 20:28:30
    SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH A GRADIENT?
    龍門這邊(47)
    棋藝(2014年1期)2014-05-20 02:07:43
    美女高潮的动态| 丁香六月欧美| 成人国产综合亚洲| 美女免费视频网站| 欧美激情在线99| 精品无人区乱码1区二区| 午夜精品一区二区三区免费看| av天堂中文字幕网| 免费av毛片视频| 乱人视频在线观看| 嫩草影院入口| 蜜桃久久精品国产亚洲av| 国产精品亚洲美女久久久| 中文字幕av成人在线电影| 国产精品一区二区三区四区久久| 青草久久国产| 日韩欧美国产在线观看| 欧美区成人在线视频| 久久这里只有精品中国| 欧美成人a在线观看| 一级黄片播放器| 可以在线观看毛片的网站| 亚洲国产高清在线一区二区三| 久久久成人免费电影| 免费大片18禁| 在线免费观看不下载黄p国产 | 成年女人毛片免费观看观看9| 午夜免费男女啪啪视频观看 | 国产精品久久久久久久久免 | 小说图片视频综合网站| 日本 av在线| 51午夜福利影视在线观看| 成人性生交大片免费视频hd| 看黄色毛片网站| ponron亚洲| 亚洲熟妇熟女久久| 亚洲成人久久爱视频| 国产又黄又爽又无遮挡在线| 亚洲一区二区三区色噜噜| 高清日韩中文字幕在线| 真人一进一出gif抽搐免费| 国产高清三级在线| 午夜两性在线视频| 免费高清视频大片| 国产成人av教育| 天堂av国产一区二区熟女人妻| 99久久久亚洲精品蜜臀av| 日本精品一区二区三区蜜桃| 最近在线观看免费完整版| 天堂网av新在线| 色哟哟哟哟哟哟| 国产成年人精品一区二区| 嫁个100分男人电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 在线十欧美十亚洲十日本专区| www日本在线高清视频| 亚洲国产精品999在线| 一个人免费在线观看电影| 欧美黄色淫秽网站| 搞女人的毛片| 色综合亚洲欧美另类图片| 最近最新免费中文字幕在线| 亚洲av成人精品一区久久| 成年女人看的毛片在线观看| 五月玫瑰六月丁香| 1024手机看黄色片| 亚洲中文日韩欧美视频| 亚洲国产精品sss在线观看| 香蕉丝袜av| 久久久国产成人精品二区| 成人永久免费在线观看视频| 久久99热这里只有精品18| 午夜福利在线观看吧| 在线播放国产精品三级| 一区二区三区高清视频在线| 免费观看人在逋| 成年女人毛片免费观看观看9| 日本熟妇午夜| 一进一出好大好爽视频| 欧美日韩福利视频一区二区| 内射极品少妇av片p| av国产免费在线观看| 欧美激情在线99| 国内久久婷婷六月综合欲色啪| 麻豆成人av在线观看| 美女黄网站色视频| 熟女人妻精品中文字幕| 国产精品99久久久久久久久| 男女做爰动态图高潮gif福利片| 国产精品 国内视频| 午夜久久久久精精品| 亚洲 欧美 日韩 在线 免费| 淫秽高清视频在线观看| 精品午夜福利视频在线观看一区| 国产亚洲精品久久久久久毛片| 宅男免费午夜| 无人区码免费观看不卡| 婷婷亚洲欧美| 波多野结衣高清作品| 亚洲成人久久爱视频| 亚洲成av人片在线播放无| 欧美日本亚洲视频在线播放| 亚洲精华国产精华精| 中文在线观看免费www的网站| 黄色日韩在线| 免费电影在线观看免费观看| 国产美女午夜福利| 国产探花极品一区二区| 日本 av在线| 桃红色精品国产亚洲av| 少妇的逼水好多| 亚洲精品一区av在线观看| 国产精品女同一区二区软件 | 亚洲人成伊人成综合网2020| 亚洲欧美日韩东京热| av欧美777| 色精品久久人妻99蜜桃| 波多野结衣巨乳人妻| 午夜福利18| 亚洲av第一区精品v没综合| 精品久久久久久成人av| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩乱码在线| 国产综合懂色| 波多野结衣高清无吗| 超碰av人人做人人爽久久 | 男人舔奶头视频| 国内毛片毛片毛片毛片毛片| 天堂影院成人在线观看| 日韩欧美国产一区二区入口| 少妇裸体淫交视频免费看高清| 亚洲av电影不卡..在线观看| 国产免费一级a男人的天堂| 久久久久久国产a免费观看| 夜夜夜夜夜久久久久| 成人高潮视频无遮挡免费网站| 久久精品夜夜夜夜夜久久蜜豆| 国产黄色小视频在线观看| 精品欧美国产一区二区三| 午夜免费男女啪啪视频观看 | 亚洲最大成人手机在线| 午夜免费男女啪啪视频观看 | 国内精品久久久久精免费| 男人舔奶头视频| 日日干狠狠操夜夜爽| 欧美国产日韩亚洲一区| 久久久久久九九精品二区国产| 国产精品精品国产色婷婷| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩综合久久久久久 | ponron亚洲| 亚洲av一区综合| 色尼玛亚洲综合影院| 欧美日韩黄片免| 噜噜噜噜噜久久久久久91| 精品午夜福利视频在线观看一区| 每晚都被弄得嗷嗷叫到高潮| 99国产精品一区二区蜜桃av| 夜夜躁狠狠躁天天躁| 婷婷精品国产亚洲av在线| 日日干狠狠操夜夜爽| xxx96com| 一级a爱片免费观看的视频| 国产成人影院久久av| 波多野结衣巨乳人妻| 国产一区在线观看成人免费| 亚洲五月婷婷丁香| 无限看片的www在线观看| 一进一出好大好爽视频| 国产成人av教育| 婷婷亚洲欧美| 19禁男女啪啪无遮挡网站| 少妇的丰满在线观看| 老熟妇乱子伦视频在线观看| 国产精品日韩av在线免费观看| 亚洲第一欧美日韩一区二区三区| 国产老妇女一区| 久久久久久久午夜电影| 国产精品 欧美亚洲| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清| 级片在线观看| 一级a爱片免费观看的视频| 男插女下体视频免费在线播放| 精品久久久久久久人妻蜜臀av| 亚洲精品日韩av片在线观看 | 国产精品99久久99久久久不卡| 99精品欧美一区二区三区四区| aaaaa片日本免费| av天堂中文字幕网| 一个人免费在线观看电影| 久久国产精品人妻蜜桃| 国产一区在线观看成人免费| 国内精品久久久久久久电影| 亚洲成人免费电影在线观看| 亚洲七黄色美女视频| 男女那种视频在线观看| www日本黄色视频网| 精品欧美国产一区二区三| 熟妇人妻久久中文字幕3abv| 19禁男女啪啪无遮挡网站| 特大巨黑吊av在线直播| 亚洲专区中文字幕在线| 亚洲五月婷婷丁香| 又黄又粗又硬又大视频| 亚洲精品国产精品久久久不卡| 亚洲欧美精品综合久久99| 黄色成人免费大全| 我要搜黄色片| 天堂av国产一区二区熟女人妻| 久久久久国内视频| 美女被艹到高潮喷水动态| 一级a爱片免费观看的视频| 成人无遮挡网站| 18+在线观看网站| 99久久精品热视频| 中出人妻视频一区二区| 日韩人妻高清精品专区| 久久久久国内视频| 激情在线观看视频在线高清| 乱人视频在线观看| 亚洲在线观看片| 美女大奶头视频| 日韩亚洲欧美综合| 国产精品亚洲一级av第二区| а√天堂www在线а√下载| 国内精品久久久久精免费| 午夜福利欧美成人| 桃色一区二区三区在线观看| 色哟哟哟哟哟哟| 日本熟妇午夜| 亚洲性夜色夜夜综合| 两个人看的免费小视频| 日本 av在线| 一级黄片播放器| 国产亚洲精品久久久久久毛片| 超碰av人人做人人爽久久 | 久久99热这里只有精品18| 国产日本99.免费观看| 全区人妻精品视频| 嫩草影院入口| 久久久久国产精品人妻aⅴ院| 国产精品三级大全| 国产在线精品亚洲第一网站| 国产真人三级小视频在线观看| 国产真实乱freesex| 国产精品1区2区在线观看.| 中文字幕熟女人妻在线| 日日夜夜操网爽| www.色视频.com| 欧美色欧美亚洲另类二区| 国产一级毛片七仙女欲春2| 日日干狠狠操夜夜爽| 天堂av国产一区二区熟女人妻| www.色视频.com| 欧美中文日本在线观看视频| 日韩欧美国产一区二区入口| 精品熟女少妇八av免费久了| 全区人妻精品视频| 国模一区二区三区四区视频| 国产精品乱码一区二三区的特点| 欧美性猛交╳xxx乱大交人| 精品一区二区三区av网在线观看| 色综合亚洲欧美另类图片| 国产精品亚洲av一区麻豆| 免费在线观看影片大全网站| 久久九九热精品免费| 欧美日韩瑟瑟在线播放| 日韩欧美免费精品| 在线播放无遮挡| 99精品欧美一区二区三区四区| 精品99又大又爽又粗少妇毛片 | 悠悠久久av| 色精品久久人妻99蜜桃| 欧美不卡视频在线免费观看| 91在线精品国自产拍蜜月 | 母亲3免费完整高清在线观看| 韩国av一区二区三区四区| 一二三四社区在线视频社区8| 久久伊人香网站| 亚洲国产精品sss在线观看| 国产美女午夜福利| ponron亚洲| 黄片大片在线免费观看| 女同久久另类99精品国产91| 色精品久久人妻99蜜桃| 国产精品99久久99久久久不卡| 超碰av人人做人人爽久久 | 亚洲av免费在线观看| 欧美极品一区二区三区四区| 神马国产精品三级电影在线观看| 久99久视频精品免费| 熟女电影av网| 一本久久中文字幕| 三级男女做爰猛烈吃奶摸视频| 免费观看人在逋| 小蜜桃在线观看免费完整版高清| 女生性感内裤真人,穿戴方法视频| 国产又黄又爽又无遮挡在线| 久久婷婷人人爽人人干人人爱| 免费看日本二区| 伊人久久大香线蕉亚洲五| 好看av亚洲va欧美ⅴa在| 亚洲熟妇熟女久久| 免费人成在线观看视频色| 国产欧美日韩一区二区三| 国产成人欧美在线观看| 男人舔奶头视频| 99精品久久久久人妻精品| 成人特级黄色片久久久久久久| 一个人观看的视频www高清免费观看| 国产成+人综合+亚洲专区| 亚洲国产欧美人成| 看片在线看免费视频| 美女高潮喷水抽搐中文字幕| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲激情在线av| 精品99又大又爽又粗少妇毛片 | 神马国产精品三级电影在线观看| 午夜激情欧美在线| 国产高清视频在线播放一区| 99在线视频只有这里精品首页| 亚洲中文字幕日韩| 国产亚洲av嫩草精品影院| h日本视频在线播放| 两个人视频免费观看高清| 在线播放无遮挡| 丰满乱子伦码专区| 日韩欧美在线乱码| 99国产综合亚洲精品| 麻豆一二三区av精品| 长腿黑丝高跟| 亚洲欧美日韩高清在线视频| 亚洲激情在线av| 久久伊人香网站| 一区福利在线观看| 亚洲国产中文字幕在线视频| 搡女人真爽免费视频火全软件 | 国产午夜精品久久久久久一区二区三区 | 国产精品嫩草影院av在线观看 | 天堂网av新在线| 在线免费观看的www视频| 在线播放国产精品三级| 18禁国产床啪视频网站| 久久久久久久亚洲中文字幕 | 精品久久久久久久末码| 国产成+人综合+亚洲专区| 老汉色av国产亚洲站长工具| 亚洲在线观看片| 亚洲av免费在线观看| 最新美女视频免费是黄的| 国产欧美日韩一区二区三| 在线播放国产精品三级| 黄片小视频在线播放| 校园春色视频在线观看| 国产伦精品一区二区三区视频9 | 91av网一区二区| 首页视频小说图片口味搜索| av国产免费在线观看| 亚洲精品456在线播放app | 大型黄色视频在线免费观看| 国内精品久久久久久久电影| 村上凉子中文字幕在线| 99久久综合精品五月天人人| 日本 av在线| 法律面前人人平等表现在哪些方面| 国产不卡一卡二| 欧美另类亚洲清纯唯美| 久久99热这里只有精品18| 国产精品永久免费网站| 高清日韩中文字幕在线| 国产成人av激情在线播放| 中文字幕人妻丝袜一区二区| 99久久精品一区二区三区| 哪里可以看免费的av片| av专区在线播放| 国产精品日韩av在线免费观看| 麻豆一二三区av精品| 欧美性猛交黑人性爽| 一级毛片高清免费大全| 亚洲内射少妇av| 国产激情欧美一区二区| 国产一区二区三区在线臀色熟女| 无限看片的www在线观看| 午夜亚洲福利在线播放| 国产精品国产高清国产av| 成人午夜高清在线视频| h日本视频在线播放| 亚洲精华国产精华精| 三级男女做爰猛烈吃奶摸视频| 成人无遮挡网站| 午夜两性在线视频| 国产淫片久久久久久久久 | 欧美bdsm另类| www.熟女人妻精品国产| 亚洲av美国av| 99精品在免费线老司机午夜| 亚洲无线在线观看| 欧美绝顶高潮抽搐喷水| 成人午夜高清在线视频| 日本成人三级电影网站| 国产精品嫩草影院av在线观看 | 少妇的逼水好多| 中文字幕熟女人妻在线| 天天一区二区日本电影三级| 中亚洲国语对白在线视频| 麻豆成人av在线观看| 美女cb高潮喷水在线观看| 老汉色∧v一级毛片| 欧美日韩福利视频一区二区| 欧美日本亚洲视频在线播放| 人妻久久中文字幕网| 日本 av在线| 亚洲天堂国产精品一区在线| 变态另类丝袜制服| 香蕉久久夜色| 色播亚洲综合网| 婷婷精品国产亚洲av| 十八禁人妻一区二区| 精品国产超薄肉色丝袜足j| 1024手机看黄色片| 日本五十路高清| 最新在线观看一区二区三区| 男女下面进入的视频免费午夜| 在线播放国产精品三级| 99在线人妻在线中文字幕| 中文字幕av在线有码专区| 欧美一区二区亚洲| 国语自产精品视频在线第100页| 18美女黄网站色大片免费观看| 中文亚洲av片在线观看爽| 给我免费播放毛片高清在线观看| 伊人久久大香线蕉亚洲五| 欧美丝袜亚洲另类 | 亚洲中文字幕一区二区三区有码在线看| 欧美色视频一区免费| 嫩草影视91久久| 成人鲁丝片一二三区免费| 五月伊人婷婷丁香| 中文字幕人妻熟人妻熟丝袜美 | 特级一级黄色大片| 国产精品 国内视频| 亚洲av免费高清在线观看| 小蜜桃在线观看免费完整版高清| 搡老妇女老女人老熟妇| 波野结衣二区三区在线 | 亚洲av五月六月丁香网| 高清毛片免费观看视频网站| 精品人妻偷拍中文字幕| 久久草成人影院| 久久婷婷人人爽人人干人人爱| 99热这里只有是精品50| 精品久久久久久久毛片微露脸| 伊人久久精品亚洲午夜| 午夜免费激情av| 日本免费一区二区三区高清不卡| 久久精品国产99精品国产亚洲性色| 亚洲美女视频黄频| 欧美一级a爱片免费观看看| a级毛片a级免费在线| 特级一级黄色大片| 日韩欧美精品免费久久 | 亚洲av日韩精品久久久久久密| 又黄又粗又硬又大视频| 99riav亚洲国产免费| 久久久久久九九精品二区国产| 欧美黄色淫秽网站| 欧美午夜高清在线| 真人做人爱边吃奶动态| 欧美zozozo另类| 全区人妻精品视频| 免费在线观看亚洲国产| 国内揄拍国产精品人妻在线| 怎么达到女性高潮| 制服丝袜大香蕉在线| 一级黄色大片毛片| 99精品久久久久人妻精品| 色在线成人网| 一本精品99久久精品77| 淫秽高清视频在线观看| 国产黄片美女视频| 欧美日韩一级在线毛片| 欧美在线黄色| 国产成人a区在线观看| 露出奶头的视频| 欧美不卡视频在线免费观看| 最近在线观看免费完整版| 日本与韩国留学比较| svipshipincom国产片| 少妇的逼好多水| 熟妇人妻久久中文字幕3abv| 久久久久九九精品影院| 日韩精品青青久久久久久| 精品日产1卡2卡| 国产成年人精品一区二区| 在线观看舔阴道视频| 亚洲黑人精品在线| 1000部很黄的大片| 99久久综合精品五月天人人| 波多野结衣高清作品| 国产亚洲精品一区二区www| 老鸭窝网址在线观看| 色哟哟哟哟哟哟| 少妇的丰满在线观看| 丰满人妻一区二区三区视频av | АⅤ资源中文在线天堂| 两性午夜刺激爽爽歪歪视频在线观看| 免费观看的影片在线观看| 亚洲精品一区av在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品三级大全| 成人国产综合亚洲| 99精品久久久久人妻精品| 亚洲精品成人久久久久久| 国产成人a区在线观看| 国产精品女同一区二区软件 | 白带黄色成豆腐渣| 精品一区二区三区视频在线 | 国产又黄又爽又无遮挡在线| 国产精品自产拍在线观看55亚洲| 国产精品1区2区在线观看.| 女警被强在线播放| 国产伦精品一区二区三区视频9 | 十八禁网站免费在线| 搞女人的毛片| tocl精华| 3wmmmm亚洲av在线观看| 成人一区二区视频在线观看| 丝袜美腿在线中文| 在线观看av片永久免费下载| 亚洲精品乱码久久久v下载方式 | 网址你懂的国产日韩在线| 精品一区二区三区视频在线 | 高潮久久久久久久久久久不卡| 欧美日韩乱码在线| 国内精品美女久久久久久| 蜜桃亚洲精品一区二区三区| 亚洲av成人av| 国产 一区 欧美 日韩| 俄罗斯特黄特色一大片| 欧美三级亚洲精品| 狂野欧美激情性xxxx| 十八禁网站免费在线| 少妇熟女aⅴ在线视频| 久久午夜亚洲精品久久| 国产真人三级小视频在线观看| 免费观看精品视频网站| 女人十人毛片免费观看3o分钟| 国产高潮美女av| 亚洲人成网站在线播| 久久久久久国产a免费观看| 一个人看的www免费观看视频| 久久久色成人| 国产不卡一卡二| 免费一级毛片在线播放高清视频| 嫩草影院入口| 人人妻,人人澡人人爽秒播| 一本精品99久久精品77| 亚洲av一区综合| 三级国产精品欧美在线观看| 校园春色视频在线观看| 波多野结衣高清作品| 久久久久国产精品人妻aⅴ院| 亚洲人成电影免费在线| 国产高清激情床上av| 午夜视频国产福利| 中国美女看黄片| 国产男靠女视频免费网站| 两个人看的免费小视频| 日日干狠狠操夜夜爽| 精品人妻偷拍中文字幕| 99久久成人亚洲精品观看| 变态另类丝袜制服| av福利片在线观看| av片东京热男人的天堂| 亚洲国产欧洲综合997久久,| 激情在线观看视频在线高清| x7x7x7水蜜桃| 欧美黑人欧美精品刺激| 手机成人av网站| 亚洲人成伊人成综合网2020| 亚洲av美国av| 国产精品一区二区三区四区免费观看 | 亚洲精品一卡2卡三卡4卡5卡| 黄色片一级片一级黄色片| 国产免费av片在线观看野外av| 91九色精品人成在线观看| tocl精华| 久久这里只有精品中国| 搡老熟女国产l中国老女人| 日韩亚洲欧美综合| 久久这里只有精品中国| 亚洲一区二区三区不卡视频| 欧美成狂野欧美在线观看| 男女下面进入的视频免费午夜| 日韩欧美在线乱码| 午夜精品在线福利| 久久这里只有精品中国| 久久久久免费精品人妻一区二区| 给我免费播放毛片高清在线观看| avwww免费| 99久久99久久久精品蜜桃| 国产亚洲精品久久久com| 在线观看一区二区三区| 久久精品国产综合久久久| 精品欧美国产一区二区三| 男女做爰动态图高潮gif福利片| 香蕉久久夜色| 欧美日韩一级在线毛片| 国产私拍福利视频在线观看| www日本在线高清视频| 很黄的视频免费| 国产欧美日韩精品亚洲av| 又紧又爽又黄一区二区| 欧美一级毛片孕妇|