皮銳,柳清云,高謙
復旦大學基礎醫(yī)學院醫(yī)學分子病毒學教育部/衛(wèi)生部重點實驗室,上海 200032
·綜述·
耐藥結核分枝桿菌的適應性代價與補償性進化
皮銳,柳清云,高謙
復旦大學基礎醫(yī)學院醫(yī)學分子病毒學教育部/衛(wèi)生部重點實驗室,上海 200032
結核病耐藥率的攀升是目前全球結核病防控面臨的重大挑戰(zhàn)。結核分枝桿菌主要通過其基因組中耐藥相關基因發(fā)生點突變而獲得耐藥性。由于耐藥相關基因通常具有重要的生理功能,其突變往往會導致結核分枝桿菌自身適應性下降,即產生“適應性代價”。然而,耐藥結核分枝桿菌可通過進一步積累其他特定突變來回復其適應性,這種能使其適應性上升的突變稱為“補償性突變”。耐藥結核分枝桿菌的補償性進化被認為是耐藥結核病廣泛傳播與流行的生物學基礎。近年來,在結核病分子流行病學和基礎研究領域,針對耐藥結核分枝桿菌的補償性進化開展了大量研究。本文從結核分枝桿菌的耐藥分子機制、耐藥突變的適應性代價與補償性進化,以及補償性進化如何影響耐藥結核病傳播等方面,綜述耐藥結核分枝桿菌補償性進化的研究進展。
結核分枝桿菌;耐藥突變;適應性代價;補償性進化;異位顯性
目前,結核病仍是全球致死率最高的傳染性疾病之一,其主要由結核分枝桿菌感染呼吸系統(tǒng)引起。近幾十年來,隨著耐多藥結核病(multidrug-resistant tuberculosis,MDR-TB;同時對異煙肼和利福平耐藥)、廣泛耐藥結核病(extensively drug-resistant tuberculosis,XDR-TB;在MDR-TB基礎上還對喹諾酮類藥物和至少一種二線注射類藥物耐藥)和全耐藥結核病(totally drug-resistant tuberculosis,TDR-TB;對可用抗結核藥物均耐藥)的出現與耐藥率的不斷攀升,耐藥結核病已成為全球結核病防控工作面臨的嚴峻挑戰(zhàn)[1]。根據世界衛(wèi)生組織(World Health Organization,WHO)的結核病年度報告,2015年全球約有1 040萬新發(fā)病例,其中48萬為MDR-TB,因結核病死亡的人數達140萬[2]。作為結核病第三高負擔國家,中國2015年共有91.8萬新發(fā)病例,其中7萬為MDR-TB[2]。需強調的是,在全球范圍內,結核病的初治耐多藥率為3.9%,復治耐多藥率為 21%;而在我國則分別為 6.6% 和30%,均高于世界平均水平[2]。
早期的數學模型預測分析認為,耐藥結核分枝桿菌由于適應性下降,與敏感菌競爭存在劣勢且更易被宿主清除,因而難以形成持續(xù)的感染傳播鏈或擴張暴發(fā)[3-4]。然而,分子流行病學研究表明,耐藥結核分枝桿菌造成的傳播事件甚至比敏感菌株更多[1,5]。一個重要原因是耐藥結核病患者治療周期長或久治不愈,從而導致傳播時間更長、傳播范圍更廣。近期研究發(fā)現,耐藥結核分枝桿菌自身的適應性進化可能在其傳播中發(fā)揮重要作用,即耐藥菌通過補償性進化來回補耐藥突變導致的適應性代價,從而使適應性上升并促進耐藥菌在群體中的固定及傳播[6-11]。本文就結核分枝桿菌的耐藥分子機制、耐藥突變的適應性代價與補償性進化,以及補償性進化對傳播的影響等方面,對近年來關于耐藥結核分枝桿菌補償性進化的研究進行系統(tǒng)綜述。
結核分枝桿菌基因組中鮮見通過質?;蚩梢苿舆z傳元件從外界獲得遺傳物質的水平基因轉移事件,因此耐藥相關基因突變是其主要耐藥分子機制[12-13]。結核分枝桿菌的耐藥突變主要發(fā)生在藥物結合靶標或藥物活化酶等的編碼基因上,這些基因突變導致藥物分子與靶標的結合能力減弱或前體藥物無法被活化,從而使結核分枝桿菌產生耐藥[14]。例如,rpoB基因81 bp的利福平耐藥決定區(qū)(rifampicin resistance determining region,RRDR)突變后,利福平與RNA聚合酶的結合能力減弱,從而導致對利福平耐藥[15-16];對異煙肼耐藥主要是因為katG基因突變導致過氧化氫-過氧化物酶(KatG)活性降低或喪失,使異煙肼無法被活化[17]。此外,藥物靶基因啟動子突變也可導致結核分枝桿菌耐藥。例如,inhA基因啟動子突變引起藥物靶標InhA蛋白過表達,從而導致對異煙肼或乙硫異煙胺耐藥[18]。而結核分枝桿菌對多種藥物的耐藥性,需逐步積累對單種藥物的耐藥突變來獲得。表1列出了結核分枝桿菌對常見藥物的耐藥機制。
由于耐藥突變主要發(fā)生于結核分枝桿菌的必需基因,如rpoB基因(編碼RNA聚合酶)、gyrA基因(編碼DNA促旋酶)等,這些基因突變會使相應蛋白的酶活降低或喪失,從而導致結核分枝桿菌對原生境的適應性下降,即產生“適應性代價”(fitness cost)[19-20]。適應性下降的具體表現:在沒有抗生素選擇壓力的環(huán)境中,耐藥株相比于野生株生長能力減弱[21]。因此,耐藥突變的積累是把雙刃劍,在使細菌獲得耐藥性的同時也可能導致其適應性降低。適應性代價在細菌中普遍存在,多項研究發(fā)現結核分枝桿菌、大腸埃希菌、銅綠假單胞菌、金黃色葡萄球菌及鼠傷寒沙門菌等病原菌在積累耐藥突變后均會產生適應性降低[22-29]。
近年來,不少研究通過生長速率、體外競爭實驗、動物感染模型等評估耐藥結核分枝桿菌的適應性代價。結果發(fā)現,大部分攜帶katG突變的耐異煙肼結核分枝桿菌在小鼠/豚鼠感染模型中致病能力減弱,原因是katG突變使其編碼的KatG活性喪失或降低,從而導致結核分枝桿菌在胞內受到的氧化損傷增加[30-32]。此外,不同katG突變類型所導致的適應性代價存在差異。例如,盡管絕大多數katG突變導致KatG酶活降低,但臨床最常見的katGS315T突變能在獲得高水平耐藥的同時保留較高的KatG活性(酶活僅下降12%~17%)。因此,攜帶該突變的耐藥菌株在小鼠體內的增殖速率與野生株相近,并顯著高于其他katG突變類型[33-34]。類似現象在耐利福平結核分枝桿菌中也存在:對利福平的耐藥突變使結核分枝桿菌的適應性下降4%~71%,其中臨床最常見的rpoBS450L突變導致的適應性下降僅為16%[35-36]。此外,相較于L4亞型,rpoBH526D突變在L2亞型耐利福平結核分枝桿菌中導致的適應性代價較低,表明遺傳背景可影響耐藥結核分枝桿菌的適應性[37]。不同耐藥結核分枝桿菌之間的適應性代價的異質性受多方面因素影響,包括菌株的遺傳背景、特定的耐藥突變、多個耐藥突變之間的異位顯性(epistasis)效應及耐藥結核分枝桿菌的補償性進化等[12]。值得強調的是,臨床最常見的耐藥突變類型其適應性代價通常較低,表明耐藥突變在產生與固定過程中經歷了競爭和篩選,適應性高的耐藥突變更易固定下來。
表1常用的抗結核藥物、結核分枝桿菌耐藥相關基因及其主要耐藥機制
Tab.1ListofthemostcommondrugresistancemechanismsinM.tuberculosis
藥物耐藥基因 基因功能 耐藥機制利福平rpoBRNA聚合酶β亞基藥物分子與靶標的結合能力減弱異煙肼katG過氧化氫/過氧化物酶前體藥物無法激活inhA烯酰?ACP還原酶藥物分子與靶標的結合能力減弱inhA啟動子藥物靶標過表達乙胺丁醇embB阿拉伯糖基轉移酶藥物分子與靶標的結合能力減弱吡嗪酰胺pncA吡嗪酰胺酶前體藥物無法激活乙硫異煙胺inhA烯酰?ACP還原酶藥物分子與靶標的結合能力減弱inhA啟動子藥物靶標過表達ethA單加氧酶前體藥物無法激活喹諾酮類gyrA/BDNA促旋酶藥物分子與靶標的結合能力減弱鏈霉素rrs16SrRNA藥物分子與靶標的結合能力減弱rpsL12S核糖體蛋白藥物分子與靶標的結合能力減弱阿米卡星rrs16SrRNA藥物分子與靶標的結合能力減弱卡那霉素rrs16SrRNA藥物分子與靶標的結合能力減弱eis啟動子氨基糖苷類乙?;D移酶藥物失活酶過表達卷曲霉素rrs16SrRNA藥物分子與靶標的結合能力減弱tylArRNA甲基轉移酶藥物靶標無法被甲基化對氨基水楊酸t(yī)hyA胸苷酸合成酶通路旁路阻斷降低藥效folC二氫葉酸合成酶前體藥物無法激活ribD二氫葉酸還原酶前體藥物無法激活環(huán)絲氨酸aldL?丙氨酸脫氫酶藥物靶標底物過表達alr丙氨酸消旋酶藥物分子與靶標的結合能力減弱alr啟動子藥物靶標過表達貝達喹啉atpEATP合成酶藥物分子與靶標的結合能力減弱rv0678/mmpL5轉錄抑制因子外排泵MmpL5過表達利奈唑胺rplC50S核糖體蛋白L3藥物分子與靶標的結合能力減弱rrl23SrRNA藥物分子與靶標的結合能力減弱
在積累耐藥突變之后,耐藥結核分枝桿菌可通過進一步積累其他特定的突變來回補耐藥突變導致的適應性代價,這一過程稱為“補償性進化”。目前已知的耐藥結核分枝桿菌補償性進化主要包括以下3種形式:耐藥相關基因的二次突變、耐藥突變之間的異位顯性效應及同工酶的過表達。
耐藥相關基因的二次突變是指結核分枝桿菌在積累某個基因的耐藥突變后,在該基因或其他功能相關基因上積累另外的突變,通過調整蛋白或蛋白復合物的空間結構來回補耐藥突變導致的功能損傷。
Gagneux等最早于2006年發(fā)現,實驗室篩選的耐利福平結核分枝桿菌通常具有較高的適應性代價,而臨床分離的一些耐利福平結核分枝桿菌表現出與野生株相當的適應性,提示可能發(fā)生了補償性進化[37]。此后,Comas等對實驗室篩選及臨床分離的耐利福平菌株與相應野生株進行全基因組測序,鑒定出耐利福平的相關補償性突變。這些突變分布在rpoA和rpoC基因上,主要位于RNA聚合酶α亞基與β’亞基的交界面,通過影響亞基之間的相互作用發(fā)揮補償效應[9]。近期研究發(fā)現rpoB基因上也存在補償性位點,攜帶rpoBS450L突變的耐利福平菌株進一步積累rpoBV615M突變后,在耐藥水平增加的同時其生長速率提高到與野生株相近的水平[38]。而對于氨基糖苷類耐藥突變的研究發(fā)現,單個16S rRNA 1491 G>U突變會導致耐藥菌的適應性下降約11.7%,而進一步積累16S rRNA 1409 C>A突變后,在保持高水平耐藥的同時其適應性也回復到野生株的水平[8]。此外,在耐利福平沙門菌中鑒定到的18種補償性突變與結核分枝桿菌中的補償性突變部分重疊[39],進一步表明細菌通過積累耐藥相關基因的二次突變來回補適應性這一補償進化機制廣泛存在。
突變之間的異位顯性效應是指一種突變最終導致的表型效應依賴于其他突變[40-41]。而在耐藥結核分枝桿菌中,不同突變間的相互作用既可產生正向異位顯性效應(減少或消除適應性代價),也可以產生負向異位顯性效應(擴大適應性代價)。
研究發(fā)現,在MDR和XDR菌株中,多種耐藥突變之間的異位顯性效應也發(fā)揮重要的補償作用。Borrel等以恥垢分枝桿菌為模式菌株,通過體外競爭實驗揭示了耐利福平突變(rpoB基因)和耐喹諾酮類藥物突變(gyrA基因)之間的異位顯性效應,發(fā)現不同的耐藥基因突變組合產生的適應性代價差異顯著[42]。在17種雙耐藥突變組合中,有6種突變組合的適應性顯著高于單耐藥突變菌株的適應性,如rpoBH526P +gyrAD94N、rpoBH526R +gyrAD94N等[42]。其中,個別耐藥突變組合(如rpoBH526P +gyrAD94N)甚至可使MDR菌株的適應性高于野生型菌株,而這些特定的耐藥突變組合在臨床結核分枝桿菌中也最常見[42]。這表明不同耐藥突變之間正向異位顯性效應可補償單突變導致的適應性代價。
耐藥結核分枝桿菌還可通過藥物作用靶蛋白的同工酶過表達來補償耐藥突變引起的適應性下降。在耐異煙肼結核分枝桿菌中,katG突變導致KatG的活性降低甚至失活,從而使其抵御過氧化物氧化損傷的能力降低。然而,結核分枝桿菌ahpC基因可編碼另一種烷基過氧化氫還原酶(AhpC),該酶在正常情況下表達量很低[43]。在耐異煙肼菌株中,經常檢測到ahpC基因的啟動子突變,如-54 C>T、-48 G>A等。研究這些突變的功能時發(fā)現,突變后AhpC表達分別上調9倍和2.7倍,而大量AhpC可通過解除活性氧的氧化損傷作用來部分回補由katG突變導致的適應性下降,從而使耐異煙肼結核分枝桿菌發(fā)生補償性進化[6-7]。
早期數學模型預測認為,未來的結核病耐藥形勢主要取決于耐藥結核分枝桿菌的適應性,而耐藥突變會導致細菌適應性下降,因此耐多藥結核病只是地方性的公共衛(wèi)生問題,不會造成顯著的傳播流行[3-4]。Cohen等基于數學模型的研究指出,即使MDR菌株的平均適應性較低,但長遠來看,總有一部分相對適應的MDR菌株能競爭成功,造成廣泛流行[44]。然而,近期多項研究表明,耐藥結核分枝桿菌造成的近期傳播甚至比敏感菌更嚴重[5,45-47]。究其原因,除耐藥結核病患者久治不愈導致更多的傳播事件外,耐藥結核分枝桿菌本身的適應性進化也可能發(fā)揮重要作用。
Comas等發(fā)現,全球耐藥結核病負擔最嚴重的國家中,超過30%的MDR菌株攜帶rpoA/rpoC基因上的補償性突變,提示MDR菌株的補償性進化可能促進MDR-TB的流行[9]。早期數學模型研究僅考慮了耐藥突變導致的MDR菌株適應性下降,但該研究指出數學模型在預測未來MDR-TB的流行趨勢時應重點考慮補償性突變對MDR菌株傳播和流行的貢獻[9]。此外,de Vos等利用IS6110分型鑒定成簇菌株,發(fā)現成簇的耐利福平菌株攜帶rpoC突變的比例較非成簇菌株高[10]。Li等利用24位點可變數目串聯重復序列(variable number of tandem repeats,VNTR)分型方法鑒定成簇菌株,同樣發(fā)現MDR成簇菌株中攜帶的rpoC突變比例較高[11]。但值得注意的是,以上研究均只是“提示”補償性突變可能對傳播有促進作用,尚缺乏直接證據證明補償性突變確實促進了耐藥結核分枝桿菌的傳播。嚴格來講,研究某種因素是否對傳播產生影響,應該從導致的傳播簇“大小”和“頻率”兩個方面來評估[48]。因此,關于補償性突變對耐藥結核分枝桿菌傳播的實際貢獻,仍需進一步探討。
結核分枝桿菌主要通過其基因組中耐藥相關基因發(fā)生點突變來獲得耐藥性,且通常伴隨著適應性下降。然而,耐藥結核分枝桿菌可通過積累補償性突變來減少或消除耐藥突變導致的適應性代價,并可能促進耐藥菌在群體中的固定及傳播。本課題組前期研究發(fā)現,除耐藥相關基因,另有11個非耐藥相關基因中的非同義突變在治療過程中發(fā)生顯著變化,提示可能的補償性進化機制[49]。目前對耐藥結核分枝桿菌補償性進化機制的探索仍處于初級階段,存在諸多問題[50-51]。主要包括:①除以上綜述的補償性進化機制外,還存在哪些可能補償機制?②補償性突變的積累對結核分枝桿菌進一步積累其他耐藥突變有無促進作用?③體外競爭實驗獲得的適應性評價能否真實反映結核分枝桿菌在體內的適應性?④盡管目前研究提示補償性突變可能促進傳播,但并不確定補償性突變在耐藥結核分枝桿菌傳播中究竟有多大貢獻。對這些問題進行深入探索,將有助于人們深入了解結核分枝桿菌的耐藥進化和補償性進化機制,對改善耐藥結核病的治療及監(jiān)控耐藥結核分枝桿菌特別是高適應性耐藥菌的出現與傳播具有重要意義。
[1] Ahmed MM, Velayati AA, Mohammed SH. Epidemiology of multidrug-resistant,extensively drug resistant,and totally drug resistant tuberculosis in Middle East countries [J]. Int J Mycobacteriol, 2016, 5(3): 249-256.
[2] WHO. Global tuberculosis report 2016 [EB/OL].[2017-09-15]. http://www.who.int/tb/publications/global_report/en.
[3] Dye C, Espinal MA. Will tuberculosis become resistant to all antibiotics? [J]. Proc Biol Sci, 2001, 268(1462): 45-52.
[4] Dye C, Williams BG, Espinal MA, Raviglione MC. Erasing the world’s slow stain: strategies to beat multidrug-resistant tuberculosis [J]. Science, 2002, 295(5562): 2042-2046.
[5] Shah NS, Auld SC, Brust JC, Mathema B, Ismail N, Moodley P, Mlisana K, Allana S, Campbell A, Mthiyane T, Morris N, Mpangase P, van der Meulen H, Omar SV, Brown TS, Narechania A, Shaskina E, Kapwata T, Kreiswirth B, Gandhi NR.Transmission of extensively drug-resistant tuberculosis in South Africa [J]. N Engl J Med, 2017, 376(3): 243-253.
[6] Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE 3rd, Stover CK.Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis [J]. Science, 1996, 272(5268): 1641-1643.
[7] Heym B, Stavropoulos E, Honoré N, Domenech P, Saint-Joanis B, Wilson TM, Collins DM, Colston MJ, Cole ST. Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis [J]. Infect Immun, 1997, 65(4): 1395-1401.
[8] Shcherbakov D, Akbergenov R, Matt T, Sander P, Andersson DI, Boettger EC. Directed mutagenesis of Mycobacterium smegmatis 16S rRNA to reconstruct the in vivo evolution of aminoglycoside resistance in Mycobacterium tuberculosis [J]. Mol Microbiol, 2010, 77(4): 830-840.
[9] Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes [J]. Nat Genet, 2012, 44(1): 106-110.
[10] de Vos M, Müller B, Borrell S, Black PA, van Helden PD, Warren RM, Gagneux S, Victor TC. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission [J]. Antimicrob Agents Chemother, 2013, 57(2): 827-832.
[11] Li QJ, Jiao WW, Yin QQ, Xu F, Li JQ, Sun L, Xiao J, Li YJ, Mokrousov I, Huang HR, Shen AD. Compensatory mutations of rifampin resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis Beijing genotype strains in China [J]. Antimicrob Agents Chemother, 2016, 60(5): 2807-2812.
[12] Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives [J]. FEMS Microbiol Rev, 2017, 41(3): 354-373.
[13] 柳清云,孫剛,高謙.結核分枝桿菌(MTB)異質性耐藥研究進展 [J].復旦學報(醫(yī)學版),2013,40(1):1-4.
[14] 李勤靜,焦偉偉,申阿東.耐藥結核病發(fā)病機制的研究進展 [J].中華結核和呼吸雜志,2015,38(9):691-694.
[15] Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase [J]. Cell, 2001, 104(6): 901-912.
[16] Andre E, Goeminne L, Cabibbe A, Beckert P, Kabamba Mukadi B, Mathys V, Gagneux S, Niemann S, van Ingen J, Cambau E. Consensus numbering system for the rifampicin resistance-associated rpoB gene mutations in pathogenic mycobacteria [J]. Clin Microbiol Infect, 2017, 23(3): 167-172.
[17] Heym B, Alzari PM, Honoré N, Cole ST. Missense mutations in the catalase-peroxidase gene,katG,are associated with isoniazid resistance in Mycobacterium tuberculosis [J]. Mol Microbiol, 1995, 15(2): 235-245.
[18] Morlock GP, Metchock B, Sikes D, Crawford JT, Cooksey RC. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates [J]. Antimicrob Agents Chemother, 2003, 47(12): 3799-3805.
[19] Melnyk AH, Wong A, Kassen R. The fitness costs of antibiotic resistance mutations [J]. Evol Appl, 2015, 8(3): 273-283.
[20] Koch A, Mizrahi V, Warner DF. The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin? [J]. Emerg Microbes Infect, 2014, 3(3): e17.
[21] Vogwill T, MacLean RC. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach [J]. Evol Appl, 2015, 8(3): 284-295.
[22] Moura de Sousa J, Balbontín R, Dur?o P, Gordo I. Multidrug-resistant bacteria compensate for the epistasis between resistances [J]. PLoS Biol, 2017, 15(4): e2001741.
[23] Qi Q, Preston GM, MacLean RC. Linking system-wide impacts of RNA polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa [J]. MBio, 2014, 5(6): e01562.
[24] Lee SM, Ender M, Adhikari R, Smith JM, Berger-Bachi B, Cook GM. Fitness cost of staphylococcal cassette chromosome mec in methicillin-resistant Staphylococcus aureus by way of continuous culture [J]. Antimicrob Agents Chemother, 2007, 51(4): 1497-1499.
[25] Giraud E, Cloeckaert A, Baucheron S, Mouline C, Chaslus-Dancla E. Fitness cost of fluoroquinolone resistance in Salmonella enterica serovar Typhimurium [J]. J Med Microbiol, 2003, 52(Pt 8): 697-703.
[26] Nielsen KL, Pedersen TM, Udekwu KI, Petersen A, Skov RL, Hansen LH, Hughes D, Frimodt-M?ller N. Fitness cost: a bacteriological explanation for the demise of the first international methicillin-resistant Staphylococcus aureus epidemic [J]. J Antimicrob Chemother, 2012, 67(6): 1325-1332.
[27] Spies FS, von Groll A, Ribeiro AW, Ramos DF, Ribeiro MO, Dalla Costa ER, Martin A, Palomino JC, Rossetti ML, Zaha A, da Silva PE. Biological cost in Mycobacterium tuberculosis with mutations in the rpsL,rrs,rpoB,and katG genes [J]. Tuberculosis (Edinb), 2013, 93(2): 150-154.
[28] Luo T, Yuan J, Peng X, Yang G, Mi Y, Sun C, Wang C, Zhang C, Bao L. Double mutation in DNA gyrase confers moxifloxacin resistance and decreased fitness of Mycobacterium smegmatis [J]. J Antimicrob Chemother 2017, 72(7): 1893-1900.
[29] Melnyk AH, McCloskey N, Hinz AJ, Dettman J, Kassen R. Evolution of cost-free resistance under fluctuating drug selection in Pseudomonas aeruginosa [J]. mSphere, 2017, 2:e00158-17. doi: 10.1128/mSphere.00158-17.
[30] Barnett M, Busby SR, Mitchison DA. Tubercle bacilli resistant to isoniazid: virulence and response to treatment with isoniazid in guinea-pigs and mice [J]. Br J Exp Pathol, 1953, 34(5): 568-581.
[31] Li Z, Kelley C, Collins F, Rouse D, Morris S. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs [J]. J Infect Dis, 1998, 177(4): 1030-1035.
[32] Middlebrook G, Cohn ML. Some observations on the pathogenicity of isoniazid-resistant variants of tubercle bacilli [J]. Science, 1953, 118(3063): 297-299.
[33] Pym AS, Saint-Joanis B, Cole ST. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans [J]. Infect Immun, 2002, 70(9): 4955-4960.
[34] Cohen T, Becerra MC, Murray MB. Isoniazid resistance and the future of drug-resistant tuberculosis [J]. Microb Drug Resist, 2004, 10(4): 280-285.
[35] Billington OJ, Mchugh TD, Gillespie SH. Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother, 1999, 43(8): 1866-1869.
[36] Mariam DH, Mengistu Y, Hoffner SE, Andersson DI. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother, 2004, 48(4): 1289-1294.
[37] Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJ. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis [J]. Science, 2006, 312(5782): 1944-1946.
[38] Meftahi N, Namouchi A, Mhenni B, Brandis G, Hughes D, Mardassi H. Evidence for the critical role of a secondary site rpoB mutation in the compensatory evolution and successful transmission of an MDR tuberculosis outbreak strain [J]. J Antimicrob Chemother, 2016, 71(2): 324-332.
[39] Brandis G, Hughes D. Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates [J]. J Antimicrob Chemother, 2013, 68(11): 2493-2497.
[40] Hughes D, Andersson DI. Evolutionary trajectories to antibiotic resistance [J]. Ann F Rev Microbiol, 2017, 71:579-596. doi: 10.1146/annurev-micro-090816-093813.
[41] Wong A. Epistasis and the evolution of antimicrobial resistance [J]. Front Microbiol, 2017, 8: 246. doi: 10.3389/fmicb.2017.00246.
[42] Borrell S, Teo Y, Giardina F, Streicher EM, Klopper M, Feldmann J, Muller B, Victor TC, Gagneux, S. Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis [J]. Evol Med Public Health, 2013(1): 65-74.
[43] Springer B, Master S, Sander P, Zahrt T, McFalone M, Song J, Papavinasasundaram KG, Colston MJ, Boettger E, Deretic V. Silencing of oxidative stress response in Mycobacterium tuberculosis: expression patterns of ahpC in virulent and avirulent strains and effect of ahpC inactivation [J]. Infect Immun, 2001, 69(10): 5967-5973.
[44] Cohen T, Murray M. Modeling epidemics of multidrug-resistant M.tuberculosis of heterogeneous fitness [J]. Nat Med, 2004, 10(10): 1117-1121.
[45] Teixeira L, Perkins MD, Johnson JL, Keller R, Palaci M, do Valle Dettoni V, Canedo Rocha LM, Debanne S, Talbot E, Dietze R. Infection and disease among household contacts of patients with multidrug-resistant tuberculosis [J]. Int J Tuberc Lung Dis, 2001, 5(4): 321-328.
[46] van Soolingen D, de Haas PE, van Doorn HR, Kuijper E, Rinder H, Borgdorff MW. Mutations at amino acid position 315 of the katG gene are associated with high-level resistance to isoniazid, other drug resistance, and successful transmission of Mycobacterium tuberculosis in the Netherlands [J]. J Infect Dis, 2000, 182(6): 1788-1790.
[47] Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O, Kontsevaya I, Corander J, Bryant J, Parkhill J, Nejentsev S, Horstmann RD, Brown T, Drobniewski F. Evolution and transmission of drug-resistant tuberculosis in a Russian population [J]. Nat Genet, 2014, 46(3): 279-286.
[48] Cohen T, Sommers B, Murray M. The effect of drug resistance on the fitness of Mycobacterium tuberculosis [J]. Lancet Infect Dis, 2003, 3(1): 13-21.
[49] Sun G, Luo T, Yang C, Dong X, Li J, Zhu Y, Zheng H, Tian W, Wang S, Barry CE 3rd, Mei J, Gao Q. Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients [J]. J Infect Dis, 2012, 206(11): 1724-1733.
[50] 李勤靜,焦偉偉.結核分枝桿菌利福平耐藥機制及其適應性研究進展 [J].結核病與肺部健康雜志,2017,6(2):106-109.
[51] MacLean RC, Vogwill T. Limits to compensatory adaptation and the persistence of antibiotic resistance in pathogenic bacteria [J]. Evol Med Public Health, 2015(1): 4-12.
. GAO Qian, E-mail: qiangao@fudan.edu.cn
Fitnesscostandcompensatoryevolutionofdrug-resistantMycobacteriumtuberculosis
PI Rui, LIU Qingyun, GAO Qian
KeyLaboratoryofMedicalMolecularVirologyofMinistriesofEducationandHealth,SchoolofBasicMedicalSciences,FudanUniversity,Shanghai200032,China
The increasing rate of drug resistance in tuberculosis possesses a great challenge to the global tuberculosis control. The drug resistance inMycobacteriumtuberculosis(M.tuberculosis) is mainly conferred by chromosomal mutations in essential and highly conserved genes, and usually accompanied by a reduction in fitness, namely “fitness cost”. However, this fitness cost can be ameliorated by secondary compensatory mutations which help restore the fitness of drug-resistant strains. The compensatory evolution has been regarded as the biological basis of the extensive spread and high prevalence of drug-resistantM.tuberculosis. Recently, a series of scientific works in the field of molecular epidemiology of tuberculosis and the basic research on the compensatory evolution of drug-resistantM.tuberculosishave been conducted. In this review, we focus on the molecular mechanisms for fitness cost of drug resistance, the compensatory evolution and the potential impacts of these two processes on the transmission ofM.tuberculosis.
Mycobacteriumtuberculosis; Drug-resistance mutation; Fitness cost; Compensatory evolution; Epistasis
國家自然科學基金(91631301)
高謙
2017-07-11)
更正
本刊2017年12卷5期299頁上《產超廣譜β-內酰胺酶肺炎克雷伯菌血流感染的耐藥性、危險因素及臨床結局分析》一文(作者:林佛君,等)的作者單位“深圳市南山區(qū)人民醫(yī)院感染科,深圳市內源性感染診治研究重點實驗室,深圳 518052”應為“廣東醫(yī)科大學附屬深圳市南山區(qū)人民醫(yī)院感染科,深圳市內源性感染診治研究重點實驗室,深圳 518052”。特此更正!
《微生物與感染》編輯部